Меню

Проводники электрического тока явление электростатической индукции

18. Проводники в электрическом поле. Явление электростатической индукции. Электростатическая защита.

Наличие свободных электрических зарядов в проводниках можно обнаружить в следующих опытах. Установим на острие металлическую трубу. Соединив проводником трубу со стержнем электрометра, убедимся в том, что труба не имеет электрического заряда.

Наэлектризуем эбонитовую палочку и поднесем к одному концу трубы. Труба поворачивается на острие, притягиваясь к заряженной палочке. Следовательно, на том конце трубы, который расположен ближе к эбонитовой палочке, появился электрический заряд, противоположный по знаку заряду палочки. Если на одном конце трубы под действием электрического поля заряженной палочки появился положительный электрический заряд, то на другом конце в соответствии с законом сохранения электрического заряда должен появиться равный ему по абсолютному значению отрицательный электрический заряд.

Опыт показывает, что действительно две части металлического тела, разделенного в электрическом поле, обладают электрическими зарядами (рис. 114). Эти заряды равны по модулю и противоположны по знаку.

Явление разделения разноименных зарядов в проводнике, помещенном в электрическое поле, называется электростатической индукцией.

При внесении в электрическое поле тела из проводника свободные заряды в нем приходят в движение. Перераспределение зарядов вызывает изменение электрического поля. Движение зарядов прекращается только тогда, когда напряженность электрического поля в проводнике становится равной нулю.

Свободные заряды перестают перемещаться вдоль поверхности проводящего тела при достижении такого распределения, при котором вектор напряженности электрического поля в любой точке перпендикулярен поверхности тела. Поэтому в электрическом поле поверхность проводящего тела любой формы является эквипотенциальной поверхностью.

Электростатическая индукция— явление наведения собственного электростатического поля, при действии на тело внешнегоэлектрического поля. Явление обусловлено перераспределениемзарядоввнутри проводящих тел, а также поляризацией внутренних микроструктур [1] у непроводящих тел. Внешнее электрическое поле может значительно исказиться вблизи тела с индуцированным электрическим полем.

Электростатическая индукция в проводниках

Перераспределение зарядов в хорошо проводящих металлах при действии внешнего электрического поля происходит до тех пор, пока заряды внутри тела практически полностью не скомпенсируют внешнее электрическое поле. При этом на противоположных сторонах [2] проводящего тела появятся противоположныенаведённые(индуцированные) заряды.

Электростатическая индукция в диэлектриках

Диэлектрики в электростатическом поле поляризуются.

Электростатическая защита— помещение приборов, чувствительных к электрическому полю, внутрь замкнутой проводящей оболочки для экранирования от внешнего электрического поля.

Это явление связано с тем, что на поверхности проводника (заряженного или незаряженного), помещённого во внешнее электрическое поле, заряды перераспределяются так (явление электрической индукции), что создаваемое ими внутри проводника поле полностью компенсирует внешнее.

Источник

ИНФОФИЗ — мой мир.

Весь мир в твоих руках — все будет так, как ты захочешь

Весь мир в твоих руках — все будет так, как ты захочешь

  • Главная
  • Мир физики
    • Физика в формулах
    • Теоретические сведения
    • Физический юмор
    • Физика вокруг нас
    • Физика студентам
      • Для рефератов
      • Экзамены
      • Лекции по физике
      • Естествознание
  • Мир астрономии
    • Солнечная система
    • Космонавтика
    • Новости астрономии
    • Лекции по астрономии
    • Законы и формулы — кратко
  • Мир психологии
    • Физика и психология
    • Психологическая разгрузка
    • Воспитание и педагогика
    • Новости психологии и педагогики
    • Есть что почитать
  • Мир технологий
    • World Wide Web
    • Информатика для студентов
      • 1 курс
      • 2 курс
    • Программное обеспечение компьютерных сетей
      • Мои лекции
      • Для студентов ДО
      • Методические материалы
  • Физика школьникам
  • Физика студентам
  • Астрономия
  • Информатика
  • ПОКС
  • Арх ЭВМ и ВС
  • Методические материалы
  • Медиа-файлы
  • Тестирование

Как сказал.

