Меню

Проект электрические цепи постоянного тока

Презентация по электротехнике на тему «Электрические цепи постоянного тока»

Электрические цепи постоянного тока Скворцов А.М. Преподаватель спецдисциплин.

Описание презентации по отдельным слайдам:

Электрические цепи постоянного тока Скворцов А.М. Преподаватель спецдисциплин Заслуженный учитель Р.Ф.

Повторение 1. Дайте определения напряженности, электрического потенциала и разности электрических потенциалов . 2. Какие вещества называются проводниками и чем объясняется их хорошая электропроводность? Приведите примеры проводников. 3.Какие вещества называются диэлектриками и чем объясняется их плохая электропроводность? Приведите примеры диэлектриков. 4.Что такое конденсатор и для чего он предназначен? 5.Что такое электрическая емкость? В каких единицах измеряется емкость? 6.Как находится общая емкость при параллельном и последовательном соединениях конденсаторов?

Электрический цепью называется совокупность устройств, образующих замкнутый путь для электрического тока

Электрический провод Устройства для передачи энергии от источника к приемникам – это провода, линии передачи, сети. Проводом называется металлическая проволока, изолированная или неизолированная (голая). Провода выполняются из меди, алюминия или стали. Провода -это каналы, по которым движутся заряды. Часто провода имеют изоляцию, устраняющую возможность утечки зарядов. Изоляция играет защитную роль! При напряжении 220В и даже меньше опасность прикосновения к оголенным проводам может быть смертельной!

Другие эксплуатационные устройства Коммутационная аппаратура(рубильники, выключатели, переключатели и др.)

Аппаратура защиты Реле, плавкие предохранители и др.

Ветвь – это участок электрической цепи от одного узла до другого узла. Ветвь обычно содержит один или несколько последовательно соединенных элементов цепи: сопротивления, источники эдс или источники тока.

Узел – это участок электрической цепи, содержащий соединения трех или более числа ветвей.

Геометрические понятия электрической схемы

Режимы работы электрической цепи постоянного тока Номинальный режим — когда к источнику подключается потребитель на который он рассчитан. Режим холостого хода – работа источника без потребителя.

Согласованный режим — такой режим работы электрической цепи, когда на нагрузке, подключенной к данному источнику, выделяется максимальная мощность, которую способен дать этот источник. Условием данного режима, является равенство сопротивления нагрузки внутреннему сопротивлению источника для цепей постоянного тока Режим короткого замыкания – работа без потребителя, контакты источника замыкаются накоротко.

КОНТРОЛЬНЫЕ ВОПРОСЫ Что такое электрическая цепь? Каковы основные элементы электрической цепи? Каково главное условие для работы электрической цепи? Что такое схема электрической цепи? Какие электрические схемы бывают? Что такое узел электрической цепи? Что такое ветвь электрической цепи? Что такое контур электрической цепи? Назовите режимы работы электрической цепи. Охарактеризуйте каждый из них.

  • Все материалы
  • Статьи
  • Научные работы
  • Видеоуроки
  • Презентации
  • Конспекты
  • Тесты
  • Рабочие программы
  • Другие методич. материалы

Номер материала: ДБ-686702

Не нашли то что искали?

Вам будут интересны эти курсы:

Оставьте свой комментарий

Подарочные сертификаты

Ответственность за разрешение любых спорных моментов, касающихся самих материалов и их содержания, берут на себя пользователи, разместившие материал на сайте. Однако администрация сайта готова оказать всяческую поддержку в решении любых вопросов, связанных с работой и содержанием сайта. Если Вы заметили, что на данном сайте незаконно используются материалы, сообщите об этом администрации сайта через форму обратной связи.

Все материалы, размещенные на сайте, созданы авторами сайта либо размещены пользователями сайта и представлены на сайте исключительно для ознакомления. Авторские права на материалы принадлежат их законным авторам. Частичное или полное копирование материалов сайта без письменного разрешения администрации сайта запрещено! Мнение администрации может не совпадать с точкой зрения авторов.

