Меню

Расчет электрических цепей переменного тока с активным сопротивлением

Расчет электрических цепей переменного тока с активным сопротивлением

§ 56. Цепь переменного тока с активным и индуктивным сопротивлениями

Любая проволочная катушка, включенная в цепь переменного тока, обладает активным сопротивлением, зависящим от материала, длины и сечения проволоки и индуктивным сопротивлением, которое зависит от индуктивности катушки и частоты переменного тока, протекающего по ней (XL = ωL = 2πf L). Такую катушку можно рассматривать как приемник энергии, в котором активное и индуктивное сопротивления соединены последовательно.
Рассмотрим цепь переменного тока, в которую включена катушка индуктивности (рис. 59, а) с активным r и индуктивным сопротивлением XL. Падение напряжения на активном сопротивлении

Падение напряжения на индуктивном сопротивлении

Построим векторную диаграмму тока и напряжения (рис. 59, б) для рассматриваемой цепи.

Отложим по горизонтали вектор тока 1 в выбранном масштабе. Известно, что ток и напряжение в цепи с активным сопротивлением совпадают по фазе, поэтому вектор падения напряжения на активном сопротивлении откладываем по вектору тока.
В цепи с индуктивностью ток отстает от напряжения на угол φ = 90°. Поэтому вектор падения напряжения на индуктивном сопротивлении откладываем на диаграмме вверх под углом 90° к вектору тока.
Для определения общего напряжения, приложенного к цепи, сложим векторы Суммой этих векторов будет диагональ параллелограмма — вектор Треугольник АОБ, стороны которого выражают соответственно напряжения Ua , UL и общее напряжение U, называется треугольником напряжений. На основании теоремы Пифагора — в прямоугольном треугольнике квадрат гипотенузы равен сумме квадратов катетов — следует, что общее напряжение на зажимах цепи

Пример. Падение напряжения на активном сопротивлении Ua = 15 в. Напряжение на индуктивном сопротивлении UL = 26 в. Вычислить общее напряжение, приложенное к цепи.
Решение . Общее напряжение на зажимах цепи переменного тока с последовательно соединенными активным и индуктивным сопротивлениями

Чтобы определить полное сопротивление цепи переменного тока с активным и индуктивным сопротивлениями, следует разделить векторы Ua =I r и UL = IXL, на число I, выражающее силу тока в цепи, и построить треугольник А′О′Б′ (рис. 59, в), стороны которого меньше сторон треугольника напряжений в I раз. Образованный треугольник называется треугольником сопротивлений. Его сторонами являются сопротивления r и ХL и полное сопротивление цепи Z.
Пользуясь теоремой Пифагора, можно написать, что

отсюда полное сопротивление цепи

Пример. Активное сопротивление катушки r = 7 ом, а ее индуктивное сопротивление ХL = 24 ом. Вычислить полное сопротивление катушки.
Решение . Полное сопротивление катушки переменному току

Сила тока в цепи с активным и индуктивным сопротивлениями определяется по закону Ома:

На векторной диаграмме видно, что в цепи переменного тока с активным и индуктивным сопротивлениями ток и напряжение не совпадают по фазе.
Ток отстает от напряжения на угол φ.
Угол сдвига между током и напряжением можно определить, если известен косинус этого угла.
Из треугольника напряжений косинус угла сдвига фаз

Теперь можно, пользуясь таблицей тригонометрических функций, определить угол φ.

Пример. Падение напряжения на активном сопротивлении катушки Ua = 30 в. Общее напряжение на ее зажимах Uв = 60 в. Определить угол сдвига фаз между током и напряжением в цепи.
Решение. На основании данных найдем

По таблице тригонометрических функций угол сдвига фаз при cos φ = 0,5 составляет 60°.
По треугольнику сопротивлений можно также определить угол сдвига фаз между током и напряжением:

Пример. Активное сопротивление катушки составляет 5 ом, а ее полное сопротивление Z = 30 ом. Определить угол сдвига фаз.
Решение .

Источник

Лекция по электротехнике по теме «Цепи переменного тока с активным сопротивлением, индуктивностью и емкостью»

Тема1.3.Основные положения теории переменного тока. Цепи переменно тока

Цепи переменного тока с активным сопротивлением, индуктивностью и емкостью.