Вопросы к экзамену

Для всех групп технического профиля

Урок 26. Лекция 26. Проводники и диэлектрики в электрическом поле. Конденсаторы.

По электрическим свойствам все вещества разделяют на два больших класса — вещества, которые проводят электрический ток (проводники) и вещества, которые не проводят электрический ток (диэлектрики, или изоляторы).

Мы знаем, что все вещества состоят из атомов, которые, в свою очередь, состоят из заряженных частиц. Если внешнее поле вокруг вещества отсутствует, то его частицы распределяются так, что суммарное электрическое поле внутри вещества равно нулю. Если вещество поместить во внешнее электрическое поле, то поле начет действовать на заряженные частицы и они перераспределяться так, что в веществе возникнет собственное электрическое поле. Полное электрическое поле складывается из внешнего поля и внутреннего поля создаваемого заряженными частицами вещества.

Проводник — это тело или материал, в котором электрические заряды начинают перемещаться под действием сколь угодно малой силы. Поэтому эти заряды называют свободными.

В металлах свободными зарядами являются электроны, в растворах и расплавах солей (кислот и щелочей) — ионы.

Диэлектрик — это тело или материал, в котором под действием сколь угодно больших сил заряды смещаются лишь на малое, не превышающее размеров атома расстояние относительно своего положения равновесия. Такие заряды называются связанными.

Рассмотрим подробнее эти классы веществ.

Проводники в электрическом поле.

Проводниками называют вещества, проводящие электрический ток.

Типичными проводниками являются металлы.

Основная особенность проводников – наличие свободных зарядов ( в металлах это электроны), которые участвуют в тепловом движении и могут перемещаться по всему объему проводника.

В отсутствие внешнего поля в любом элементе объема проводника отрицательный свободный заряд компенсируется положительным зарядом ионной решетки. В проводнике, внесенном в электрическое поле, происходит перераспределение свободных зарядов, в результате чего на поверхности проводника возникают нескомпенсированные положительные и отрицательные заряды. Этот процесс называют электростатической индукцией, а появившиеся на поверхности проводника заряды – индукционными зарядами.

Явление перераспределения зарядов внутри проводника под действием внешнего электрического поля называется электростатической индукцией.

Читайте также:  Реферат электрический ток его источники

Заряды, появляющиеся на поверхности проводника, называются индукционными зарядами.

Индукционные заряды создают свое собственное поле , которое компенсирует внешнее поле во всем объеме проводника:

(внутри проводника).

Полное электростатическое поле внутри проводника равно нулю, а потенциалы во всех точках одинаковы и равны потенциалу на поверхности проводника.

Диэлектрики в электрическом поле.

Диэлектриками (изоляторами) называют вещества, не проводящие электрического тока.

В отличие от проводников, в диэлектриках (изоляторах) нет свободных электрических зарядов. Они состоят из нейтральных атомов или молекул. Заряженные частицы в нейтральном атоме связаны друг с другом и не могут перемещаться под действием электрического поля по всему объему диэлектрика.

При внесении диэлектрика во внешнее электрическое поле в нем возникает некоторое перераспределение зарядов, входящих в состав атомов или молекул. В результате такого перераспределения на поверхности диэлектрического образца появляются избыточные нескомпенсированные связанные заряды. Все заряженные частицы, образующие макроскопические связанные заряды, по-прежнему входят в состав своих атомов.

Связанные заряды создают электрическое поле , которое внутри диэлектрика направлено противоположно вектору напряженности внешнего поля . Этот процесс называется поляризацией диэлектрика.

Электрической поляризацией называют особое состояние вещества, при котором электрический момент некоторого объёма этого вещества не равен нулю.

В результате полное электрическое поле внутри диэлектрика оказывается по модулю меньше внешнего поля .

Физическая величина, равная отношению модуля напряженности внешнего электрического поля в вакууме к модулю напряженности полного поля в однородном диэлектрике , называется диэлектрической проницаемостью вещества.

Диэлектрическая проницаемость среды показывает, во сколько раз напряженность поля в вакууме больше, чем в диэлектрике. Это величина безразмерная (нет единиц измерения).

