Меню

Пути снижения реактивной мощности

Мероприятия по уменьшению потребления реактивной мощности на промышленных предприятиях

Уменьшение потребления реактивной мощности промышленного предприятия можно достигнуть лишь при правильном сочетании различных способов, которые должны быть технически и экономически обоснованы.

Мероприятия по уменьшению потребления реактивной мощности можно разделить на следующие группы:

· снижение потребления реактивной мощности приемниками электроэнергии без применения компенсирующих устройств;

· применение компенсирующих устройств.

Мероприятия первой группы должны рассматриваться в первую очередь, поскольку для их осуществления не требуется значительных капитальных затрат. К ним относятся:

· повышение загрузки технологических агрегатов; упорядочение технологического процесса; повышение загрузки и коэффициента загрузки электродвигателей. Эти мероприятия приводят к улучшению энергетического режима оборудования;

· понижение напряжения у асинхронных двигателей, загруженных не выше, чем на 45%, путем переключения схемы обмоток с «треугольника» (D) на «звезду» (U). При этом вращающий момент и активная мощность электродвигателя уменьшаются в 3 раза, загрузка двигателя и его коэффициент мощности повышаются, а потребление реактивной мощности снижается. Такое переключение возможно при напряжении обмотки двигателя 660/380 В и напряжении сети 380 В;

· установка ограничителей холостого хода асинхронных электродвигателей и сварочных трансформаторов;

· отключение цеховых трансформаторов (например, в ночное время), с переводом нагрузки на другие трансформаторы;

· замена на менее мощные систематически недогруженных трансформаторов (менее чем на 40% номинальной мощности);

· замена систематически недогруженных асинхронных двигателей (менее чем на 45%) на двигатели меньшей мощности;

· замена изношенных асинхронных двигателей синхронными (вместо потребляемой Q АД появляется генерируемая -Q СД), когда это возможно по условиям технологического процесса. Для вновь устанавливаемых механизмов, не требующих регулирования скорости и работающих в продолжительном режиме (насосы, компрессоры, вентиляторы), рекомендуется применять синхронные двигатели.

· повышение качества ремонта двигателей.

Мероприятия второй группы предусматривают установку специальных компенсирующих (КУ) в соответствующих точках (в местах потребления) системы электроснабжения предприятия для выработки реактивной мощности.

Компенсация реактивной мощности – это установка компенсирующих устройств, благодаря которым увеличивается пропускная способность сети, уменьшаются потери мощности и электроэнергии в сети, и улучшается режим напряжения сети.

Технико-экономические условия компенсации реактивной мощности – это условия, при которых обеспечиваются наилучшие показатели работы СЭС. Эти условия определяющие:

· за счет компенсации происходит снижение полной мощности и тока; увеличивается пропускная способность линий и трансформаторов; при проектировании можно снизить сечение проводов и мощности трансформаторов:

· За счет компенсации происходит снижение потерь активной и реактивной мощностей

, ,

· Снижаются потери электроэнергии

.

· Снижаются потери напряжения

, .

На рисунке 8.2 приведена схема, поясняющая принцип и значение вопроса о компенсации реактивной мощности. На рисунке показаны схемы электроснабжения промышленного предприятия со схемой замещения, векторные диаграммы и возможные места включения компенсирующих устройств. Как видно из диаграммы, угол φ возрастает по мере удаления от шин электропотребителя и приближения к шинам генераторного напряжения электростанции, что указывает на то, что все участки электропередачи очень сильно загружены реактивной мощностью. Передача реактивной мощности в начале передачи больше, чем в конце, что приводит к повышенным токовым нагрузкам сети и, как следствие, к увеличению затрат на ее сооружение, повышенным потерям и ухудшению качества электроэнергии. Установка компенсирующих устройств в узлах разных участков сети снижает токовые нагрузки на данных участках.

