Меню

Расчет мостовой схемы переменного тока

4. Мостовая схема переменного тока

В плечи мостовой схемы переменного тока (рис. 6) включены полные сопротивления, состоящие из активной и реактивной составляющих. Будем пользоваться комплексной формой записи полных сопротивлений . В диагональ АВ моста включен источник переменного синусоидального напряжения , а в диагональБГ — измерительный прибор переменного тока. Направления токов в плечах моста могут быть выбраны произвольно. Ток измерительной диагонали

(22)

(23) (24)

, — комплексные выражения, аналогичные выражениям в уравнениях (9) и (10) для моста постоянного тока.

Условия равновесия моста переменного тока получим, приравнивая (22) нулю:

(25)

где ;; ;

Рис. 6. Мостовая измерительная схема на переменном токе

Напомним, что при показательной форме записи комплексной величины модуль , а аргумент

В соответствии с условием равновесия моста подставим в (25) значения полных сопротивлений

Представим левую и правую части в виде действительной и мнимой составляющих:

Две комплексные величины равны только в том случае, если равны порознь их действительные и мнимые части:

(26)

(27)

Таким образом, получаем два независимых условия равновесия, которые должны выполняться одновременно. Если в мостах постоянного тока имеется одно условие равновесия и уравновешивание достигается регулировкой одного сопротивления, то в мостах переменного тока для уравновешивания необходима регулировка не менее двух параметров схемы. Трудность уравновешивания моста переменного тока состоит в том, что в процессе обеспечения одного условия (например, равенства произведений модулей сопротивлений в противолежащих плечах: ) нарушается другое соотношение — между фазовыми сдвигами:. Обычно такие мосты регулируются вручную методом последовательных приближений.

В некоторых частных случаях уравновешивание моста обеспечивается выполнением одного из трех условий.

Если R1 = R2 = R3 R4 = 0, т. е. плечи моста имеют только ре активные сопротивления, то условие равновесия

Если , т. е. плечи моста имеют только активные сопротивления, условие равновесия

Если два соседних плеча имеют только реактивные сопротивления, а два других —только активные (любая пара соседних плеч), например , то условие равновесия

Следует иметь в виду, что катушки индуктивности всегда кроме индуктивного сопротивления имеют активное сопротивление, которое в некоторых случаях настолько мало, что им можно пренебречь.

Расчет чувствительности моста переменного тока можно провести в соответствии с (12), Считывая, что вместо R4 следует подставить комплексное сопротивление. Чувствительность моста по току

(28)

чувствительность по напряжению

(29)

Уравновешивание моста переменного тока может осуществляться автоматически при соотношениях сопротивлений плеч, рассмотренных для частных случаев 1—3.

Автоматическое уравновешивание мостов переменного и постоянного тока выполняется по схеме, показанной на рис. 7. Напряжение разбаланса ΔU снимается с измерительной диагонали моста и подается на исполнительный микроэлектродвигатель (ЭД) через усилитель (У). Двигатель через редуктор (Р) перемещает движок переменного резистора R до тех пор, пока не будет обеспечено условие равновесия и напряжение разбаланса ΔU не станет равным нулю. Одновременно будет перемещаться и стрелка по шкале, которая может быть проградуирована в единицах сопротивления датчика или в соответствующих этому сопротивлению единицах измеряемой неэлектрической величины.

Рис. 7. Схема автоматического уравновешивания моста

Источник

Двухполупериодный мостовой выпрямитель. Принцип действия, схема, расчет

Существует еще одна, более популярная конструкция двухполупериодного выпрямителя, построенная на основе конфигурации с четырьмя диодами. Такая конструкция известна как двухполупериодный мостовой выпрямитель или просто мостовой выпрямитель.

Преимущество этого типа выпрямителя по сравнению с версией выпрямителя с центральным отводом заключается в том, что для него не требуется сетевой трансформатор с центральным отводом во вторичной обмотке, что резко снижает его размер и стоимость.

Также эта конструкция использует полностью все вторичное напряжение в качестве входного. Используя тот же трансформатор, мы получаем вдвое больше пикового напряжения и вдвое больше постоянного напряжения с мостовым выпрямителем, чем с двухполупериодным выпрямителем с центральным отводом. Именно поэтому мостовые выпрямители используются гораздо чаще, чем двухполупериодные со средней точкой.

Двухполупериодный мостовой выпрямитель

Чтобы выпрямить оба полупериода синусоидальной волны, как мы уже говорили ранее, в мостовом выпрямителе используются четыре диода, соединенных вместе в конфигурации «моста». Вторичная обмотка трансформатора подключена с одной стороны диодного моста, а нагрузка — с другой.

На следующем рисунке показана схема мостового выпрямителя.