При поляризации неоднородного диэлектрика связанные заряды могут возникать не только на поверхностях, но и в объеме диэлектрика. В этом случае электрическое поле связанных зарядов и полное поле могут иметь сложную структуру, зависящую от геометрии диэлектрика. Утверждение о том, что электрическое поле в диэлектрике в ε раз меньше по модулю по сравнению с внешним полем строго справедливо только в случае однородного диэлектрика, заполняющего все пространство, в котором создано внешнее поле. В частности:

Если в однородном диэлектрике с диэлектрической проницаемостью ε находится точечный заряд q, то напряженность поля , создаваемого этим зарядом в некоторой точке, и потенциал φ в ε раз меньше, чем в вакууме:

Существует несколько механизмов поляризации диэлектриков. Основными из них являются ориентационная, электронная и ионная поляризации. Ориентационная и электронная механизмы проявляются главным образом при поляризации газообразных и жидких диэлектриков, ионная — при поляризации твердых диэлектриков.

Если двум изолированным друг от друга проводникам сообщить заряды q1 и q2, то между ними возникает некоторая разность потенциалов Δφ, зависящая от величин зарядов и геометрии проводников.

Разность потенциалов Δφ между двумя точками в электрическом поле часто называют напряжением и обозначают буквой U.

Наибольший практический интерес представляет случай, когда заряды проводников одинаковы по модулю и противоположны по знаку: q1 = – q2 = q. В этом случае можно ввести понятие электрической емкости.

Электроемкостью (электрической емкостью) проводников называется физическая величина, характеризующая способность проводника или системы проводников накапливать электрический заряд.

Электроемкость находится как отношение заряда q одного из проводников к разности потенциалов Δφ между ними:


В системе СИ единица электроемкости называется фарад [Ф]:

Величина электроемкости зависит от формы и размеров проводников и от свойств диэлектрика , разделяющего проводники.

Существуют такие конфигурации проводников, при которых электрическое поле оказывается сосредоточенным (локализованным) лишь в некоторой области пространства. Такие системы называются конденсаторами, а проводники, составляющие конденсатор, называются обкладками.

Простейший конденсатор – плоский конденсаторсистема из двух плоских проводящих пластин, расположенных параллельно друг другу на малом по сравнению с размерами пластин расстоянии и разделенных слоем диэлектрика.

Электрическое поле плоского конденсатора в основном локализовано между пластинами; однако, вблизи краев пластин и в окружающем пространстве также возникает сравнительно слабое электрическое поле, которое называют полем рассеяния.

В целом ряде задач можно приближенно пренебрегать полем рассеяния и полагать, что электрическое поле плоского конденсатора целиком сосредоточено между его обкладками.

Электроемкость плоского конденсатора прямо пропорциональна площади пластин (обкладок) и обратно пропорциональна расстоянию между ними .

Если пространство между обкладками заполнено диэлектриком, электроемкость конденсатора увеличивается в ε раз:

Примерами конденсаторов с другой конфигурацией обкладок могут служить сферический и цилиндрический конденсаторы.

Сферический конденсатор – это система из двух концентрических проводящих сфер радиусов R1 и R2.

Цилиндрический конденсатор – система из двух соосных проводящих цилиндров радиусов R1 и R2 и длины L.

Емкости этих конденсаторов, заполненных диэлектриком с диэлектрической проницаемостью ε, выражаются формулами:

— сферический конденсатор

— цилиндрический конденсатор

Для получения заданного значения емкости конденсаторы соединяются между собой, образуя батареи конденсаторов.

1) При параллельном соединении конденсаторов соединяются их одноименно заряженные обкладки.

Напряжения на конденсаторах одинаковы U1 = U2 = U, заряды равны q 1 = С 1 U и q 2 = С 2 U .

Такую систему можно рассматривать как единый конденсатор электроемкости C , заряженный зарядом q = q 1 + q 2 при напряжении между обкладками равном U . Отсюда следует или С = С1 + С2

Таким образом, при параллельном соединении электроемкости складываются.