а — схема питания; б — схема замещения; в — векторные диаграммы, характеризующие угол между током и напряжением в различных точках системы электроснабжения до и после компенсации реактивной мощности; значения векторов токов и напряжений взяты условно; —- — векторы токов до компенсации; — векторы токов после компенсации

Читайте также:  Генератор автомобильный регулятор мощности

Рисунок 8.2 – Эквивалентная схема системы электроснабжения (а), ее схема замещения (б) и векторные диаграммы (в)

Следовательно, вследствие неэкономичности передачи реактивной мощности потребителям компенсирующие устройства необходимо устанавливать непосредственно в распределительных сетях. Они обеспечивают регулирование их мощности в соответствии с изменяющейся нагрузкой сети.

Применение устройств, компенсирующих реактивную мощность, несколько удорожает эксплуатацию электрических установок. Кроме того, в них создаются некоторые дополнительные потери активной мощности ΔР комп, которые, однако, значительно меньше потерь ΔР.

Источник



Реактивная мощность, и как её компенсировать.

Задачей современной электроэнергетики является снижение потерь электрической мощности и электроэнергии. Компенсация реактивной мощности – самое дешевое и эффективное средство повышения качества электрических систем. Конденсаторные установки уменьшают потери и повышают качество электроэнергии в элементах сети электроснабжения.

Наличие реактивной мощности снижает качество электроэнергии, приводит к дополнительным потерям и перегреву проводов, перегрузке подстанций, необходимости завышения мощности трансформаторов и сечения кабелей, просадке напряжения в электросети.
Кроме того, реактивная мощность вместе с активной мощностью учитывается поставщиками электроэнергии, и как следствие, подлежит оплате по существующим тарифам, и составляет довольно существенную долю в счетах за электрическую энергию.

Компенсация реактивной мощности на предприятии позволяет:

— уменьшить нагрузку на трансформаторы, и как следствие — увеличить срок их службы (Повышение коэффициента мощности нагрузки, питаемой от трансформатора, приводит к уменьшению тока через него, что позволяет добавить нагрузку (подключить дополнительные потребители электроэнергии). Практически повышение cosφ (коэффициента мощности)может оказаться дешевле, чем затраты на замену трансформатора на другой с большей мощностью;
— использовать кабели и провода меньшего сечения;
— подключить дополнительные потребители электроэнергии за счет разгрузки подводящих кабелей;
— уменьшить нагрузку на коммутирующую аппаратуру за счет уменьшения токов в нагрузочных цепях;
— уменьшить нагрев электрооборудования и как следствие, увеличить срок его службы;
— уменьшить возможность глубокой просадки напряжения на линиях электропередач дальних потребителей;
— избежать штрафов за снижение качества электроэнергии из-за пониженного коэффициента мощности;
— уменьшить затраты на электроэнергию.

Потребители реактивной мощности.

Потребителями реактивной мощности, которая необходима для создания электромагнитных полей, являются как отдельные звенья электропередачи (трансформаторы, линии, реакторы), так и электроприёмники, преобразующие электроэнергию в другой вид энергии которые для своей работы используют магнитное поле (асинхронные двигатели, индукционные печи и т.п.). До 80% всей реактивной мощности, связанной с наведением магнитных полей, потребляют асинхронные двигатели и трансформаторы. Относительно небольшая часть в общем доле реактивной мощности приходится прочие её потребители: индукционные печи, сварочные трансформаторы, преобразовательные установки, люминисцентное освещение и т.п.

Трансформатор — трансформатор является одним из основных элементов в передаче электроэнергии от электростанции до потребителя. В зависимости от расстояния между электростанцией и потребителем число ступеней трансформации может достигать шести. Поэтому мощность подключенных трансформаторов в несколько раз превышает суммарную мощность генераторов. Каждый трансформатор является потребителем реактивной мощности. Реактивная мощность необходима для создания переменного магнитного потока, при помощи которого энергия из одной обмотки трансформатора передаётся в другую.

Асинхронный двигатель — асинхронные двигатели вместе с активной мощностью потребляют до 60-70% всей реактивной мощности нагрузок энергосистемы. По принципу действия асинхронный двигатель подобен трансформатору. Как и в трансформаторе, энергия первичной обмотки двигателя – статора передаётся во вторичную – ротор посредствам магнитного поля.

