Меню

Процесс коммутации виды коммутации способы улучшения коммутации в машинах постоянного тока

Вопрос 7. Коммутация в машинах постоянного тока. Причины, вызывающие искрение на коллекторе. Сущность процесс коммутации, виды коммутации. Способы улучшения коммутации.

Коммутация машин постоянного тока, т. е. изменение направления тока в секциях обмотки якоря при переходе секций от одного полюсного деления к другому, происходит при кратковременном замыкании их щетками на пластинах коллектора. При коммутации в короткозамкнутых секциях возникают реактивная ЭДС и ЭДС вращения, наводимая потоком реакции якоря, магнитные силовые линии которого пронизывают замкнутые при коммутации секции. При движении коллектора в момент отхода пластины коллектора от замыкающей данную секцию щетки происходит разрыв цепи (замкнутой секции), имеющей индуктивное сопротивление, и возникает искрение между сбегающим краем щетки и коллекторной пластиной. При неудовлетворительной коммутации искрение может быть значительным и может привести к местному повреждению коллектора, что в свою очередь ухудшает переходный контакт щетка—коллектор и усиливает искрение. Качество коммутации машины постоянного тока оценивается по интенсивности искрения на коллекторе. Для улучшения коммутации во всех машинах постоянного тока, кроме машин малой мощности, устанавливают добавочные полюсы, МДС которых компенсирует МДС реакции якоря по поперечной оси машины, т. е. в зоне расположения коммутируемых секций. Кроме того, поток, создаваемый обмоткой добавочных полюсов, наводит в замкнутых при коммутации секциях ЭДС, несколько превышающую реактивную ЭДС секций и направленную ей навстречу. Коммутация машины при этих условиях становится прямолинейной или даже ускоренной. Напряжение под сбегающим краем щеток уменьшается до весьма малых значений и искрение под щетками становится не опасным для работы машины.

Вопрос 8. Генераторы постоянного тока. Основные понятия. Параметры и характеристики. Уравнения равновесия эдс и моментов генератора.

В процессе работы генератора постоянного тока в обмотке якоря индуцируется ЭДС Еа [см. (25.20)]. При подключении к генератору нагрузки в цепи якоря возникает ток, а на выводах генератора устанавливается напряжение, определяемое уравнением напряжений для цепи якоря генератора:

U = Еа — Ia∑r. Якорь генератора приводится во вращение приводным двигателем, который создает на валу генератора вращающий момент М\. Если генератор работает в режиме холостого хода (7а = 0), то для вращения его якоря нужен сравнительно небольшой момент холостого хода М0. Этот момент обусловлен тормозными противодействующими моментами, возникающими в генераторе при его работе в режиме холостого хода: моментами от сил трения и вихревых токов в якоре.

При работе нагруженного генератора в проводах обмотки якоря появляется ток /а, который, взаимодействуя с магнитным потоком возбуждения Ф, создаёт на якоре электромагнитный момент М. В генераторе этот момент направлен встречно вращающему моменту М1 приводного двигателя ПД, т.е. он является нагрузочным (тормозящим). Уравнение мощностей для генераторов пост. тока: Р12эаэв. Следовательно, мех. мощность, развиваемая приводным двигателем Р1, преобразуется в генераторе в полезную Р2, передаваемую нагрузке, и мощность, затрачиваемую на покрытие потерь (Рэаэв).

Основные характеристики ГПТ: Характеристика холостого хода — зависимость напряжения на выходе генератора в режиме холостого хода U от тока возбуж­дения Iв:U = f(Iв) при I = 0 и n = const.

Нагрузочная характеристика — зависимость напряжения на выходе генератора U при работе с нагрузкой от тока возбуждения Iв: U = f(Iв) при I ≠ 0 и n = const.

Внешняя характеристика g- зависимость напряжения на вы­ходе генератора U от тока нагрузки I.

U = f(I) при грr = const и n = const, где грг — регулировочное сопр. в цепи обмотки возбужде­ния.

Регулировочная характеристика — зависимость тока возбуж­дения IВ от тока нагрузки I при неизменном напряжении на выходе генератора: Iв=f(I) при U = const и n = const.