2) При последовательном соединении конденсаторов соединяют разноименно заряженные обкладки

Заряды обоих конденсаторов одинаковы q1 = q2 = q, напряжения на них равны и

Такую систему можно рассматривать как единый конденсатор, заряженный зарядом q при напряжении между обкладками U = U1 + U2.

Следовательно, или

При последовательном соединении конденсаторов складываются обратные величины емкостей.

Читайте также:  Выражение для поля кругового тока

Формулы для параллельного и последовательного соединения остаются справедливыми при любом числе конденсаторов, соединенных в батарею.

Т.е. в случае n конденсаторов одинаковой емкости С емкость батареи

при параллельном соединении Собщ = nС

при последовательном соединении Собщ = С/n

Если обкладки заряженного конденсатора замкнуть металлическим проводником, то по цепи пойдет электрический ток, лампочка загорится и будет гореть до тех пор, пока конденсатор не разрядится. Значит, заряженный конденсатор содержит запас энергии.

Энергия заряженного конденсатора равна работе внешних сил, которую необходимо затратить, чтобы зарядить конденсатор.

Процесс зарядки конденсатора можно представить как последовательный перенос достаточно малых порций заряда Δq > 0 с одной обкладки на другую.При этом одна обкладка постепенно заряжается положительным зарядом, а другая – отрицательным. Поскольку каждая порция переносится в условиях, когда на обкладках уже имеется некоторый заряд q, а между ними существует некоторая разность потенциалов

при переносе каждой порции Δq внешние силы должны совершить работу

Энергия We конденсатора емкости C, заряженного зарядом q, может быть найдена путем интегрирования этого выражения в пределах от 0 до q:

Формулу, выражающую энергию заряженного конденсатора, можно переписать в другой эквивалентной форме, если воспользоваться соотношением q = CU .

Электрическую энергию We следует рассматривать как потенциальную энергию, запасенную в заряженном конденсаторе.

По современным представлениям, электрическая энергия конденсатора локализована в пространстве между обкладками конденсатора, то есть в электрическом поле. Поэтому ее называют энергией электрического поля.

Источник

Вопрос №1. Проводники. Явление электростатической индукции

Электрическое поле в веществе

Лекция № 6

План лекции:

1. Проводники во внешнем электростатическом поле. Явление электростатической индукции.

2. Распределение заряда в заряженном проводнике. Электростатическая защита, заземление.

3. Электроемкость проводника. Конденсаторы. Электроемкость конденсаторов. Соединение конденсаторов.

4. Энергия системы точечных зарядов, заряженного проводника и конденсатора.

5. Энергия электростатического поля. Объемная плотность энергии.

К проводникам относятся вещества, в которых имеются электрические заряды, способные перемещаться под действием электрического поля по занимаемому ими объему. Проводниками являются все металлы.

Носители заряда в металлах — так называемые свободные электроны, возникающие за счет обобществления валентных электронов, которые, утрачивая связь со «своими» атомами, образуют электронный газ в металле.

Если проводник поместить во внешнее электрическое поле Е е (рис.1, а), то свободные электроны приходят в движение и перераспределяются в проводнике до тех пор, пока сила, действующая на заряд q(F = qE) в состоянии равновесия, и напряжен­ность поля Е i внутри проводника не станут равными нулю.

Перераспределение зарядов в проводнике под влиянием внешнего элек­тростатического поля называется явлением электростатической индукции.

Заряды, воз­никающие при этом на различных участках поверхности проводника, называются индуцированнымиилинаведенными (рис. 1,б). Если до внесения в поле проводник был электронейтрален, то значения суммарных наведенных положительных и отрицательных распределенных зарядов равны друг другу ( ).

В состоянии равновесного распределения зарядов, кроме условия Е i = 0 внутри проводника, необходимо, чтобы с наружной стороны на границе проводник — среда вектор Е на поверхности проводника был направлен перпендикулярно к его поверхно­сти (рис. 1, б).

В противном случае под действием составляющей Еτ, касательной к поверхности проводника, свободные заряды будут перемещаться по поверхности, что противоречит условию их равновесного распределения.

Следовательно, поверх­ность проводника является эквипотенциальной (φ = const). Так как внутри проводника Е i =0, то весь его объем эквипотенциален, причем потенциал φ i внутри проводника ра­вен потенциалу на его поверхности.

