Меню

Расчет неразветвленных цепей переменного тока формулы

Пример расчета неразветвленной электрической цепи переменного тока .

Задача. Конденсатор емкостью С =3,4 мкФ и катушка с активным сопротивлением

R = 50 Ом и индуктивностью L = 29,8 мГн подключены последовательно к

генератору переменного тока с напряжением U = 200 В и частотой ƒ = 250 Гц .

Определить ток, активную, реактивную и полную мощности катушки, конденсатора и всей цепи при неизменном напряжении генератора и условиях : XL > XC (ƒ > ƒP) , XL XC ; ƒ > ƒP , принимаем ƒ = 600 Гц

  1. Определяем реактивные и полное сопротивление цепи :

XL = 2πƒL =6,28 ∙ 600 ∙ 29,8∙10 -3 =112,3 Ом

Xс = 1/ 2πƒC = 1 / 6,28 ∙ 600 ∙ 3,4∙10 -6 = 78 Ом

2. Определяем ток в цепи : I = U / Z = 200 / 60,5 = 3,3 A.

3. Определяем угол сдвига фаз между током и напряжением из треугольника сопротивлений :

cos φ = R / Z = 50 / 60,5 = 0,8264 ; sin φ = XL − XC / Z = 112,3 – 78 / 60,5 = 0,566

4. Определяем активную мощность :

Р = U I cos φ = 200∙3,3∙0,8264 = 545,4 Вт

5. Определяем реактивные мощности катушки и конденсатора :

QL = I 2 XL =3,3 2 ∙112,3 =1222,95 вар ; QС = I 2 XС =3,3 2 ∙ 78 =849,42 вар

6. Определяем реактивную мощность цепи :

Q = QL — QС = 1222,95 – 849,42 = 373,5 вар или Q = U I sin φ = 200∙3,3∙0,566 = 373,5 вар

7. Определяем полную мощность цепи : S = UI = 200 ∙ 3,3 = 660 BA

Расчет цепи при условии XС > XL ; ƒ -3 = 46,8 Ом

Xс = 1/ 2πƒC = 1 / 6,28 ∙ 250 ∙ 3,4∙10 -6 = 187 Ом

2. Определяем ток в цепи : I = U / Z = 200 / 149 = 1,34 A.

3. Определяем угол сдвига фаз между током и напряжением из треугольника сопротивлений :

cos φ = R / Z = 50 / 149 = 0,335 ; sin φ = XL − XC / Z = 46,8 – 187 / 149 = − 0,94

4. Определяем активную мощность :

Р = U I cos φ = 200∙1,34 ∙0,335 = 90 Вт

5. Определяем реактивные мощности катушки и конденсатора :

QL = I 2 XL =1,34 2 ∙46,8 = 84 вар ; QС = I 2 XС =1,34 2 ∙ 187 = 336 вар

6. Определяем реактивную мощность цепи :

Q = QL — QС = 84 – 336 = − 252 вар или Q = U I sin φ = 200∙3,3∙0,566 = 373,5 вар

7. Определяем полную мощность цепи : S = UI = 200 ∙ 1,34 = 268 BA

Расчет цепи при условии XL = XC ; ƒ = ƒP , принимаем ƒ = 500 Гц

  1. Определяем реактивные и полное сопротивление цепи :

XL = 2πƒL =6,28 ∙ 500 ∙ 29,8∙10 -3 = 93,6 Ом

Xс = 1/ 2πƒC = 1 / 6,28 ∙ 500 ∙ 3,4∙10 -6 = 93,6 Ом

2. Определяем ток в цепи : I = U / Z = 200 / 50 = 4 A.

3. Определяем угол сдвига фаз между током и напряжением из треугольника сопротивлений :

cos φ = R / Z = 50 / 50 = 1 ; sin φ = XL − XC / Z = 93,6 – 93,6 / 50 = 0

4. Определяем активную мощность :

Р = U I cos φ = 200∙ 4 ∙ 1 = 800 Вт

5. Определяем реактивные мощности катушки и конденсатора :

QL = I 2 XL =4 2 ∙93,6 = 1497,6 вар ; QС = I 2 XС =4 2 ∙ 93,6 = 1497,6 вар

6. Определяем реактивную мощность цепи :

Q = QL — QС = 1497,6 – 1497,6 = 0 вар или Q = U I sin φ = 200∙4∙0 = 0 вар

7. Определяем полную мощность цепи : при резонансе напряжений S = P = 800 ВА

Задание для Задачи 4.

Дано: R=11 Ом; L=9,55 мГн; С=200 мкФ; f=100 Гц; UC=15 В.

Определить: U; I; P; Q. Построить векторную диаграмму.

Дано: u = 141 sin 628t; R=3 Ом; L=0,0191 Гн; С=200 мкФ.

Определить: I; Ua; UL; UC; P; Q; S. Построить векторную диаграмму.

Дано: u = 564 sin ωt; R1=8 Ом; R2=8 Ом; L=0,0383 Гн; f=50 Гц.

Определить: I; S; P; Q. Построить векторную диаграмму.

Дано: u = 169 sin 628t; R=12 Ом; L=9,55 мГн; С=265 мкФ.