Источник

Тема 1.2. Электрические цепи постоянного тока

Электрические цепи и ее элементы

Электрической цепью постоянного тока называют совокупность устройств и объектов: источников электрической энергии, преобразователей, потребителей, коммутационной, защитной и измерительной аппаратуры, соединительных проводов или линии электропередачи.

Электрические и электромагнитные процессы в этих объектах описываются с помощью понятий об электродвижущей силе (ЭДС — E ), токе ( I ) и напряжении ( U ).

Элементы цепи можно разделить на три группы:

1) элементы, предназначенные для генерирования электроэнергии (источники энергии, источники ЭДС);

2) элементы, преобразующие электроэнергию в другие виды энергии: механическую, тепловую, световую, химическую и т.д. (эти элементы называются приемниками электрической энергии или потребителями);

3) элементы, предназначенные для передачи электрической энергии от источника к приемникам (линии электропередачи, соединительные провода); элементы, обеспечивающие уровень и качество напряжения и т.д.

Источники питания цепи постоянного тока – это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термо- и фотоэлементы и др.

Электрическими приемниками или потребителями постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др. Все электоприемники характеризуются электрическими параметрами, среди которых основные – напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение. По ГОСТ 721-77 напряжение равно 27, 110, 220, 440 В, так же 6, 12, 24, 36 В.

Коммутационная аппаратура служит для подключения потребителей к источникам, то есть для замыкания и размыкания источников электроцепи.

Защитная аппаратура предназначена для размыкания цепи в аварийных ситуациях.

Измерительная аппаратура предназначена для замера тока, напряжения и других электрических величин.

Линии электропередачи используются, когда источники и потребители удалены друг от друга на большие расстояния. Соединительные провода предназначены для соединения между собой зажимов или электродов элементов электрической цепи.

Активные и пассивные элементы

Элемент называется пассивным , если он не может вызывать протекание тока, то есть если он не создает тока или ЭДС. Если собрать несколько пассивных элементов (резисторы, конденсаторы, катушки индуктивности) в электрическую цепь, то ток в цепи не потечет.

Элемент, который создает ЭДС и вызывает протекание тока, называется активным (источники электроэнергии).

Линейные и нелинейные цепи

Электрическая цепь называется линейной , если электрическое сопротивление или другие параметры участков, не зависят от значений и направлений токов и напряжений. Электрические процессы линейной цепи описываются линейными алгебраическими и дифференциальными уравнениями.

Если электрическая цепь содержит хотя бы один нелинейный элемент , то она является нелинейной.

Топологические элементы электрической цепи.

Графическое изображение электрической цепи называется электрической схемой. Электрическая схема включает: узлы, ветви, контуры.

Ветвь – совокупность элементов, соединенных последовательно. По ветви протекает один и тот же ток.

Узел – точка соединения трех или более ветвей.

Контур – совокупность ветвей, при обходе которых осуществляется замкнутый путь.

Простейшая электроцепь имеет один контур с одной ветвью и не имеет узлов. Сложные электроцепи имеют несколько контуров.

Читайте также:  Тока лайф ворлд все пасхалки

Положительные направления тока, напряжения и ЭДС.

Чтобы правильно записать уравнения, описывающие процессы в электрических цепях, и произвести анализ этих процессов, необходимо задать условные положительные направления ЭДС источников питания, тока в элементах или ветвях цепи и напряжения на зажимах элементов цепи или между узлами цепи.

Внутри источника ЭДС постоянного тока положительным является направление ЭДС от отрицательного полюса к положительному полюсу. Это соответствует определению ЭДС как величины, характеризующей способность сторонних сил вызывать электрический ток.

По отношению к источнику ЭДС все элементы цепи составляют внешний участок цепи.

За положительное направление тока в цепи принимают направление, совпадающее с направлением ЭДС. Во внешней цепи положительным является направление от положительного полюса источника к отрицательному полюсу. В электронной теории – направление совпадает с направлением положительно заряженных частиц.

Условным положительным направлением падения напряжения (или просто напряжения) на элементах цепи или между двумя узлами цепи принимают направление, совпадающее с условно положительным направлением тока в этом элементе или в этой ветви. Положительное направление напряжения на зажимах источника ЭДС всегда противоположно положительному направлению ЭДС.