Во время положительного полупериода переменного напряжения диоды D1 и D2 смещены в прямом направлении, в то время как диоды D3 и D4 смещены в обратном направлении. Это создает положительное напряжение на нагрузочном резисторе (обратите внимание на плюс-минус полярности на нагрузочном резисторе).

В течение следующего полупериода полярность переменного напряжения меняется на противоположную. Теперь диоды D3 и D4 смещены в прямом направлении, а диоды D1 и D2 — в обратном. Это также создает положительное напряжение на нагрузочном резисторе, как и раньше.

Обратите внимание, что независимо от полярности напряжения на входе, полярность на нагрузке постоянная, а ток в нагрузке течет в одном направлении. Таким образом, схема преобразует входное переменное напряжение в пульсирующее постоянное напряжение.

Если вам трудно запомнить правильное расположение диодов в схеме мостового выпрямителя, вы можете обратиться к альтернативному представлению схемы. Это точно такая же схема, за исключением того, что все диоды расположены горизонтально и направлены в одном направлении.

Значение постоянного напряжение выходного сигнала

Здесь формула для расчета среднего значения напряжения такая же, как и для двухполупериодного выпрямителя со средней точкой:

Это уравнение говорит нам, что значение постоянного напряжения составляет около 63,6 процента от пикового значения. Например, если пиковое переменное напряжение составляет 10 В, то постоянное напряжение будет 6,36 В.

Когда вы измеряете напряжение на выходе мостового выпрямителя с помощью вольтметра, показание будет равно среднему значению.

Аппроксимация второго порядка

В действительности мы не получаем идеальное напряжение на нагрузочном резисторе. Из-за потенциального барьера, диоды не включаются, пока источник напряжение не достигнет около 0,7 В.

И поскольку в мостовом выпрямителе работают по два диода за раз, то падение напряжения составит 0,7 x 2 = 1,4 В. Таким образом, пиковое выходное напряжение определяется следующим образом:

Выходная частота

Полноволновой выпрямитель инвертирует каждый отрицательный полупериод, удваивая количество положительных полупериодов. Из-за этого у такого выпрямителя на выходе в два раза больше циклов, чем на входе. Поэтому частота полноволнового сигнала в два раза превышает входную частоту.

Например, если частота на входе составляет 50 Гц, выходная частота будет 100 Гц.

Фильтрация постоянного напряжения

Сигнал на выходе, который мы получаем от двухполупериодного мостового выпрямителя, является по сути пульсирующим постоянным напряжением, которое вырастает до максимума, а затем снижается до нуля.

Для того чтобы избавиться от пульсаций, нам необходимо отфильтровать двухволновой сигнал. Один из способов сделать это — подключить сглаживающий конденсатор.

Первоначально конденсатор разряжен. На протяжении первой четверти цикла диоды D1 и D2 смещены в прямом направлении и из-за этого сглаживающий конденсатор начинает заряжаться. Процесс заряда длится до тех пор, пока напряжение с мостового выпрямителя не достигнет своего пикового значения. В этот момент напряжение на конденсаторе будет равно Vp.

После того, как напряжение с выпрямителя достигает своего пика, оно начинает уменьшаться. Как только напряжение снизиться ниже Vp соответствующая пара диодов (D1 и D2) не будет проводить.

Когда диоды выключены, конденсатор разряжается через нагрузку, пока не будет достигнут следующий пик. Когда наступает следующий пик, конденсатор заряжается уже через диоды D3 и D4 до пикового значения.

Недостатки мостового выпрямителя

Единственным недостатком мостового выпрямителя является то, что выходное напряжение меньше, чем входное напряжение на 1,4 В, в результате падения на двух диодах.

Этот недостаток ощутим только в источниках питания с очень низким напряжением. Например, если пиковое напряжение источника составляет всего 5 В, то напряжение нагрузки будет иметь только 3,6 В.

Но если пиковое напряжение источника составляет 100 В, напряжение нагрузки будет близко к идеальному двухполупериодному напряжению и влияние падения на диодах будет не значительным.

Источник

Расчет мостовой схемы переменного тока

Как мы видели из схем постоянного тока, схемы, известные как мостовые могут быть очень полезны при изменении сопротивлений. Это так же верно и для схем переменного тока, и те же самые принципы могут быть применены для точных измерений неизвестных импедансов.

Напомним, что мостовые схемы работают как пара двухкомпонентных делителей напряжения подсоединённых параллельно к источнику напряжения, индикатор нулевого сигнала включён в диагональ моста для определения «баланса» при нулевом сигнале (Рисунок внизу)

Читайте также:  Сколько полюсов имеет источник постоянного тока один два больше двух

Сбалансированный мост показывает «ноль», или минимальное значение, на индикаторе.