Определить: I; Z; UL; P; Q. Построить векторную диаграмму.

Дано: u = 294 sin 314t; R=5 Ом; L=19,1 мГн; С=159 мкФ.

Определить: UL; Р; Q; S. Построить векторную диаграмму.

Дано: u = 113 sin 628t; R=2 Ом; L=9,6 мГн; С=266 мкФ.

Определить: I; P; Q; S. Построить векторную диаграмму.

Дано: R=3 Ом; L=19,1 мГн; С=530 мкФ; f=50 Гц; Uа=20 В.

Определить: U; P; Q; S. Построить векторную диаграмму.

Дано: u = 564 sin 628t; R=12 Ом; L=19,1 мГн; С=531 мкФ.

Определить: I; P; Q; S. Построить векторную диаграмму.

Дано: R=15 Ом; L=6 мГн; С=400 мкФ; f=100 Гц; UC=20 В.

Определить: U; I; P; Q. Построить векторную диаграмму.

Дано: u = 180 sin 628t; R=16 Ом; L=12 мГн; С=260 мкФ.

Определить: I; Z; UL; P; Q. Построить векторную диаграмму.

ТЕМА: МАГНИТНЫЕ ЦЕПИ.

5. РАСЧЁТ МАГНИТНОЙ ЦЕПИ

Пример расчёта магнитной цепи.

Для магнитной цепи, приведенной на рисунке, заданы линейные размеры в сантиметрах, числа витков обмоток и магнитный поток Ф= 2,4·10 ─3 Вб. Оба вертикальных стержня изготовлены из

электротехнической стали 1512(Э42), горизонтальные части – ярма – из литой стали Ст -2. Обе обмотки соединены последовательно и встречно. Определить силу тока в обмотках I для создания

заданного магнитного потока , абсолютную магнитную проницаемость сердечника μа1 и

магнитную проницаемость μ1, где расположена первичная обмотка W1.

Дано :W1 = 600 W2 = 200 Ф= 2,4·10 ─3 Вб., сталь 1512(Э42), сталь Ст -2 .

Определить: I, μа1, μ1

Решение

1. Проводим среднюю магнитную линию и по ней разбиваем цепь на однородные участки

1, ℓ2, ℓ3, ℓ4(т.е. одинакового поперечного сечения и магнитной проницаемости).

2. Определяем поперечные сечения сердечника на каждом участке цепи :

S1 = S2 = 4·6 = 24 см 2 =24·10 ─4 м 2 S3 = S4 = 5·6 = 30 см 2 30·10 ─4 м 2

3. Определяем длины каждого участка :

1 = ℓ2 =20 см = 0,2 м ℓ3 = ℓ4 = 16+ 2·2 + 2,5·2 = 25 см = 0,25 м.

4. Определяем магнитную индукцию на каждом участке :

5. По таблице характеристик намагничивания ферромагнитных материалов определяем

напряженность магнитного поля на ферромагнитных участках сердечника :

Читайте также:  Переполюсовка электродвигателя постоянного тока

в воздушном зазоре :Н =0,8·10 6 · В0 = 0,8·10 6 ·1 = 0,8·10 6 А/м .

6. По закону полного тока записываем уравнение для определения тока цепи, учитывая встречное

400 I = (185·0,2 )·2 + (682·0,25 )·2 +0,8·10 6 ·0,02·10 ─2

I = (185·0,2 )·2 + (682·0,25 )·2 +0,8·10 6 ·0,02·10 ─2 / 400 =1,436 A

7. Определяем абсолютную магнитную проницаемость сердечника на первом участке цепи :

8. Определяем магнитную проницаемость первого участка магнитной цепи :

μа1 = μ1·μ μ1 = μа1 = 0,0054 / 4π·10 ─7 =0,0054 / 125·10 ─8 = 4300

Задание для Задачи 5.

Определить силу тока I в обмотках данной цепи для получения заданного магнитного потока Ф, абсолютную магнитную проницаемость μа1 и магнитную проницаемость μ1 участка цепи, где расположена обмотка с числом витков W1.

Дано: W1 = 500; W2 = 300; Ф = 1,0·10 –3 Вб; материал сердечника — чугун.

Размеры цепи даны в сантиметрах. Обмотки включены согласно.

Дано: W1 = 100; Ф = 3·10 –3 Вб;

материал сердечника — электротехническая сталь (1211). Размеры цепи даны в сантиметрах.

Дано: W1 = 1200; W2 = 600; Ф=1,6·10Вб;

материал сердечника — чугун. Размеры цепи даны в сантиметрах.

Обмотки действуют согласно.

Дано: W1 = 2000; Ф = 2,8·10 –3 Вб;

материал сердечника — литая сталь (Ст.2). Размеры цепи даны в сантиметрах.

Дано: W1 = 400; Ф = 4·10 –3 Вб;

материал сердечника — чугун. Размеры цепи даны в сантиметрах.

Дано: W1 = 600; W2 = 200; Ф = 1,6·10 –3 Вб; материал сердечника — сталь литая (Ст.2). Размеры цепи даны в сантиметрах. Обмотки действуют встречно.