Из уравнения divE =ρ / ε при Е i = 0 следует, что плотность заряда ρ i = 0, т.е. внутри проводника отсутствуют избыточные объемные заряды. Это означает, что индуциро­ванные заряды проводника концентрируются на его поверхности в слое атомарной тол­щины. Внутри проводника имеются как положительные, так и отрицательные заряды, но они взаимно компенсируются.

Поэтому внутренние области проводника электриче­ски нейтральны. Равновесное распределение устанавливается чрезвычайно быстро в те­чение промежутка времени, называемого временем релаксации т и равного для метал­лов приблизительно τ (τ для металлов 10 -19 с).

Из вышесказанного следует, что в состоянии с равновесным распределением зарядов в проводнике и на границе с диэлектриком должны выполняться следующие условия:

, — на границе раздела проводник-диэлектрик

Вопрос №2. Распределение избыточного заряда в заряженном проводнике. Экраны заземления

Если сообщить проводнику избыточный (нескомпенсированный) заряд q, он распределится в соответ­ствии с условиями (1.1), т.е. по его поверхности, которая является эквипотенциальной (рис. 2, а).

Поскольку поле внутри проводника отсутствует, то и плотность заряда

p i q = О, поэтому любая полость, вы­резанная внутри сплошного метал­лического образца, не будет влиять на уже установившееся равновес­ное распределение избыточного за­ряда q.

Это означает, что полости (области) внутри заряженных про­водников защищены от воздейст­вия на них электростатического поля. Такие заряженные проводни­ки являются экранами, обеспечивающими электростатическую защиту внутренних областей (полостей). Это учитывает­ся при конструировании различных электротехнических устройств, находящихся под воздействием внешних электрических полей.

Обычно экраны изготавливают не из сплошного проводящего металлического проводника, а из сетки с мелкими ячейками. Опыт их использования показывает, что экранирующая способность сетки несколько ниже, однако изготавливать такие экраны намного проще и дешевле.

Если экран заземлить, т.е. соединить его проводником с очень большим удаленным проводящим телом (обычно Землей), то за счет перераспределения зарядов он экраниру­ет внутреннее пространство от поля зарядов, находящихся вне экрана. Незаземленный экран такой способностью не обладает.

Определим взаимосвязь между напряженностью поля Е вблизи наружной поверхно­сти заряженного проводника и поверхностной плотностью зарядов на его поверхности (рис. 2, б). Для этого воспользуемся интегральной теоремой Гаусса:

Читайте также:  Что такое импульсный биполярный ток

В качестве замкнутой гауссовой поверхности S выберем поверхность очень ко­роткого цилиндра, образующие которого параллельны вектору внешней нормали к эле­менту dS поверхности проводника, а основания расположены по обе стороны от этой поверхности. Так как поле внутри проводника отсутствует, то суммарный поток векто­ра электрического смещен0ия D = εε Е через замкнутую цилиндрическую поверхность равен потоку D сквозь наружное основание цилиндра, т.е. Ф = D · dS. Согласно теореме Гаусса этот поток равен алгебраической сумме зарядов dq, охватываемых цилиндром (dq = σdS). Тогда DdS = σdS. Отсюда напряженность на поверхности проводника:

Из формулы (1.2) следует, что напряженность Е электростатического поля вблизи поверхности заряженного проводника определяется только поверхностной плотностью а заряда, которая, как показывают измерения, зависит от кривизны по­верхности. Чем больше кривизна поверхности, тем выше поверхностная плотность за­ряда (рис. 2, а). Она особенно велика в окрестности выступов, так что при наличии острия вблизи его поверхности может возникнуть ионизация воздуха под действием сильного электростатического поля. В результате ионы придут в движение и начнут увлекать за собой частицы воздуха. В окрестности заряженного тела возникнет «элек­трический ветер».

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник



Электростатическая индукция

Основные принципы электростатической индукция

Любая материя состоит из заряженных частиц: электронов и ядер атомов. Электрические свойства вещества определяет реакция заряженных частиц на внешнее электрическое поле. Под воздействием электрического поля заряженные частицы начинают перемещаться. Характер и механизмы движения частиц при этом различны. Но по результату все виды движения заряженных частиц под воздействием внешнего поля, делят на две группы.