Действительные направления электрических величин, определяемые расчетом, могут совпадать или не совпадать с условными направлениями. При расчетах если определено, что ток, ЭДС и напряжения положительны, то их действительные направления совпадают с условно принятыми положительными направлениями, если отрицательны, то не совпадают.

Основные законы электрической цепи

Условное обозначение параметров в цепях постоянного и переменного тока.

i – переменный ток; I – постоянный ток;

u – переменное напряжение; U – постоянное напряжение;

e – переменная ЭДС; E – постоянная ЭДС;

Источник

Тема: Электрические цепи постоянного тока Преподаватель – Боролис Н.Л. Модуль 1. — презентация

Презентация была опубликована 7 лет назад пользователемВладислава Щепликова

Похожие презентации

Презентация на тему: » Тема: Электрические цепи постоянного тока Преподаватель – Боролис Н.Л. Модуль 1.» — Транскрипт:

1 Тема: Электрические цепи постоянного тока Преподаватель – Боролис Н.Л. Модуль 1

2 1 Электрические цепи постоянного тока 1.1 Элементы электрических цепей постоянного тока Электрические схемы – это чертежи, на которых показано, как электрические приборы соединены в цепь. Электрическая цепь — совокупность устройств, предназначенных для передачи, распределения и взаимного преобразования энергии. Основными элементами электрической цепи являются источники и приемники электрической энергии, которые соединены между собой проводниками. В источниках электрической энергии химическая, механическая, тепловая энергия или энергия других видов превращается в электрическую. В приемниках электрической энергии — электрическая энергия преобразуется в тепловую, световую, механическую и другие. Электрические цепи, в которых получение энергии, передача и преобразование происходят при неизменных во времени токах и напряжениях называют цепями постоянного тока.

3 Изображение электрической цепи с помощью условных знаков называют электрической схемой (рисунок 1) Рисунок 1 Условное обозначение электрической цепи

4 Электрическая цепь состоит из отдельных устройств или элементов, которые по их назначению можно разделить на 3 группы. Первую группу составляют элементы, предназначенные для выработки электроэнергии (источники питания). Вторая группа элементы, преобразующие электроэнергию в другие виды энергии (механическую, тепловую, световую, химическую и т. д.). В третью группу входят элементы, предназначенные для передачи электроэнергии от источника питания к электроприемнику (провода, устройства, обеспечивающие уровень и качество напряжения, и др.).

5 1.2 Источники энергии Источники ЭДС Источник ЭДС характеризуется величиной ЭДС равной напряжению (разности потенциалов) на зажимах при отсутствии тока через источник. ЭДС определяют как работу сторонних сил, присущих источнику, на перемещение единичного положительного заряда внутри источника от зажима с меньшим потенциалом к зажиму с большим потенциалом. Рисунок Обозначения источника ЭДС и гальванического элемента в схемах

6 Источники питания цепи постоянного тока это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термоэлектрические генераторы, фотоэлементы и др. Все источники питания имеют внутреннее сопротивление, значение которого невелико по сравнению с сопротивлением других элементов электрической цепи. Электроприемниками постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы и др. Все электроприемники характеризуются электрическими параметрами, среди которых можно назвать самые основные напряжение и мощность. Для нормальной работы электроприемника на его зажимах (клеммах) необходимо поддерживать номинальное напряжение. Для приемников постоянного тока оно составляет 27, 110, 220, 440 В, а также 6, 12, 24, 36 В.

7 Напряжение на зажимах реального источника зависит от тока через источник. Если этой зависимостью можно пренебречь, то такой источник называют идеальным. На расчетных схемах обязательно нужно указывать направления напряжений и токов (выбираются произвольно). Рисунок Схема с реальным источником ЭДС

8 Для реальных источников запишем закон Ома для полной цепи:, U= I ·R н (1.1) где I — ток [A], E — ЭДС [B], R — сопротивление [Ом]. Отсюда следует: U=E-I×R BH (1.2) Напряжение U на зажимах реального источника меньше ЭДС на величину падения напряжения на внутреннем сопротивлении. Идеальный источник имеет R вн =0. Максимальный ток возникает в режиме короткого замыкания при R н =0, при этом выходное напряжение U стремится также к нулю.