Читайте также:  Коробка отбора мощности для урала 5557

Индукционные печи — к электроприемникам, требующим для своего действия большой реактивной мощности относятся индукционные печи промышленной частоты для плавки металлов. По существу эти печи представляют собой мощные, но не совершенные с точки зрения трансформаторостроения трансформаторы, вторичной обмоткой которых является металл, расплавляемый индуктированными в нём токами.

Преобразовательные установки — преобразовательные установки, преобразующие переменный ток в постоянный при помощи выпрямителей, относятся к крупным потребителям реактивной мощности. Онинашли применение в промышленности и на транспорте. Так, установки большей мощности с ртутными преобразователями используются для питания электроизоляционных ванн, например при производстве алюминия. Железнодорожный транспорт в нашей стране почти полностью электрифицирован, причём значительная часть железных дорог использует постоянный ток преобразовательных установок.

Для уменьшения реактивной мощности используются регулируемые установки компенсации реактивной мощности предназначены для поддержания постоянным заданного значения коэффициента мощности (cosφ) в электрических распределительных трёхфазных сетях промышленных предприятий и других объектов напряжением до 400В, частотой 50 Гц.
Установки обеспечивают заданный cosφ в периоды максимальных и минимальных нагрузок, а также исключают режим генерации реактивной мощности в питающую сеть.
Установки выполняются по ТУ 3414-001-52734000-04 и соответствуют стандартам на конденсаторные установки и компоненты (ГОСТ 12.2.007.0-75, ГОСТ 27389-87 и ГОСТ 1282-88)
установки комплектуются компонентами концерна Epcos:
конденсаторы, рассчитаные на 200-кратную перегрузку по току и 30%-ое перенапряжение.
конденсаторные контакторы, не создающие бросков тока.
микропроцессорный контроллер с многострочным дисплеем. Инструкция на русском языке. Возможна модификация с RS-485.

Пример обозначения: АКУ-0.4-250-12,5-УХЛЗ IP31 (Автоматическая конденсаторная установка, напряжение сети 0.4 кВ, мощность 250 квар, шаг12,5 квар, климатическое исполнение УХЛ3-умеренно-холодный,3-категория размещения,IP31-степень защиты.).

Источник

Что такое реактивная мощность и как с ней бороться

реактивная мощностьФизика процесса и практика применения установок компенсации реактивной мощности

Чтобы разобраться с понятием реактивной мощности, вспомним сначала, что такое электрическая мощность. Электрическая мощность – это физическая величина, характеризующая скорость генерации, передачи или потребления электрической энергии в единицу времени.

Чем больше мощность, тем большую работу может совершить электроустановка в единицу времени. Измеряется мощность в ваттах (произведение Вольт х Ампер). Мгновенная мощность – это произведение мгновенных значений напряжения и силы тока на каком-то участке электрической цепи.

Физика процесса

В цепях постоянного тока значение мгновенной и средней мощности за какой-то промежуток времени совпадают, а понятие реактивной мощности отсутствует. В цепях переменного тока так происходит только в том случае, если нагрузка чисто активная. Это, например, электронагреватель или лампа накаливания. При такой нагрузке в цепи переменного тока фаза напряжения и фаза тока совпадают и вся мощность передается в нагрузку.

Если нагрузка индуктивная (трансформаторы, электродвигатели), то ток отстает по фазе от напряжения, если нагрузка емкостная (различные электронные устройства), то ток по фазе опережает напряжение. Поскольку ток и напряжение не совпадают по фазе (реактивная нагрузка), то в нагрузку (потребителю) передается только часть мощности (полной мощности), которая могла бы быть передана в нагрузку, если бы сдвиг фаз был равен нулю (активная нагрузка).

Активная и реактивная мощности

Часть полной мощности, которую удалось передать в нагрузку за период переменного тока, называется активной мощностью. Она равна произведению действующих значений тока и напряжения на косинус угла сдвига фаз между ними (cos φ ).