Источник

Коммутация машин постоянного тока

Основные явления. Коммутацией в электрических машинах называется процесс переключения секций обмотки из одной параллельной ветви в другую и связанные с этим явления. На рис. 1.13, а показана секция перед коммутацией на рис. 1.13,б – секция в процессе коммутации (замкнутая накоротко через щетки 1, 2), на рис. 1.13,в – секция после коммутации.

Процесс переключения секции протекает достаточно быстро: время коммутации одной секции, называемое периодом коммутации Тк, составляет примерно 0,001 – 0,0003 с. Явления, происходящие при коммутации, существенно влияют на надежность и долговечность работы машины постоянного тока.

При плохой коммутации появляется значительное искрение под щетками и связанное с ним обгорание коллектора.

Ток i в короткозамкнутой секции 2 за время Тк меняет свое направление на противоположное: от +Iа до – Iа (рис. 1.14), где Iа – ток в параллельной ветви. Вследствие изменения тока в секции наводится ЭДС самоиндукции

Читайте также:  Тока бока ворлд полная версия все открыто с новой мебелью

Кроме этого, коммутируемая секция, если щетки расположены на геометрической нейтрали, пересекает поперечное поле якоря и поэтому в ней наводится ЭДС , называемая ЭДС вращения, где BП индукция поперечного поля. Обе ЭДС вызывают ток коммутации iК, который замыкается по цепи: секция, коллекторная пластина, щетка, коллекторная пластина, секция (штриховая линия на рис. 1.13,б). От сопротивления этой цепи, а также от значений и направления еL и зависит значение и направление тока iК. Кроме того, по коммутируемой секции протекает часть тока якоря.

Если еL и направлены навстречу друг другу и равны, то еL + = и ток в коммутируемой секции изменяется по закону i = Iа (1 2t / Tк), т.е. линейно (рис. 1.14, прямая 1). В этом случае плотность тока под щеткой везде одинакова и не изменяется в процессе коммутации – искрение под щетками не наблюдается.

Однако практически еL + . В этом случае ток iК алгебраически суммируется с частью тока якоря в коммутируемой секции и общий ток в коммутируемой секции изменяется в соответствии с кривыми 2 или 3 (рис. 1.14). В первом случае коммутация называется замедленной, во втором – ускоренной. В обоих случаях плотность тока под щеткой неодинакова, особенно она велика в набегающей части щетки для генератора и в сбегающей – для двигателя. В результате возникает искрение под щеткой и на коллекторе.

Пути улучшения коммутации. В предыдущем параграфе были рассмотрены электромагнитные причины плохой коммутации. Однако к искрению под щетками могут приводить и механические причины: неравномерный износ коллектора и его вибрация, чрезмерный износ щеток, выступание отдельных коллекторных пластин и изоляции и т.д. С учетом этого улучшение коммутации возможно несколькими путями:

Ø обеспечением в машине прямолинейной или несколько ускоренной коммутации; это достигается созданием в зоне коммутации секции дополнительного магнитного поля такой величины и направления, чтобы еL + = ;

Ø увеличением сопротивления короткозамкнутой цепи секции в целях уменьшения тока короткого замыкания; это достигается применением твердых графитовых щеток с повышенным переходным сопротивлением (мягкие медно-графитовые щетки с малым переходным сопротивлением применяются только в тихоходных машинах на напряжение до 30 В);

Ø тщательным контролем за состоянием поверхности коллектора и щеток.

Главным средством улучшения коммутации в машинах средней мощности являются дополнительные полюсы. Магнитное поле дополнительных полюсов подбирается таким образом, чтобы еL + = 0 или было несколько больше нуля.

Дополнительные полюсы устанавливаются у всех машин постоянного тока мощностью свыше 1 кВт. В крупных машинах применение дополнительных полюсов сочетается с установкой компенсационной обмотки. В машинах малой мощности (менее 1 кВт) коммутацию настраивают поворотом щеток по направлению вращения у генераторов, а у двигателей – против направления вращения за положение физической нейтральной линии. Практически это положение определяется на глаз по наименьшему искрению под щетками. Улучшение коммутации поворотом щеток – малоэффективный метод, так как при изменении нагрузки положение физической нейтральной линии изменяется, а положение щеток остается фиксированным.