9 1.2.2 Источник тока Источник тока характеризуется током I при короткозамкнутых зажимах (при отсутствии напряжения). Если ток не зависит от напряжения — такой источник называют идеальным. Рисунок Изображение источника тока в схемах

10 Ток I реального источника энергии зависит от напряжения U на его зажимах. Из закона Ома для полной цепи: (1.3) где — проводимость [См]. Рисунок Схема с реальным источником тока В этой схеме элемент g вн параллельно соединенный с идеальным источником J, называют внутренней проводимостью. Идеальный источник тока имеет g вн =0 (то есть R вн =).

11 1.2.3 Электрическая мощность Характеризует энергию, генерируемую источником в единицу времени. Для реального источника напряжения: P=E × I [Вт] (1.4) Для реального источника тока: [Вт] (1.5) Сопротивление нагрузки R н характеризует потребление электрической энергии, то есть превращение ее в другие виды при мощности, определяемой по формуле: [Вт] (1.6)

12 1.3 Обобщенный закон Ома для участка цепи с ЭДС — направление от точки с высоким потенциалом в точку с более низким потенциалом; — направление тока. Рисунок Неразветвленная цепь с источниками ЭДС

13 (1.7) где: — суммарное сопротивление участка схемы; — напряжение между выводами рассматриваемого участка; — алгебраическая сумма ЭДС действующих на данном участке. Если ЭДС совпадает по направлению с током, то ставится знак, если не совпадает -. Вывод: ток участка цепи с источниками ЭДС равен алгебраической сумме его напряжения и ЭДС, деленной на сопротивление участка.

Читайте также:  Силикон пропускает ток или нет

14 1.4 Простейшие преобразования в электрических цепях Последовательное соединение сопротивлений Ток идущий в цепи одинаков в любой точке. Рисунок Эквивалентное сопротивление при последовательном соединении сопротивлений

15 (1.8) Эквивалентное сопротивление последовательно соединенных элементов цепи равно сумме сопротивлений отдельных элементов.

16 1.4.2 Параллельное соединение сопротивлений Рисунок Параллельное соединение сопротивлений

17 Значения токов в цепи определяются следующим образом: (1.9) (1.10)

18 Для эквивалентного сопротивления запишем формулу: (1.11) Эквивалентное сопротивление цепи, состоящей из параллельных составляющих, всегда меньше меньшего из сопротивлений цепи. Следовательно, при параллельном соединении эквивалентная проводимость цепи равна сумме проводимостей отдельных ветвей.

19 1.4.3 Замена источника тока источником ЭДС Рисунок Замена источника тока источником ЭДС Баланс мощности различается в этих схемах, поскольку через сопротивление R течет разный ток. Результат решения задачи всегда должен приводиться к исходной схеме. Для схемы с источником тока справедливо следующее соотношение: J — I общ — I R =0 (1.12)

20 1.5 Подключение измерительных приборов к электрическим цепям Прежде чем производить измерения в электрических цепях нужно определиться со следующими вопросами, исходя из ответа на которые, выбирается измерительный прибор: -постоянный или переменный ток присутствует в данной электрической цепи. Если переменный — то какой именно (форма сигнала, частота); -какого порядка токи и напряжения имеются в данной цепи; -какая погрешность измерения будет нас удовлетворять.

21 1.5.1 Измерение напряжений Для измерения падения напряжения на каком либо участке цепи, параллельно ему подключают вольтметр с учетом полярности. Вольтметр обладает некоторым внутренним сопротивлением R v, следовательно, во время работы часть тока из электрической цепи пойдет через вольтметр, тем самым режим электрической цепи при подключении вольтметра изменится. Значит, результат измерения будет содержать погрешность. Рисунок Измерение падения напряжения на R 2 вольтметром

22 Напряжение на R 2, цепи, состоящей из источника и последовательно соединенных сопротивлений R 1 и R 2 без вольтметра: (1.13) где R вн — внутреннее сопротивление источника. Напряжение на R 2, цепи, состоящей из источника и последовательно соединенных сопротивлений R 1 и R 2 с вольтметром: (1.14) Если, то Для того чтобы вольтметр не влиял на исследуемую цепь, стараются делать внутреннее сопротивление вольтметра как можно большим.