Читайте также:  Как узнать мощность лампы для маникюра

Мощность, которая не была передана в нагрузку, а привела к потерям на нагрев и излучение, называется реактивной мощностью. Она равна произведению действующих значений тока и напряжения на синус угла сдвига фаз между ними (sin φ).

Таким образом, реактивная мощность является величиной характеризующей нагрузку. Она измеряется в вольт амперах реактивных (вар, var). На практике чаще встречается понятие косинус фи, как величины характеризующей качество электроустановке с точки зрения экономии электроэнергии.

реактивная мощность

Действительно, чем выше cos φ, тем больше энергии, подаваемой от источника, попадает в нагрузку. Значит можно использовать менее мощный источник и меньше энергии пропадает зря.

Реактивная мощность бытовых потребителей

Итак, потребители переменного тока имеют такой параметр, как коэффициент мощности cosφ.

График переменного тока

На графике ток сдвинут на 90° (для наглядности), то есть на четверть периода. Например, электрооборудование имеет cosφ = 0,8, что соответствует углу arccos 0,8 ≈ 36.8°. Этот сдвиг происходит из-за наличия в потребителе электроэнергии нелинейных компонентов – ёмкостей и индуктивностей (например, обмотки электродвигателей, трансформаторов и электромагнитов).

Для дальнейшего понимания происходящего требуется учет того факта, что, чем выше коэффициент мощности (максимум 1), тем более эффективно потребитель использует получаемую из сети электроэнергию (то есть большее количество энергии преобразуется в полезную работу) – такую нагрузку называют резистивной.

При резистивной нагрузке ток в цепи совпадает с напряжением. А при низком коэффициенте мощности нагрузку называют реактивной, то есть часть потребляемой мощности не совершает полезной работы.

Таблица ниже демонстрирует классификацию потребителей по коэффициенту мощности.

Классификация потребителей переменного тока

Классификация потребителей переменного тока

Следующая таблица демонстрирует коэффициент мощности распространённых в быту потребителей электроэнергии.

Коэффициент мощности бытовых электроприборов

Коэффициент мощности бытовых электроприборов

Юмор электрика

Что такое реактивная мощность? Все очень просто!

Что такое реактивная мощность

Способы компенсации реактивной мощности

Способы компенсации реактивной мощности Из сказанного выше вытекает, если нагрузка индуктивная, то следует компенсировать ее с помощью емкостей (конденсаторов) и наоборот емкостную нагрузку компенсируют с помощью индуктивностей (дросселей и реакторов). Это помогает увеличить косинус фи (cos φ) до приемлемых значений 0.7-0.9. Этот процесс называется компенсацией реактивной мощности.

Экономический эффект от компенсации реактивной мощности

Экономический эффект от внедрения установок компенсации реактивной мощности может быть очень большим. По статистике он составляет от 12 до 50% от оплаты электроэнергии в различных регионах России. Установка компенсации реактивной мощности окупается не более чем за год.

Для проектируемых объектов внедрение конденсаторной установки на этапе разработки позволяет экономить на стоимости кабельных линий за счет снижения их сечения. Автоматическая конденсаторная установка, например, может поднять cos φ с 0.6 до 0.97.

Выводы

Способы компенсации реактивной мощности Итак, установки по компенсации реактивной мощности приносят ощутимые финансовые выгоды. Они также позволяют дольше сохранять оборудование в рабочем состоянии.

Вот несколько причин, по которым это происходит.

1. Уменьшение нагрузки на силовые трансформаторы, увеличение в связи с этим срока их службы.

2. Уменьшение нагрузки на провода и кабели, возможность использования кабелей меньшего сечения.

3. Улучшение качества электроэнергии у электроприемников.

4. Ликвидация возможности штрафов за снижение cos φ.

5. Уменьшение уровня высших гармоник в сети.

6. Снижение уровня потребления электроэнергии.

Источник