1. Цепь переменного тока с активным сопротивлением. Рассмотрим цепь (рис, 4,3), в которой к активному сопротивлению (резистору) приложено синусоидальное напряжение: hello_html_m532f78a3.pnghello_html_1c9cc132.jpg

Тогда по закону Ома ток в цепи будет равен:
hello_html_286468a6.png
Мы видим, что ток и напряжение совпадают по фазе. Векторная диаграмма для этой цепи приведена на рис. 4.4, а зависимости тока и напряжения от времени (временная диаграмма) — на рис. 4.5:
Выясним, как изменяется со временем мощность в цепи переменного тока с резистором. hello_html_m4d503ffe.jpg

Читайте также:  Направления электрического тока в картинках

Мгновенное значение мощности равно произведению мгновенных значений тока и напряжения:

hello_html_2e7cb748.png
Из этой формулы мы видим, что мгновенная мощность всегда положительна и пульсирует с удвоенной частотой (рис4.5). I,U,p .
Это означает, что электрическая энергия необратимо превращается в теплоту независимо от направления тока в цепи.
Те элементы цепи, на которых происходит необратимое преобразование электрической энергии в другие виды энергии (не только в теплоту), называются активными сопротивлениями. Поэтому резистор представляет собой активное сопротивление. hello_html_m4401244a.jpg

Цепь переменного тока с индуктивностью. Рассмотрим цепь (рис. 4.6), в которой к катушке индуктивности L, не обладающей активным сопротивлением (R = 0), приложено синусоидальное напряжение (4.6). hello_html_51975635.jpg

Протекающий через катушку переменный ток создает в ней ЭДС самоиндукции hello_html_m2d06003d.png, которая в соответствии с правилом Ленца направлена таким образом, что препятствует изменению тока. Другими словами, ЭДС самоиндукции направлена навстречу приложенному напряжению. Тогда в соответствии со вторым правилом Кирхгофа можно записать:

hello_html_m4cb0ebc6.png(4.9)
Согласно закону Фарадея ЭДС самоиндукции
hello_html_24679531.png(4.10)
Подставив (4.10) в (4.9), получим:
hello_html_42ba3280.png

Решение этого дифференциального уравнения имеет вид:
hello_html_23abe131.png (4.12) , где hello_html_6c1721e8.png(4.13)
Деля обе части равенства (4.13) на hello_html_m413d80bf.png, получим для действующих значений

hello_html_m3ad1a06c.png(4.14)
Соотношение (4.14) представляет собой закон Ома для цепи с идеальной индуктивностью, а величина hello_html_m10ff5f69.pngназывается индуктивным сопротивлением. Индуктивное сопротивление измеряется в омах.
Мгновенная мощность в цепи с чисто индуктивным сопротивлением равна:
hello_html_m6ae64dc3.png(4.15)

Положительные значения мощности соответствуют потреблению энергии катушкой, а отрицательные — возврату запасенной энергии обратно источнику. Средняя за период мощность равна нулю. Следовательно, цепь с индуктивностью мощности не потребляет — это чисто реактивная нагрузка. В этой цепи происходит лишь перекачивание электрической энергии от источника в катушку и обратно. Индуктивное сопротивление является реактивным сопротивлением.

Цепь переменного тока с индуктивностью и активным сопротивлением. Реальные цепи, содержащие индуктивность, всегда имеют и активное сопротивление: сопротивление провода обмотки и подводящих проводов. Поэтому рассмотрим электрическую цепь (рис. 4.9), в которой через катушку индуктивности L, обладающую активным сопротивлением R, протекает переменный ток
hello_html_39ed17a1.png(4.16)
Через катушку и резистор протекает один и же ток, поэтому в качестве основного выберем вектор тока и будем строить вектор напряжения, приложенного к этой цепи.
Напряжение, приложенное к цепи, равно векторной сумме падений напряжений на катушке индуктивности и на резисторе:
hello_html_f7a1047.png(4.17)
Напряжение на резисторе, как было показано выше, будет совпадать по фазе с током: hello_html_m33506fe8.jpg

hello_html_m210aa89a.png(4.18)
а напряжение на индуктивности будет равно ЭДС самоиндукции со знаком минус (по второму правилу Кирхгофа):
hello_html_m62557165.png. (4.19)
Мы видим, что напряжение на индуктивности опережает ток на угол ?/2. Построив векторы hello_html_mfaf8977.pngи hello_html_7fabbc06.png, и воспользовавшись формулой (4.17), найдем вектор hello_html_m6c90a9e1.pngВекторная диаграмма показана на рис. 4.10. Мы видим, что в рассматриваемой цепи ток I отстает по фазе от приложенного напряжения U, но не на / 2 , как в случае чистой индуктивности, а на некоторый угол hello_html_51b54781.png. Этот угол может принимать значения от 0 до ? / 2 и при заданной индуктивности зависит от значения активного сопротивления: с увеличением R угол hello_html_4c6d5666.pngуменьшается .