Любой из четырёх резисторов на верхнем рисунке может быть резистором с неизвестным сопротивлением, и его значение может быть определено из пропорции с другими тремя резисторами, которые «калиброваны» или их сопротивления известны с высокой точностью. Когда мост находится в условиях баланса (индикатор показывает нулевой сигнал), отношение определяется как:

Условия баланса.

Одним из преимуществ использования мостовой схемы для измерения сопротивлений является то, что напряжение источника питания не влияет на измерения. Практически, чем выше напряжение питания, тем легче обнаружить дисбаланс между четыремя резисторами с помощью индикатора нулевого сигнала, и таким образом повышается чувствительность схемы. Большее напряжение питания ведёт к увеличению точности измерений. Однако из-за уменьшения или увеличения напряжения питания не вносится фундаментальных ошибок в отличии от других схем измерения сопротивлений.

Импедансные мосты работают так же, только уравнение баланса определяется комплексными числами, и амплитуда, и фаза сигналов на диагонали моста должны быть равные, что бы детектор показал «нуль». Детектор нуля, конечно, должен быть устройством, способным обнаруживать очень слабый сигнал переменного тока. Для этого часто используют осциллограф, хотя здесь мог бы использоваться очень чувствительный электромеханический прибор и даже наушники, если частота сигнала лежит в звуковом диапазоне.

Один из способов увеличить эффективность наушников как детектора нуля — подсоединить их к источнику сигнала через согласующий трансформатор. Обычно наушники имеют низкое сопротивление (8 Ω), требующее существенного тока для работы, и такой понижающий трансформатор помогает «согласовать» слаботочный сигнал с сопротивлением наушников. Для этих целей хорошо подходит выходной трансформатор от аудио аппаратуры. (Рисунок внизу)

Детектор нуля для мостов переменного тока на основе наушников.
«Современные» низкоомные головные телефоны требуют согласующий трансформатор при использовании их в качестве чувствительного детектора нулевого сигнала.

Используя пару головных телефонов, полностью закрывающих уши, я мог обнаруживать сигналы с током менее 0.1 µA с этим простым детектором. Похожие результаты были получены с использованием двух понижающих трансформаторов: небольшого силового трансформатора (120В/6В), и аудио выходного трансформатора (с отношением сопротивлений обмоток 1000:8 Ом). С кнопочным выключателем для прерывания тока эта схема пригодна для обнаружения сигналов в диапазоне от постоянного тока до частот более 2 мГц: даже если частота гораздо больше или меньше звукового диапазона, в наушниках будут слышны щелчки каждый раз при нажатии или отпускании кнопки.

Соединённая в резистивный мост, полная схема изображена на нижнем рисунок.

Мост переменного тока с чувствительным детектором нуля.

Слушая сигнал в наушниках в то время как один или более резисторов в «плечах» моста отрегулированы, ожидают наступления баланса тогда, когда в наушниках перестанут быть слышны щелчки (или звуковой сигнал, если частота источника сигнала лежит в звуковом диапазоне).

Когда описывают общие мосты переменного тока, где импеданс, а не только сопротивления должны иметь правильные соотношения для выполнения условий баланса, иногда бывает полезно рисовать соответствующие узлы моста в виде квадратов, каждый из которых имеет определённый импеданс: (Рисунок внизу)

Обобщённый мост переменного тока: Z = общий комплексный импеданс.

Для этого обобщённого моста переменного тока выполнение условий баланса должно происходить в том случае, когда отношение импедансов каждой ветви равно:

Снова должно быть подчёркнуто, что импеданс в этом уравнении должен быть комплексный, рассчитанный для как для амплитуды, так и для фазы. Недостаточно, что бы мост был сбалансирован только по амплитуде сигнала; без балансировки фазы на выводах детектора нуля будет присутствовать напряжение, и мост не будет сбалансирован.

Мостовые схемы могут быть сконструированы для измерений почти любых параметров — ёмкости, индуктивности, сопротивления и даже добротности. Как и всегда в мостовых измерительных схемах, неизвестное значение всегда «балансируется» по известному стандарту, полученному из высококачественного, калиброванного компонента, значение с которого считывается при индикации на детекторе нуля баланса. В зависимости от того, как устроен мост, значение неизвестного компонента может быть получено с калиброванного элемента как напрямую, так и рассчитано по формуле.

Несколько простых мостовых схем показано ниже, одна для измерения индуктивности (Рисунок внизу), другая — для измерения ёмкости (Рисунок внизу):

Симметричный мост измеряет неизвестную индуктивность путём сравнения её со стандартной.

Симметричный мост измеряет неизвестную ёмкость путём сравнения её со стандартной.