23 1.5.2 Измерение токов Для измерения величины тока, протекающего через некоторый элемент цепи, последовательно с ним в разрыв ветви включают амперметр, с учетом полярности. Так как амперметр имеет некоторое сопротивление R A, включение его в электрическую цепь изменяет его режим, и результат измерения содержит погрешность. Рисунок Измерение тока амперметром

24 Сила тока в цепи, состоящей из источника и последовательно соединенных сопротивлений R 1 и R 2 без амперметра: (1.15) где R вн — внутреннее сопротивление источника. Сила тока в цепи, состоящей из источника и последовательно соединенных сопротивлений R1 и R2 с амперметром: (1.16) Где R вн — внутреннее сопротивление источника; R A — сопротивление амперметра. Для уменьшения погрешностей стараются делать сопротивления амперметров как можно меньшим.

25 1.5.3 Измерение мощностей Для измерения мощности, потребляемой каким либо элементом цепи, необходимо, чтобы измерительный прибор измерял падение напряжения на нем и ток через него и перемножал эти значения. Ваттметры имеют четыре входных зажима — два токовых и два по напряжению. Рисунок Схема включения ваттметра для измерения мощности, потребляемой R 2.

26 1.5.4 Мостовые схемы Мостовые схемы применяются для измерения сопротивлений. ac, cb, ad, bd — плечи моста. ab, cd — диагонали моста. Рисунок Мост Уитстона

27 Для упрощения расчетов принимаем сопротивление вольтметра равным бесконечности. -баланс моста (уравновешивание)

28 Для измерения сопротивления уравновешенным мостом в одно из его плеч включают неизвестное сопротивление. Подстраивая какое-либо другое из плеч, с помощью известных сопротивлений, добиваются баланса моста (т.е. когда вольтметр показывает нуль). После этого находят неизвестное сопротивление. Для питания моста величина ЭДС Е существенного значения не имеет. Важно, чтобы не было ощутимого нагрева сопротивлений, и была бы достаточной чувствительность вольтметра. Сопротивление измерительного прибора также значения не имеет, т.к. в уравновешенном состоянии разность потенциалов точек c и d равна нулю, следовательно, ток через вольтметр не течет. Используются также неуравновешенные мосты, в них не выполняют подстраивание плеч, а величину неизвестного сопротивления отсчитывают по показаниям измерительного прибора со специально отградуированной шкалой. При измерении неуравновешенным мостом требуется стабилизировать ЭДС Е. (1.45)

29 1.5.5 Компенсационный метод измерения С помощью потенциометров измеряют величину ЭДС. Потенциометр устроен таким образом, что при измерении величины ЭДС E x входной ток отсутствует. Рисунок Потенциометр

30 Перед работой производят калибровку прибора: для этого переводят переключатель в положение. С помощью R I подстраивают рабочий ток в схеме так, чтобы падение напряжения на сопротивлении R равнялось бы величине ЭДС нормального элемента НЭ. При этом вольтметр должен показывать нуль. Для измерения ЭДС E X переключатель переводят в положение, с помощью отградуированного движка реохорда R p добиваются, чтобы вольтметр показывал нуль, и считывают показания прибора.

31 1. Упростить схему к одному сопротивлению КОНТРОЛЬНЫЕ ЗАДАНИЯ

32 2. Составить баланс мощностей для приведенной схемы КОНТРОЛЬНЫЕ ЗАДАНИЯ

33 1.Понятие «Электрическая цепь» 2. Основные элементы электрической цепи 3.Что принято называть «цепями постоянного тока»? 4.Как характеризуется «источник ЭДС»? 5.От чего зависит напряжение на зажимах реального источника? 6.Как характеризуется «источник тока»? 7.Из закона Ома для полной цепи. 8.Расчетное определение проводимости. 9.Что характеризует «Электрическая мощность»? 10.Обобщенный закон Ома для участка цепи с ЭДС. 11.Последовательное соединение сопротивлений. 12.Параллельное соединение сопротивлений. 13.Замена источника тока источником ЭДС, характеристика. 14.Подключение измерительных приборов к электрическим цепям. 15.Измерение напряжений, методика. 16.Измерение токов, методика. 17.Измерение мощностей, методика. 18.Мостовые схемы 19.Компенсационный метод измерения КОНТРОЛЬНЫЕ ВОПРОСЫ