Источник

Коммутация в машинах постоянного тока

Коммутация в машинах постоянного токаПод коммутацией в машинах постоянного тока понимают явления, вызванные изменением направления тока в проводниках обмотки якоря при переходе их из одной параллельной ветви в другую, т. е. при пересечении линии, по которой расположены щетки (от лат. commulatio — изменение). Рассмотрим явление коммутации на примере кольцевого якоря.

На рис. 1 показана развертка части обмотки якоря, состоящей из четырех проводников, части коллектора (две коллекторные пластины) и щетки. Проводники 2 и 3 образуют коммутируемый виток, который на рис. 1, а показан в положении, которое он занимает до коммутации, на рис. 1, в — после коммутации, а на рис. 1, б — в период коммутации. Коллектор и обмотка якоря вращаются в указанном стрелкой направлении с частотой вращения п, щетка неподвижна.

В момент времени до коммутации ток якоря Iя проходит через щетку, правую коллекторную пластину и разделяется между параллельными ветвями обмотки якоря пополам. Проводники 1, 2 и 3 и проводник 4 образуют разные параллельные ветви.

После коммутации проводники 2 и 3 перешли в другую параллельную ветвь и направление тока в них изменилось на противоположное. Это изменение произошло за время, равное периоду коммутации Тk, т. е. за время, которое требуется, чтобы щетка перешла с правой пластины на соседнюю левую (в действительности щетка перекрывает сразу несколько пластин коллектора, но в принципе это не влияет на процесс коммутации).

Схема процесса коммутации тока

Рис. 1. Схема процесса коммутации тока

Один из моментов периода коммутации показан на рис. 1, б. Коммутируемый виток оказывается замкнутым накоротко коллекторными пластинами и щеткой. Так как за период коммутации происходит изменение направления тока в витке 2—3, то это означает, что по витку протекает переменный ток, создающий переменный магнитный поток.

Читайте также:  Секреты тока бока лайф сити

Последний индуцирует в коммутируемом витке э. д. с. самоиндукции еL, или реактивную э. д. с. Согласно принципу Ленца, э. д. с. самоиндукции стремится поддержать в проводнике ток прежнего направления. Следовательно, направление еL совпадает с направлением тока в витке до коммутации.

Под действием э. д. с. самоиндукции в короткозамкнутом витке 2—3 протекает большой дополнительный ток iд, так как сопротивление контура мало. В месте контакта щетки с левой пластиной ток iд направлен противоположно току якоря, а в месте контакта щетки с правой пластиной направление этих токов совпадает.

Чем ближе к окончанию периода коммутации, тем меньше площадь контакта щетки с правой пластиной и тем больше плотность тока. По окончании периода коммутации контакт щетки с правой пластиной разрывается и образуется электрическая дуга. Чем больше ток iд, тем мощнее электрическая дуга.

Если щетки располагаются на геометрической нейтрали, то в коммутируемом витке магнитным потоком якоря индуцируется э. д. с. вращения евр. На рис. 2 в увеличенном масштабе показаны проводники коммутируемого витка, расположенные на геометрической нейтрали, и направление э. д. с. самоиндукции еL для генератора, совпадающее с направлением тока якоря в этом проводнике до коммутации.

Направление евр определяется по правилу правой руки и всегда совпадает с направлением еL. В результате iд еще больше увеличивается. Возникающая электрическая дуга между щеткой и коллекторной пластиной может разрушить поверхность коллектора, в результате чего ухудшается контакт между щеткой и коллектором.

Направление э.д.с. в коммутирующем витке

Рис. 2. Направление э.д.с. в коммутирующем витке

Для улучшения условий коммутации сдвигают щетки в сторону физической нейтрали. При расположении щеток на физической нейтрали коммутируемый виток не пересекает никакого внешнего магнитного потока и э. д. с. вращения не индуцируется. Если сдвинуть щетки дальше физической нейтрали, как показано на рис. 3, то в коммутируемом витке результирующий магнитный поток будет индуцировать э. д. с. ек, направление которой противоположно направлению э. д. с. самоиндукции еL.