Простые «симметричные» мосты, такие как эти названы так потому что они выглядят симметрично (зеркальная симметрия) слева направо. Две мостовые схемы, показанные вверху балансируются путём регулирования калиброванных реактивных элементов (Ls или Cs). Они немного упрощены по сравнению с их реальными схемами, например, на практике мост имеет калиброванный переменный резистор, соединённый последовательно или параллельно с реактивным компонентом для балансирования побочного сопротивления в измеряемом элементе. Но в гипотетическом мире совершенных компонент эти простые мостовые схемы прекрасно подходят для иллюстрации основной концепции.

Пример схемы с небольшим усложнением, добавленным для компенсации реальных неидеальностей может быть найден в так называемом Мосте Вина (Wien bridge), который использует параллельно соединённые стандартные конденсатор и резистор для балансировки неизвестного последовательного внутреннего сопротивления измеряемого конденсатора. (Рисунок внизу). Все конденсаторы имеют некоторое внутреннее сопротивление, активное или эквивалентное (из-за потерь в диэлектрике), которое портит их совершенную реактивную природу. Определение внутреннего сопротивления может являться интересным для измерений, так что мост Вина даёт это сделать путём балансирования составного импеданса:

Мост Вина измеряет ёмкость Cx и сопротивление Rx «реального» конденсатора.

Из-за того, что необходимо регулировать два компонента (резистор и конденсатор), этот мост требует чуть больше времени для балансировки, чем ранее рассмотренные. Комбинированный эффект от Rs и Cs выражается в том, что необходимо регулировать амплитуду и фазу до тех пор, пока мост не сбалансируется. Сбалансировав мост, значения Rs и Cs могут быть считаны с их калиброванных шкал, параллельный импеданс вычисляется математически, и неизвестные ёмкость и сопротивление вычисляются из уравнения баланса (Z1/Z2 = Z3/Z4).

При работе с мостом Вина предполагается, что стандартный конденсатор имеет пренебрежительно малое внутреннее сопротивление, или хотя бы это сопротивление известно, так что его значение можно использовать в уравнении баланса моста. Мосты Вина полезны для определения тока утечки электролитических конденсаторов, в которых внутреннее сопротивление относительно велико. Они так же могут быть использованы как частотомеры, так как балансировка моста зависит от частоты. В этом случае конденсатор используется постоянный, верхние по схеме два резистора — переменные и их настройка производится одной ручкой (т.е. резисторы — сдвоенные).

Интересная вариация этой темы находится в следующей мостовой схеме, используемой для точного измерения индуктивностей.

Мост Максвелла — Вина измеряет индуктивность по ёмкостному стандарту.

Эта остроумная мостовая схема известна как мост Максвелла — Вина (иногда её называют мост Максвелла ), она используется для измерения неизвестных индуктивностей с помощью калиброванных резистора и конденсатора (Рисунок вверху). Калиброванные катушки гораздо труднее производить, чем конденсаторы такой же точности, и таким образом применение «симметричного» индуктивного моста не всегда оправдано. Из-за того, что сдвиги фаз на индуктивностях и ёмкостях в точности противоположны друг другу, ёмкостный импеданс может скомпенсировать индуктивный импеданс, если они находятся в противоположных плечах моста, как в данном случае.

Другим преимуществом моста Максвелла для измерения индуктивностей по сравнению с симметричным мостом является то, что устраняются ошибки измерения из-за взаимодействия между двумя индуктивностями. Магнитные поля бывает трудно экранировать, и даже небольшая связь между катушками в мосте может вызвать при некоторых условиях существенные ошибки. Без второй индуктивности в мосте Максвелла эта проблема устраняется.

Для облегчения регулировок, стандартный конденсатор (Cs) и резистор, соединённый с ним в параллель (Rs) сделаны переменными, и они оба должны быть отрегулированы для получения баланса. Однако мост может быть сбалансирован и в том случае, если используется конденсатор постоянной ёмкости и более чем один резистор сделан переменным. Но в этом случае мост сбалансировать гораздо труднее, так как разные переменные резисторы взаимодействуют при балансировки амплитуды и фазы.

В отличии от чистого моста Вина, баланс моста Максвелла-Вина независим от частоты источника питающего сигнала, и в некоторых случаях этот мост может быть сбалансирован при наличии смеси частот в источнике питания переменного тока, при этом ограничивающим фактором является стабильность индуктивности в широком диапазоне частот.

Читайте также:  Что такое тлк трансформатор тока

Существует большое количество подобных схем, но их обсуждение здесь неуместно. Выпускаемые импедансные мосты общего назначения могут иметь более одной конфигурации для максимальной гибкости в использовании.