34 Лабораторная работа 1 Простейшие линейные электрические цепи постоянного тока

35 Примечания, дополнения Участок электроцепи, вдоль которого протекает один и тот же ток, называется ветвью. Место соединения ветвей электроцепи называется узлом. На электросхемах узел обозначается точкой. Любой замкнутый путь, проходящий по нескольким ветвям, называется контуром электрической цепи. Простейшая электрическая цепь имеет одноконтурную схему, сложные электрические цепи несколько контуров. Согласованный режим источника питания и внешней цепи возникает в том случае, когда сопротивление внешней цепи равно внутреннему сопротивлению. В этом случае ток в цепи в 2 раза меньше тока короткого замыкания. Самыми распространенными и простыми типами соединений в электрической цепи являются последовательное и параллельное соединение.

Читайте также:  Цепь переменного тока гармонический ток

36 Элементами электрической цепи являются различные электротехнические устройства, которые могут работать в различных режимах. Режимы работы как отдельных элементов, так и всей электрической цепи характеризуются значениями тока и напряжения. Поскольку ток и напряжение в общем случае могут принимать любые значения, то режимов может быть бесчисленное множество. Режим холостого хода это режим, при котором тока в цепи нет. Такая ситуация может возникнуть при разрыве цепи. Номинальный режим бывает, когда источник питания или любой другой элемент цепи работает при значениях тока, напряжения и мощности, указанных в паспорте данного электротехнического устройства. Эти значения соответствуют самым оптимальным условиям работы устройства с точки зрения экономичности, надежности, долговечности и пр. Режим короткого замыкания это режим, когда сопротивление приемника равно нулю, что соответствует соединению положительного и отрицательного зажимов источника питания с нулевым сопротивлением. Ток короткого замыкания может достигать больших значений, во много раз превышая номинальный ток. Поэтому режим короткого замыкания для большинства электроустановок является аварийным.

37 Список литературы Основная 1.Основы теории цепей. Г. В. Зевеке, П. А. Ионкин, А. В. Нетушил, С. В. Страхов. М.: Энергоатомиздат, 1989, 528 с. 2.Теоретические основы электротехники. Том 1. Л. Р. Нейман, К. С. Димирчян Л.: Энергоиздат, 1981, 536с. 3.Теоретические основы электротехники. Том 2. Л. Р. Нейман, К. С. Димирчян Л.: Энергоиздат, 1981, 416с. 4.Теоретические основы электротехники. Электрические цепи. Л. А. Бессонов М.: Высш. шк., 1996, 638 с. Дополнительная 1.Основы теории электрических цепей. Татур Т. А. Высш. шк., 1980, 271 с Сборник задач и упражнений по теоретическим основам электротехники. /Под ред. П. А. Ионкина. М.: Энергоиздат, 1982, 768с Руководство по лабораторным работам по теории линейных цепей постоянного и синусоидального тока. /Под ред. В. Д. Эскова -Томск: ТПУ,1996,32с Руководство по лабораторным работам по установившимся режимам нелинейных цепей и переходным процессам в линейных цепях. /Под ред. В. Д. Эськова — Томск: ТПУ, 1997, 32 с.

Источник



Электрические цепи постоянного тока
методическая разработка на тему

Материал для самостоятельного изучения темы студентами заочного отделения

Скачать:

Вложение Размер
tema_programmy.doc 200.5 КБ

Предварительный просмотр:

Тема 1.2.Электрические цепи постоянного тока.

После изучения данной темы Вы сможете:

• составлять простейшие схемы электрических цепей;

• применять закон Ома для расчета электрических цепей;

• производить преобразование цепей с последовательным, параллельным и смешанным соединением элементов.