Таким образом, будет скомпенсирована не только э. д. с. вращения, но и э. д. с. самоиндукции (частично или полностью). Как указывалось ранее, угол сдвига физической нейтрали все время меняется и поэтому щетки обычно устанавливают со сдвигом на некоторый средний угол по отношению к ней.

Уменьшение э. д. с. в коммутируемом витке приводит к уменьшению тока iд и ослаблению электрического разряда между щеткой и коллекторной пластиной.

Улучшить условия коммутации можно установкой добавочных полюсов (Nдп и Sдn на рис. 4). Добавочный полюс располагают по геометрической нейтрали. У генераторов одноименный добавочный полюс располагается за основным полюсом по ходу вращения якоря, а у двигателя — наоборот. Обмотки добавочных полюсов включают последовательно с обмоткой якоря таким образом, чтобы создаваемый ими поток Фдп был направлен навстречу потоку якоря Фя.

Направление э.д.с. в коммутируемом витке при сдвиге щеток за физическую нейтраль

Рис. 3. Направление э.д.с. в коммутируемом витке при сдвиге щеток за физическую нейтраль

Схема включения обмоток добавочных полюсов

Рис. 4. Схема включения обмоток добавочных полюсов

Так как оба эти потока создаются одним током (током якоря), то можно подобрать число витков обмотки добавочных полюсов и воздушный зазор между ними и якорем такими, чтобы потоки были равны по значению при любом токе якоря. Поток добавочных полюсов будет всегда компенсировать поток якоря и, таким образом, э. д. с. вращения в коммутируемом витке будет отсутствовать.

Добавочные полюсы обычно делают такими, чтобы их поток индуцировал в коммутируемом витке э. д. с, равную сумме еL + евр. Тогда в момент отрыва щетки от правой коллекторной пластины (см. рис. 1, в) электрическая дуга не возникает.

Выпускаемые промышленностью машины постоянного тока мощностью 1 кВт и выше снабжены добавочными полюсами.

Источник

билеты_ЭМ / 08.Виды коммутаций. Способы улучшения коммутации док

8. Виды коммутаций. Способы улучшения коммутации

По характеру зависимости тока секции от времени в процессе коммутации различают линейную, замедленную и ускоренную коммутации

При линейной коммутации плотность тока по всей скользящей поверхности щетки одинакова и скорость изменения тока постоянна. Линейная коммутация возможна, когда сумма коммутирующих и реактивных ЭДС секции равна нулю. При линейной коммутации искрение под щетками минимальное, так как из-за одинаковой плотности тока на поверхности щеточного контакта эта поверхность эквипотенциальна. (6) Замедленная коммутация происходит тогда, когда реактивные ЭДС секции больше коммутирующих ЭДС.

Читайте также:  Какое действие электрического тока наблюдается при пропускании тока через металлический проводник

При замедленной коммутации, вначале процесса скорость изменения тока мала, а в конце коммутации велика.(кривая 2 рис.69) Плотность тока больше под сбегающим краем щетки. Из-за большой неравномерной плотности тока под сбегающим краем щетки происходит неравномерный нагрев поверхности и неравномерное распределение потенциалов, вызывающие искрение.

При ускоренной коммутации скорость изменения тока вначале коммутации больше, чем в конце. Плотность тока меньше под сбегающим краем щетки. Ускоренная коммутация возможна тогда, когда коммутирующие ЭДС секции больше реактивных ЭДС. Если коммутирующие ЭДС незначительно превышают реактивные, то в конце периода коммутации ток коммутирующей секции, изменяя свое направление, вновь достигает величины тока ветви (рисунок 69 кривая 3) .

В этом случае ускоренная коммутация из-за меньшей плотности тока под сбегающим краем щетки, может быть без искрения.(7)

При сильно ускоренной коммутации ток коммутирующей секции в конце периода коммутации возрастает до величины большей, чем ток ветви.