Потенциальной проблемой в чувствительных мостах переменного тока является паразитная ёмкость между выводами детектора нуля и землёй. Так как ёмкость может проводить переменный ток, заряжаясь и разряжаясь, то образовываются паразитные токи, которые проходят к источнику питания, что может влиять на баланс моста: (Рисунок внизу)

Паразитная ёмкость с землёй может быть причиной ошибки в мосте.

Существующие измерители частоты язычкового типа не точны, но точны их принципы работы. Вместо механического резонанса мы можем использовать электрический резонанс и сконструировать частотомер, используя индуктивность и ёмкость, соединённые в колебательный контур (индуктивность и ёмкость соединены параллельно). Один или более компонентов сделаны регулируемыми, и измеритель установлен в схему для индикации максимального напряжения, проходящего через эти два компонента. Ручки настройки калиброваны, что бы показывать резонансную частоту при любых заданных настройках, и частота считывается с них после регулировки по максимальному отклонению индикатора. По существу это настраиваемая фильтровая схема, которая регулируется и затем показания считываются похожим образом как и у мостовой схемы (которую мы балансируем по «нулевому» сигналу и затем считываем показания). Проблема усугубляется, если источник переменного тока хорошо заземлён на одном конце, то общее сопротивление токов утечки становится гораздо меньше, и любые токи утечки через эти паразитные ёмкости в результате возрастают: (Рисунок внизу)

Ошибки из-за паразитной ёмкости более сильны, если один вывод источника переменного тока заземлён.

Один из способов существенного понижения этого эффекта — держать детектор нуля под потенциалом земли, что бы между ним и землёй не образовывалось токов через ёмкости утечки. Однако напрямую соединить детектор нуля с землёй невозможно, так как это создаст прямой путь токам утечки, что станет ещё хуже ёмкостных токов утечек. Вместо этого может быть использован схема делителя напряжения, называемая землёй Вагнера или заземлением Вагнера, которая поддерживает детектор нуля на уровне потенциала земли и которой не нужно прямое соединения с ним. (Рисунок внизу)

Земля Вагнера для источника питания переменного тока минимизирует влияние паразитных ёмкостей на землю.

Схема земли Вагнера не более чем делитель напряжения, созданный для получения отношений напряжения и сдвига фазы такими же, как и на каждой стороне моста. Из-за того, что средняя точка делителя Вагнера напрямую заземлена, любые другие схемы делителей (включая каждую сторону моста) имеют те же самые отношения напряжений и фаз, что и делитель Вагнера и питаются от общего источника переменного тока, и все они находятся под потенциалом земли. Таким образом, делитель Вагнера вынуждает детектор нуля находиться вблизи потенциала земли, без прямого соединения между детектором и землёй.

Часто возникает необходимость в проверке режима правильности настройки схемы земли Вагнера. Для этого используется двухпозиционный переключатель (Рисунок внизу), соединённый так что один вывод детектора нуля может быть подключён как к мосту, так и к земле Вагнера. Когда детектор нуля фиксирует нулевой сигнал в обоих положениях переключателя, то мост не только гарантированно сбалансирован, но и детектор нуля гарантированно находится под нулевым потенциалом, что устраняет ошибки, возникающие из-за токов утечки через ёмкости детектор нуля — земля:

Переключение в верхнее по схеме положении даёт возможность настроить землю Вагнера.

Источник



Мостовые схемы измерителей параметров элементов

date image2015-05-30
views image13547

facebook icon vkontakte icon twitter icon odnoklasniki icon

Для измерения параметров элементов цепей методом сравнения применяют мосты. В сравнении измеряемой величины (сопротивление, индуктивность, емкость) с образцовой меры при помощи моста измеряют автоматически или вручную на переменном или постоянном токе. Мостовые схемы обладают высокой точностью, широким диапазоном измеряемых значений параметров элементов. На основе мостовых методов строят приборы, предназначенные для измерения какой-либо одной величины, так и универсальные. Существует несколько элементов мостовых схем RLC: четырехплечие, уравновешенные, неуравновешенные и процентные. В зависимости от вида мостовых схем количество входящих в ее состав ветвей (плеч) мосты можно разделить на: четырехплечие, многоплечие, Т-образные и т.д. наиболее распространенные четырехплечие (одинарные) мосты. Т-образные мосты обычно применят для измерения параметров электрических цепей на высоких и сверхвысоких частотах. В состав каждой мостовой схемы входят измеряемые параметры и переменные образцовые меры. В зависимости от соотношения между параметрами мостовой схемы может быть, а может и отсутствовать напряжение (ток), в результате чего мосты делятся на неуравновешенные (есть ток) и уравновешенные (нет тока).