При ограниченном смещении зарядов, такие заряды называют связанными, а процесс перемещения связанных зарядов носит название диэлектрической поляризации. Вещества, у которых преобладает поляризация во внешнем поле, называют диэлектриками. Основной макроскопической характеристикой в этом случае служит диэлектрическая проницаемость вещества (\varepsilon).

Другая группа веществ состоит из сред, в которых происходит неограниченное смещение зарядов в объемах тел. Такие заряды называют свободными. Направленное движение свободных зарядов называют электрическим током. Свойство материи проводить электрический ток называют электропроводностью. При этом характеристикой электропроводности является удельная проводимость (\gamma) или величина ей обратная – удельное сопротивление (\rho). Вещества, обладающие высокой удельной проводимостью называют проводниками. К типичным проводникам относят металлы.

Если проводник внести в электростатическое поле, то свободные и связанные заряды начинают перемещение. При этом свободные заряды накапливаются на противоположных концах проводника. Они порождают в объеме проводника электростатическое поле, которое имеет направление против внешнего поля. В результате действия этого поля постепенно движение зарядов прекращается, и система приходит в равновесие. В равновесии электрическое поле в проводнике становится равным нулю, диэлектрическая поляризация и электрический ток становятся равны нулю. При этом концентрация свободных зарядов, которые накопились на противоположных поверхностях проводника, является максимальной. Данные заряды локализованы в тонком поверхностном слое проводника. Их характеризуют при помощи поверхностной плотности заряда (\sigma). Заряды, которые возникли на противоположных концах проводника, помещенного в электростатическое поле называют индуцированными.

Явление возникновения индуцированных зарядов называют электростатической индукцией. Самой существенной особенностью индуцированных зарядов является то, что их можно разделить механически. При диэлектрической поляризации такое не представляется возможным.

И так, электрические заряды в проводниках способны перемещаться. Если к незаряженному проводнику поднести электрический заряд, то заряды противоположного знака переместятся к этому заряду, а такого же знака отодвинутся от него. При этом наш проводник в целом буде иметь нулевой заряд. В соответствии с законом Кулона сила взаимодействия между зарядами обратно пропорциональная расстоянию между ними. Получится, что незаряженный проводник будет притягиваться к поднесенному к нему заряду.

Если индуцирующий заряд убрать, то проводник вернется в нейтральное состояние. Если индуцирующий заряд оставить на месте, при этом отделить ближнюю и дальние части проводника, изолировав их, то каждая из частей будет нести заряд, имеющий равный по модулю и противоположный по знаку. Электростатические машины устроены в по такому принципу. Они повторяют операции накопления и разделения зарядов.

Определение электростатической индукции

Данное явление вызвано перераспределением зарядов внутри проводников и поляризацией диэлектриков. При этом внешнее электростатическое поле может искажаться индуцированным полем.

Примеры решения задач

Задание Как используя явление индукции определить знак заряда на электроскопе?
Решение Определить знак заряда на электроскопе можно, если приблизить к нему тело несущее заряд известного знака. При этом если знак заряда электроскопа совпадает со знаком заряда на пробном теле (рис.1(а)), то листки электроскопа расходятся на больший угол, если заряды на теле и электроскопе противоположны, то листки электроскопа сближаются (рис.1(б)). На рис.1 пунктиром обозначено положение листков электроскопа до сближения его с заряженным телом.

Электростатическая индукция, пример 1

Это происходит потому, что когда подносят к шару электроскопа заряженное тело, то на стержне прибора возникают индуцированные заряды. При этом на внешнем конце стержня появляются заряды противоположного знака (у нас отрицательные), на внутреннем конце того же знака, что у подносимого тела (у нас положительные). Значит, если на электроскопе был изначально заряд такой же, что на теле, то суммарный заряд листков растет, при этом угол расхождения листков увеличивается. Если электроскоп и тело несут заряды противоположных знаков, то листки отклоняются на меньший угол, так как часть заряда электроскопа будет компенсирована, заряд на нем уменьшится.

Источник