Как видно из векторной диаграммы, модуль вектора hello_html_614fb4d8.pngравен
hello_html_m701cf393.png, где величина hello_html_m4e2495ca.pngназывается полным сопротивлением цепи.
Сдвиг по фазе hello_html_51b54781.pngмежду током и напряжением данной цепи также определяется из векторной диаграммы:
hello_html_m38849700.png (4.22)

Цепь переменного тока с емкостью Рассмотрим электрическую цепь, в которой переменное напряжение (4.6) приложено к емкости С.
Мгновенное значение тока в цепи с емкостью равно скорости изменения заряда на обкладках конденсатора:
hello_html_fa49b73.png; но поскольку q = СU , то
hello_html_6fef3bbc.png, где hello_html_m6fc3d636.png(4.25)
Мы видим, что в этой цепи ток опережает напряжение на 2. Переходя в формуле (4.25) к действующим значениям переменного тока hello_html_6b6106e7.jpg

hello_html_m37340072.png) , получим: hello_html_m6d4aa195.png(4.26)

Это закон Ома для цепи переменного тока с емкостью, а величина hello_html_7a451b11.png называется емкостным сопротивлением. Векторная диаграмма для этой цепи показана на рис. 4.12, а временная – на рис. 4.13
Мгновенная мощность в цепи, содержащей емкость:
hello_html_bb0df51.png(4.27) hello_html_m70df557.jpg

Читайте также:  Расположение магнитных стрелок взаимодействующих с магнитным полем проводника с током

Мы видим, что мгновенная мощность изменяется с удвоенной частотой (рис. 4.13). При этом положительные значения мощности соответствуют заряду конденсатора, а отрицательные — его разряду и возврату запасенной энергии в источник. Средняя за период мощность здесь равна нулю, поскольку в цепи с конденсатором активная мощность не потребляется, а происходит обмен электрической энергией между конденсатором и источником. Следовательно, конденсатор так же, как и индуктивность, является реактивным сопротивлением. hello_html_336e2400.jpg

Вопросы для самопроверки:

Дать определение понятию « Активное сопротивление».

Выразить закон Ома для цепи переменного тока с активным сопротивлением.

Дать определение понятию « Индуктивность».

Выразить закон Ома для цепи переменного тока с индуктивностью.

Источник

Расчет электрических цепей переменного тока с активным сопротивлением

Рассмотрим цепь (рис. 134), состоящую из сопротивления r. Влиянием индуктивности и емкости для простоты пренебрегаем. К зажимам цепи приложено синусоидальное напряжение

Рис. 134. Цепь, содержащая активное сопротивление
Рис. 134. Цепь, содержащая активное сопротивление

По закону Ома, мгновенное значение тока будет равно:

или, переходя к действующим значениям, получаем

Как следует из последнего выражения, вид закона Ома для цепи переменного тока, содержащей сопротивление r, тот же, что для цепи постоянного тока. Кроме того, из закона Ома видна пропорциональность между мгновенным значением напряжения и мгновенным значением тока. Отсюда следует, что в цепи переменного тока, содержащей сопротивление r, напряжение и ток совпадают по фазе. На рис. 135 даны кривые напряжения и тока и векторная диаграмма для рассматриваемой цепи, причем длины векторов обозначают действующие значения напряжения и тока.

Рис. 135. Графики и векторная диаграмма для цепи переменного тока, содержащей активное сопротивление
Рис. 135. Графики и векторная диаграмма для цепи переменного тока, содержащей активное сопротивление

Сопротивление проводников переменному току несколько больше их сопротивления постоянному току * (см. § 65). Поэтому сопротивление проводников переменному току называют активным в отличие от сопротивления, которое оказал бы этот проводник при постоянном токе. Обозначается оно также буквой r.

* ( Это объясняется тем, что при переменном токе наблюдается неравномерное распределение тока по сечению проводника, так что плотность тока будет возрастать от оси к поверхности проводника. Это явление называется поверхностным эффектом. Неравномерная плотность тока приводит к увеличению сопротивления проводника. Однако при стандартной частоте 50 гц, небольшом сечении и медных или алюминиевых проводах явление поверхностного эффекта сказывается слабо. При высокой частоте, большем сечении и стальных проводах оно значительно.)

В цепи, представленной на рис. 134, приложенное внешнее напряжение компенсирует падение напряжения в сопротивлении r, которое называется активным падением напряжения и обозначается Uа:

Мгновенное значение мощности в рассматриваемой цепи равно произведению мгновенных значений напряжения и тока:

На рис. 136 дана кривая мгновенной мощности за один период. Из чертежа видно, что мощность не является постоянной величиной, она пульсирует с двойной частотой * .

* ( Пульсацией называется изменение численного значения переменной величины при постоянстве ее знака.)

Рис. 136. Кривая мгновенной мощности цепи с активным сопротивлением
Рис. 136. Кривая мгновенной мощности цепи с активным сопротивлением

Среднее за период значение мощности называется активной мощностью, обозначается буквой Р и измеряется в запах.

Для рассматриваемой цепи с активным сопротивлением

т. е. формула мощности для цепи переменного тока с активным сопротивлением такая же, как формула мощности для цепи постоянного тока.