Для того чтобы изучить данную тему, Вы должны:

• иметь представление о режимах работы электрических цепей постоянного тока;

• знать: единицы измерения тока, напряжения, сопротивления, мощности; закон Ома для участка и полной цепи; закон Джоуля-Ленца; законы Кирхгофа.

Рекомендуемые дополнительные информационные ресурсы

1. Данилов И.А., Иванов П.М. Общая электротехника с основами электроники.- М.: Высшая школа, 2010.

2. Евдокимов Ф.Е. Общая электротехника.- М.: Высшая школа, 2014.

3. Синдеев Ю.Г. Электротехника с основами электроники – Ростов н/Д: Феникс, 2014.

Электрическая цепь и ее элементы.

Электрический ток, его величина, направление, единицы измерения.

Физические основы работы источника электродвижущей силы (ЭДС).

Закон Ома для участка и полной цепи.

Электрическое сопротивление и электрическая проводимость, единицы измерения. Зависимость электрического сопротивления от температуры.

Работа и мощность электрического тока. Преобразование электрической энергии в тепловую, закон Джоуля-Ленца. Использование электронагревательных приборов. Токовая нагрузка проводов и защита их от перегрузок.

Режимы работы электрической цепи.

Виды соединений приемников энергии. Законы Кирхгофа. Понятие о расчете электрических цепей.

1. Электрическая цепь и ее элементы.

Электрическая цепь — это совокупность устройств, предназначенных для производства, передачи, преобразования и использования электрического тока.
Все электротехнические устройства по назначению, принципу действия и конструктивному оформлению можно разделить на три большие группы:

• Источники энергии, т.е. устройства, вырабатывающие электрический ток (генераторы, термоэлементы, фотоэлементы, химические элементы).

• Приемники, или нагрузка, т.е. устройства, потребляющие электрический ток (электродвигатели, электролампы, электромеханизмы и т.д.)

• Проводники, а также различная коммутационная аппаратура (выключатели, реле, контакторы и т.д.).

Для работы электрической цепи необходимо наличие источников энергии. В любом источнике за счет сторонних сил неэлектрического происхождения создается электродвижущая сила. На зажимах источника возникает разность потенциалов или напряжение, под воздействием которого во внешней, присоединенной к источнику части цепи, возникает электрический ток.
Различают активные и пассивные цепи, участки и элементы цепей. Активными называют электрические цепи, содержащие источники энергии, пассивными — электрические цепи, не содержащие источников энергии.

Электрическую цепь называют линейной, если ни один параметр цепи не зависит от величины или направления тока, или напряжения.

Электрическая цепь является нелинейной, если она содержит хотя бы один нелинейный элемент. Параметры нелинейных элементов зависят от величины или направления тока, или напряжения.

Электрическая схема — это графическое изображение электрической цепи, включающее в себя условные обозначения устройств и показывающее соединение этих устройств. На рис. 1.1 изображена электрическая схема цепи, состоящей из источника энергии, электроламп 1 и 2, электродвигателя 3.

Для облегчения анализа электрическую цепь заменяют схемой замещения.
Схема замещения — это графическое изображение электрической цепи с помощью идеальных элементов, параметрами которых являются параметры замещаемых элементов. На рисунке 1.2 показана схема замещения.

Простейшими пассивными элементами схемы замещения являются сопротивление, индуктивность и емкость.

В реальной цепи электрическим сопротивлением обладают не только реостат или резистор, но и проводники, катушки, конденсаторы и т.д. Общим свойством всех устройств, обладающих сопротивлением, является необратимое преобразование электрической энергии в тепловую. Тепловая энергия, выделяемая в сопротивлении, полезно используется или рассеивается в пространстве. В схеме замещения во всех случаях, когда надо учесть необратимое преобразование энергии, включается сопротивление.

2. Электрический ток, его величина, направление, единицы измерения.

Электрический ток – направленное движение заряженных частиц.

Электрический ток в проводнике – это направленное движение электронов.

Электрический ток определяет количества электричества проходящего через поперечное сечение проводника в единицу времени.

Сила тока – физическая величина, показывающая заряд, проходящий через проводник за единицу времени. Математически это определение записывается в виде формулы:

Источник