Принцип действия четырехплечего (одинарного) моста.

Одинарный мост имеет 4 плеча (Z1,Z2,Z3,Z4), источник питания (U), ноль-индикатор. Если сопротивления таковы что точки А и В имеют равные потенциалы, то через ноль-индикатор отсутствует; в этом случае говорят что достигается равновесие моста. Z1*Z4=Z2*Z3 (1). Если Z4 неизвестное сопротивление, то его значение можно определить из условия равновесия Z4=Z2*Z3/Z1 (2). Отсюда следует, что равновесие не зависит от сопротивления ноль-индикатора, т.к. ток не течет через него, а также от напряжения и сопротивления источника питания. Таким образом, высокостабильный источник питания не требуется. Z3 – плечо сравнения, а отношение Z1/Z2 определяет диапазон изменения измеряемой величины. Чтобы охватить широкий диапазон известных импедансов мосты снабжают переключателем, которые изменяют сопротивление Z1 и Z2 в 10 раз. Сопротивление моста в общем случае имеет комплексный характер: Z1=Z1*e jf 1 , Z2=Z2*e jf 2 , Z3=Z3*e jf 3 , Z4=Z4*e jf 4 .

Zj – модули комплексных сопротивлений

fi – соответствующая фаза

Когда равновесие моста определяется выражениями 1 и 3 тогда мост переменного тока нуждается в регулировке двух независимых параметров, чтобы обеспечить равновесие модулей и фазовых углов.

Чувствительность моста очень важный параметр и определяется, как способность менять на малые отклонения. Оно выражается как изменение тока через ноль-индикатор при единичном отклонении моста регулируемого в положении равновесия. При максимальной чувствительности моста если Z2=Z4, то и Z1=Z3. на практике это условие выполняется редко, т.к. Z3 должно быть достаточно большим чтобы обеспечить требуемую точность. Наибольшая чувствительность достигается, когда ноль-индикатор включен между контактами двух плеч с максимальным и минимальным импедансом. Чувствительность моста также пропорциональна напряжению источника питания. В качестве ноль-индикатора в мосте постоянного тока можно использовать магнитно-электрический прибор. Простейшим индикатором для моста переменного тока является головной телефон; на частотах, на которых чувствительность уха низка применяют радиоприемник или измерительные усилители. Для достижения высокой чувствительности и избирательности требуется генератор непрерывного сигнала и гетеродинный индикатор. Для уравновешивания моста используют также подключенный к осциллографу усилитель. Напряжение источника питания не должно превышать максимально допустимого напряжения и не выделять избыточного тепла. Чем ниже напряжение, тем ниже чувствительность моста и система более восприимчива к высокочастотным помехам. Для мостов переменного тока на низкой частоте можно использовать сетевое напряжение 50 Гц. Выпускаемые промышленные мосты обычно содержат источники питания с различными частотами, т.к. чувствительность мостов с реактивными сопротивлениями пропорционально частоте и эта зависимость может быть крутой на одном конце сопротивления и пологой на другом. Максимальная частота источника питания должна быть ниже собственной резонансной частоты измеряемых элементов, чтобы уменьшить ошибки измерений. Если точка равновесия моста чувствительна к частоте, то источник питания должен иметь стабильную частоту и не генерировать гармоники, т.к. уравновешенные на одной частоте не остаются в равновесии на гармонике.

Резистивные мосты.

Мост Уитстона.

Наибольшее распространение получил резистивный мост называемый мостом Уитстона.

Rx – неизвестное сопротивление

R1, R2, R3 – регулируются до тех пор пока ток через ноль-индикатор не станет равным нулю. В таком положении Rх определяется: Rх=R3R2/R1 (4)

R1 и R2 – неизвестные фиксированные сопротивления в диапазоне от 1Ом до 1кОм, при этом R2/R1 составляет от 10 -3 до 10 3 .

R3 регулируется шагом 1 или 1.1Ом вплоть до 10кОм, чтобы уравновесить мост. При измерении, R1 и R2 выбираются такими, чтобы чувствительность моста была максимальной. R4 сначала включают в цепь для защиты ноль-индикатора, но может быть и закорочено для повышения чувствительности, когда равновесие достигнуто.