Активным сопротивлением обладают все проводники. В цепи переменного тока практически только одним активным сопротивлением обладают нити ламп накаливания, спирали электронагревательных приборов и реостатов, дуговые лампы, специальные бифилярные обмотки и прямолинейные проводники небольшой длины.

Источник



Цепь переменного тока с активным сопротивлением

Когда в электрическую цепь переменного тока подключается активное сопротивление R , то под воздействием разницы потенциалов источника в цепи начинает течь ток I . В тех случаях, когда изменение напряжения происходит по синусоидальному закону, который выражается, как u = Um sin ωt , то изменение тока i также идет по синусоиде:

Цепь переменного тока с активным сопротивлением

Так что получается, что изменение напряжения и тока происходят по одинаковым законам. При этом через нулевое значение они проходят одновременно и своих максимальных значений также достигают одновременно. Из этого следует, что когда в электрическую цепь переменного тока подключается активное сопротивление R , то напряжение и ток совпадают по фазе.

Читайте также:  Сила тока в проводнике увеличилась в 2 раза как изменилось его сопротивление

Кривые ток напряжения мощности

Мощность, ток, напряжение

Если взять равенство Im = Um / R и каждую из его частей разделить на √2 , то в итоге получится ни что иное, как закон Ома, применимый для той цепи, которая рассматривается: I = U / R .

Таким образом, получается, что это основополагающий закон для той цепи, которая имеет в своем составе только активное сопротивление, с точки зрения математики имеет такую же форму, что и для цепи тока постоянного.

Электрическая мощность

Такой показатель, как электрическая мощность P для цепи, имеющей в своем составе активное сопротивление, равняется произведению мгновенного значения напряжения U на мгновенное значение силы тока i в любой момент времени. Из этого следует, что в цепях переменного тока, в отличие от цепей тока постоянного, мгновенная мощность P – величина непостоянная, а ее изменение происходит по кривой. Для того чтобы получить ее графическое представление, необходимо ординаты кривых напряжения U и силы тока i перемножить при разных углах ωt . Мощность изменяется по отношению к изменению тока с двойной частотой ωt . Это означает, что половине периода изменения напряжения и тока соответствует один период изменения мощности. Следует заметить, что абсолютно все значения, которые может принимать мощность, являются положительными величинами. С точки зрения физики это означает, что от источника к приемнику передается энергия. Своих максимальных значений мощность достигает тогда, когда ωt = 270° и ωt = 90° .

В практическом отношении о той энергии W , которую создает электрический ток, принято судить по средней мощности, выражаемой формулой Рср = Р , а не по мощности максимальной. Ее можно определить, перемножив на время протекания тока среднее значение мощности W = Pt .

Относительно линии АБ , соответствующей среднему значению мощности P , кривая мгновенной мощности симметрична. По этой причине

Если использовать закон Ома, то можно выразить активную мощность в следующем виде:

P = I2R или P = U2 / R .

Специалисты в области электротехники ту среднюю мощность, которую потребляет активное сопротивление, чаще всего именуют или просто мощностью, или активной мощностью, а для ее обозначения используется буква P .

Поверхностный эффект

Необходимо особо отметить такую особенность проводников, включенных в сеть переменного тока: их активное сопротивление во всех случаях оказывается больше, чем если бы они были включены в сеть тока постоянного. Причина этого состоит в том, что переменный ток не протекает равномерно распределяясь по всему поперечному сечению проводника, как ведёт себя постоянный ток, а выводится на его поверхность. Таким образом, получается, что при включении проводника в цепь переменного тока его полезное сечение оказывается значительно меньшим, чем при включении в цепь тока постоянного. Именно поэтому его сопротивление возрастает. В физике и электротехнике это явление называется поверхностным эффектом.

То, что переменный ток распределяется по сечению проводника неравномерно, объясняется действием электродвижущей силы самоиндукции. Она индуцируется в проводнике тем магнитным полем, которое создается током, проходящим по нему. Необходимо заметить, что действие этого магнитного поля распространяется не только на окружающее проводник пространство, но и на внутреннюю его часть. По этой простой причине те слои проводника, которые располагаются ближе к его центру, находятся под воздействием большего магнитного потока, чем те слои, что располагаются ближе к его поверхности. Соответственно, электродвижущая сила самоиндукции, которая возникает во внутренних слоях, существенно больше, чем та, что образуется в слоях внешних.

Электродвижущая сила самоиндукции является существенным препятствием для изменения тока, и поэтому он будет следовать преимущественно по поверхностным слоям проводника. Необходимо также отметить, что сопротивление активных проводников в цепях переменного тока существенно зависит от частоты: чем она больше, тем выше ЭДС самоиндукции, и поэтому ток в большей степени подвергается вытеснению на поверхность.

Источник