Аналогичным образом, при сильно замедленной коммутации ток коммутирующей секции в конце процесса меньше тока ветви. И в том и в другом случаях, при разрыве коммутирующего контура ток мгновенно становится равным току ветви, с неизбежным искрообразованием между сбегающим краем щетки и коллектора.

Способы улучшения коммутации. Самым распространенным и достаточно совершенным способом улучшения коммутации является применение добавочных полюсов. Добавочные полюса располагают по линиям геометрической нейтрали, над щетками, между основными полюсами машины. Полюсные наконечники добавочных полюсов делают узкими, чтобы только перекрыть зону коммутации. Поле добавочных полюсов индуктирует в коммутирующей секции коммутирующую ЭДС, компенсирующую ЭДС индукции. Поэтому дополнительные полюса включаются последовательно с обмоткой якоря, чтобы поле добавочных полюсов изменялась пропорционально полю реакции якоря, создавая возможность его компенсации в разных режимах.

Самым совершенным способом улучшения коммутации является применение компенсирующей обмотки, укладываемой в пазы полюсных наконечников основных полюсов, и включаемой последовательно с якорем. Она своим полем, изменяющимся пропорционально току якоря, в наиболее возможной степени, компенсирует реакцию якоря. Однако даже если полностью компенсировать реакцию якоря, уменьшить до нуля реактивную ЭДС не удастся, так ламель и щетка не нулевой ширины, между ламелями есть разность потенциалов, и в коммутирующей секции всегда присутствует некий ток, разрыв которого вызывает искрение.

Искрение на коллекторе может возникать не только по причине неудовлетворительной коммутации, но и как следствие механических причин. Такими могут быть плохое закрепление щеток в щеткодержателе, волнистость или эксцентричность коллектора, ослабление нажатия пружин щеткодержателей. Эксплуатационными способами улучшения коммутации является подбор марки щеток, должный уход за щеточно-коллекторным аппаратом, сдвиг щеток по направлению к физической нейтрали. (10

Источник



Способы улучшения коммутации в машинах постоянного тока.

date image2015-09-06
views image6096

facebook icon vkontakte icon twitter icon odnoklasniki icon

Основная причина неудовлетворительной коммутации в машинах постоянного тока – добавочный ток коммутации.

iД= Σе/Σrк, (1)
где Σrк – сумма сопротивлений секции, мест пайки в петушках, переходного контакта между коллекторными пластинами и щеткой.

Из перечисленных сопротивлений наибольшее значение имеют сопротивление щетки и переходного контакта.

Из полученного выражения следует, что уменьшить ток iД, а следовательно улучшить коммутацию, можно либо увеличением сопротивления Σrк, либо уменьшением суммарной ЭДС Σе в коммутирующей секции.

Отсюда вытекают способы улучшения коммутации. Рассмотрим некоторые из них.

Выбор щеток. Целесообразно выбирать щетки с большим электрическим сопротивлением. Однако допустимая плотность тока в этих щетках невелика, а поэтому их применение в машинах с большим рабочим током ведет к необходимости увеличения площади щеточного контакта, что требует увеличения длины коллектора, а следовательно и габаритов машины. Поэтому щетки с большим электрическим сопротивлением применяют в машинах с небольшим рабочим током (в высоковольтных машинах).

Увеличению переходного сопротивления щеточного контакта, а следовательно улучшению коммутации, способствует политура коллектора – тонкая оксидная пленка на поверхности коллектора, обладающая повышенным электрическим сопротивлением.

Уменьшение реактивной ЭДС.Существенное влияние насуммарную ЭДС в коммутирующей секции оказывает реактивная ЭДС ер = еLМ.

1) ЭДСвзаимоиндукции еМ в значительной степени зависит от ширины щетки: чем шире щетка, тем большее число секций под ней одновременно коммутирует, что вызывает увеличение ЭДС взаимоиндукции еМ.

Наиболее целесообразны щетки шириной 2-3 коллекторные пластины. Более узкие щетки нежелательны из-за недостаточной механической прочности, а также потому, что для создания необходимой площади щеточного контакта пришлось бы увеличивать её длину, а следовательно и габариты машины.

При применении обмоток с укороченным шагом 1

Источник