Мост Уитстона используют для измерения сопротивлений резистора с двумя зажимами от 1Ом до 100 МОм. Нижний предел измерения сопротивлений зависит от импеданса соединений проводов и контактов. Для измерения сопротивлений ниже 1ом используют второй мост Уитстона. При измерении до 100 Ом мост дает ошибку (5-100)10 -6 . В мосте используются резисторы из манганина, который имеет низкий температурный коэффициент сопротивления, высокую стабильность, и низкий термоЭДС. При проведении измерений с мотом Уитстона обычно берут 2 отсчета при разных полярностях батареи, а затем усредняют результат, исключая эффект термоЭДС. Пиковый ток через резисторы должен поддерживаться на низком уровне, чтобы избежать изменения сопротивления из-за их нагрева током. Чтобы использовать мост Уитстона для измерений выше 100 МОм требуется высокое напряжение, тогда токи утечки на землю могут приводить к заметным погрешностям. Их можно уменьшить и расширить рабочий диапазон моста до 10 12 Ом, если использовать высокочувствительный индикатор и методы защиты (экранирование, заземление экрана и другое).

Читайте также:  По двум бесконечно длинным параллельным проводникам текут токи в одном направлении

Мосты для измерения индуктивности.

Для измерения индуктивности в этих мостах используется метод сравнения с известной индуктивностью. Для питания используется переменный ток, при этом две составляющие моста должны быть регулируемые, чтобы обеспечить уравновешивание, как по модулю, так и по фазе. Предполагается, что неизвестная катушка имеет собственную индуктивность Lx, взаимную Nx и сопротивление Rx.

Мост для измерения индуктивности методом сравнения с мерой.

Наиболее прямой метод измерения индуктивности состоит в сравнении с известной с помощью моста.

R1 – регулируемое сопротивление, которое включает сопротивление катушки L1

r – резистор (необязателен)

При равновесии моста Rx и Lx определяется:

Регулируя L1 и R1, уравновешивающийся мост достигает равновесия с Rx и Lx. Поскольку индуктивности имеют относительно большие собственные сопротивления, можно включит в схему r и изменить его сопротивление в процессе уравновешивания, чтобы расширить диапазон измеряемых индуктивностей. Если использовать меры индуктивности, то уравновешивание моста можно обеспечит регулировкой R1 и R3/R2, но при регулировке они будут влиять друг на друга, в результате время уравновешивания увеличивается и зависит от добротности Q неизвестной индуктивности. Такой измеритель индуктивности используется редко из-за трудности получения стабильных и точных индуктивностей.

Мост Максвелла-Вина.

В модификации моста Максвелла предложенной Вином для измерения неизвестной индуктивности используется параллельное соединение сопротивлений и емкостей.

Поскольку ток через конденсатор опережает ток через индуктивность, необходима фазовая компенсация. Следовательно, емкостные и индуктивные компоненты следует размещать в противоположных плечах моста. Условие равновесия моста:

Индуктивность измеряется с помощью емкостей высокого качества, которые значительно точнее и легче в изготовлении, чем образцовые, и создают незначительное поле. Равновесие обычно достигается регулировкой R2 и С, т.к. этим обеспечивается независимое уравновешивание Rx и Lx. Однако можно использовать фиксированную С и регулировать R2, R1 или R3, хотя при этом время уравновешивания возрастает. Мост широко используется для измерения индуктивности катушек с добротностью Q ниже 10. Этот верхний предел Q обусловлен тем, что как следует из (3) сумма фазовых углов противоположных плеч моста должны быть равны при равновесии. Т.к. R1 и R3 активные сопротивления, то их фазовые углы равны нулю. Ток через индуктивность с большой Q будет отставать по фазе почти на 90 0 . это означает, что резистор R2 должен иметь слишком большое сопротивление. Эта трудность преодолена в мосте Хея.

Rx=R1R3/R2(1+Q 2 x) (10)

Lx=R1R3C/(1+1/Q 2 x) (11)

(10) и (12) – условие равновесия

R2 соединен последовательно с емкостью С. При высокой добротности Lx R2 можно выбрать очень маленьким. Недостаток: равновесие зависит так, что шкалу прибора невозможно проградуировать в значениях индуктивности. Мост Хея обычно используют только для измерения катушек с добротностью Q меньше 10. если пренебречь в (11) членом Q 2 x, то значение индуктивности не зависет от частоты, и погрешность составит менее1%.

(13) и (14) условие равновесия моста. Если R2 и С2 регулируемые элементы схемы, то можно обеспечить независимое равновесие для Rx и Lx. Хотя это возможно для регулировки R1 и R2. r подключать необязательно, нужно для расширения диапазона возможного баланса сопротивлений. Данный мост полезен для определения дифференциальной индуктивности.

Мост Кемпбелла.

Используют для измерений взаимной индуктивности со сравнением с образцовой. (15) и (17) — условие равновесия. Положение 2: калибровка регулированием L1 и R1. Положение 1: измерение. М1 регулируют до установления с Мх.

Измерение индуктивности, добротности, емкости, тангенс дельта мостами переменного тока

Мостовые схемы измерения индуктивности и добротности с образцовыми элементами: а) — с катушками, б) с конденсатором. В них используется источник гармонического тока с напряжением U и угловой частотой ω. Эти мосты обеспечивают наилучшее уравновешивание. Эквивалентная схема замещения для катушек индуктивности с потерями могут быть последовательными или параллельными в зависимости от потерь отраженных активным сопротивлением. Условие равновесия моста для схемы а): R1(Rx+jωLx)=R2(Ro+jωLo) (1).

Где Lх и Rх измеряемое индуктивность и сопротивление омических потерь в катушке, Lo и R0 — образцовая индуктивности и сопротивление. Приравняв, действительные и мнимые части в выражении (1) находим: Rx=RoR2/R1, Lx=LoR2/R1 (2).

Поскольку изготовление высокодобротных образцов катушек вызывает определенные трудности, часто в качестве образцовой меры в мостах переменного тока применяют конденсатор (рис б). Для этой схемы справедливо: Rx+jωLx=R2R3(1/Ro+jωCo) (3).

Если в данном уравнении приравнять действительную и мнимую части, то получим следующее выражение: Rx=R2R3/Ro Lx=CoR2R3 (4).

Добротность катушки определяется: Q=ωLx/Rx=RoωCo (5)

Мосты для измерения емкостей.

Для измерения емкости и тангенса угла потерь конденсаторов с достаточно малыми потерями применяют мостовые схемы с последовательным соединением Сх и Rх, а для конденсаторов с большими потерями — схемы с параллельным соединением Сх и Rх. Для измерения емкости используются три вида моста: мост для измерения методом сравнения с мерой, мост Шеринга и мост Вина. Рассмотрим мост для измерения емкости методом сравнения с мерой.

Принципиальные схемы мостов для измерения емкости методом сравнения с мерой: а) — последовательное включение, б) – параллельное, где С1 образцовая емкость с внутренним сопротивлением R1

Условие равновесия моста имеет вид:

Сопротивление R1 и R2 регулируется до уравновешивания моста, и поскольку они связаны, нужно выполнить несколько попыток. Емкость С1 — обычно образцовый конденсатор высок точности, который не регулируется. Для измерения емкости с высоким тангенсом угла диэлектрических потерь предпочтительно использовать схему с параллельным включением, т.к. при последовательном включении R1 должно быть большим. Равновесие моста определяется выражениями 6,7 и 8, а тангенс угла диэлектрических потерь: tgδ=1/ωC1R1.

Метод сравнения с мерой не очень точен для измерения емкостей с малым tgδ, в этих случаях лучше использовать мост Шеринга.

Мост Шеринга.

Этот мост широко используется для измерения емкости, для точного определения tgδ. Он также используется в мостах высокого напряжения методом сравнения с образцовыми емкостями высокого напряжения и применением экранирования.

С1 – образцовая емкость с малыми потерями tgδ, С2 и R2 регулируются до достижения равновесия. Уравновешивание схем обеспечивается поочередным регулированием образцовых сопротивлений или емкостей. Эту процедуру называют шагами, а количество шагов определяется сходимостью моста. Мост с хорошей сходимостью имеет не больше 5 шагов. Мост переменного тока используется на низких частотах 500-5000 Гц, поскольку при работе на повышенных частотах погрешности резко возрастают. Погрешность измерения моста переменного тока определяет погрешность элементов образующих мост, переходных сопротивлений контактов и чувствительность схемы. Мосты переменного тока больше, чем мосты постоянного, подвержены влиянию помех, и паразитных связей между плечами, плечами и землей и т.д. Поэтому даже при тщательном экранировании моста и принятии других мер защиты погрешности у мостов переменного тока больше, чем у моста постоянного тока.

Измерение частоты.

С помощью моста Вина можно измерить неизвестную емкость Сх, но чаще он применяется для измерения неизвестной частоты. При этом вместо Сх включается образцовая емкость.

Условие равновесия: Cx/C1=R2/R3-R1/Rx (13), C1Cx=1/ω 2 R1Rx (14).

Решая, уравнения 13 и14 можем, найти частоту: f=1/2П(C1CxR1Rx) 1/2 (15).

Применяемых на практике мостах емкости С1 и Сх фиксированы, а R1 и Rх — известные переменные сопротивления, которые регулируются общей ручкой, так что R1=Rх. Значение R2 принимают равным 2R3, так что выражение 15 принимает вид: f=1/2ПC1R1 (16).

Следовательно, мост уравновешивается изменением одного лишь сопротивления R1, калибровка осуществляется непосредственно в значениях частоты. Поскольку мост Вина чувствителен к изменениям частоты — его трудно уравновесить, если входной сигнал содержит гармоники, поэтому такой сигнал необходимо, сначала отфильтровать.

Источник