Дано: W1 = 400; W2 = 600; Ф = 1,8·10 –3 Вб;

материал сердечника — электротехническая сталь (Э11) 1211. Размеры цепи даны в сантиметрах. Обмотки действуют согласно.

Дано: W = 1000; Ф = 0,6·10 –3 Вб; материал сердечника — чугун. Размеры цепи даны в сантиметрах.

Дано: W1 = 600; Ф = 8·10 –3 Вб;

материал сердечника — чугун. Размеры цепи даны в сантиметрах.

Дано: W1 = 200; Ф = 6·10 –3 Вб;

материал сердечника — электротехническая сталь (1211). Размеры цепи даны в сантиметрах.

ТЕМА: Основы электроники.

ЗАДАНИЕ 6. ТЕОРЕТИЧЕСКИЙ ВОПРОС.

1. Электропроводность полупроводников. Электронно-дырочный переход. Полупроводниковые диоды.

2. Биполярный транзистор. Полевые транзисторы. Область применения.

3. Тиристоры, светодиоды, фотодиоды. Область применения.

4. Фотоэлектрические приборы. Электронные фотоэлементы с внешним и внутренним фотоэффектом.

5. Электронные выпрямители. Однополупериодный и двухполупериодный выпрямители.

6. Трёхфазный выпрямитель. Стабилизатор напряжения.

7. Электронные усилители. Обратная связь в усилителях.

8. Электронные генераторы. Мультивибратор.

9. Гибридные интегральные микросхемы. Фотолитография.

10. Толстоплёночные и тонкоплёночные микросхемы.

Источник

Расчет неразветвленной цепи переменного тока

Цепь переменного тока содержит различные элементы (резисторы, катушки индуктивности, конденсаторы), включенные последовательно. Общий вид цепи показан на рисунке 1. В зависимости от данных нарисовать схему и определить следующие величины:

1) полное сопротивление цепи Z;

2) падение напряжения на каждом элементе и напряжение U, приложенное к цепи;

3) ток I в неразветвленной части цепи;

4) угол сдвига фаз (по величине и знаку);

5) активную, реактивную и полную мощности для всей цепи;

6) определить характер цепи.

Начертить в масштабе векторную диаграмму напряжений, треугольники сопротивлений и мощностей, и пояснить их построение.

№ п/п Активное сопротивление, Ом Емкостное сопротивление, Ом Индуктивное сопротивление, Ом Емкость, мкФ Индуктивность, мГн Частота, Гц Дополнительный параметр
R1 R2 R3 XC2 XC3 XL1 XL3 С1 С2 L1 L2 f
I=4 A
P1=150 Вт
S=180 ВА
Q=150 Вар
Р=24 Вт
Q=300 Вар
Q=64 Вар
Р1=48 Вт
S=300 ВА
I=4 А
38,2 U=120 В
U=140 В
Uа1=100 В
U=120 В
Р1=120 Вт

R1 R2 R3 XC2 XC3 XL1 XL3 С1 С2 L1 L2 f
Q=500 Вар
I=4 А
Р1=48 В
S=200 ВА
Q=640 Вар
I=6 А
S=150 ВА
Р=200 Вт
Р2=40 Вт
Uа3=40 В
Q=300 ВА
Р1=100 Вт
U=56 В
I=2 А
Р=100 Вт

Расчет разветвленной цепи переменного тока

Разветвленная цепь переменного тока состоит из трех параллельных ветвей, содержащих различные элементы (резисторы, катушки индуктивности, конденсаторы). Общий вид цепи показан на рисунке 1. П Р И М Е Ч А Н И Е: Индекс «1» — у дополнительного параметра означает, что он относится к первой ветви; индекс «2» — ко второй, «3» — к третьей. В зависимости от данных нарисовать схему и определить следующие величины:

7) полные сопротивления ветвей Z1, Z2, Z3;

8) активные и реактивные проводимости параллельных ветвей;

10) ток I в неразветвленной части цепи;

11) угол сдвига фаз (по величине и знаку);

12) активную, реактивную и полную мощности для всей цепи.

Начертить в масштабе векторную диаграмму и пояснить ее построение.

№ п/п Активное сопротивление, Ом Емкостное сопротивление, Ом Индуктивное сопротивление, Ом Дополнительный параметр
R1 R2 R3 XC2 XC3 XL1 XL3
I1=5 A
P2=128 Вт
S=180 ВА
Q=150 Вар
UR1=144 В
I2=5 A
UL1=144 В
U=48 В
U=50 В
QL2=120 Вар
U=100 В
R1 R2 R3 XC2 XC3 XL1 XL3
U=140 В
Uа1=100 В
Uа2=120 В
Р1=50 Вт
Q=90 Вар
S=100 ВА
U=50 В
Р=40 Вт
Q=100 Вар
U=50 В
S=120 ВА
U=80 В
Р=40 Вт
Q=80 Вар
U=100В
Р=120 Вт
Q=100 Вар
U=60 В
S=80 ВА
Читайте также:  Как проверить выдаваемый ток генератора

Расчет трехфазной цепи.

1. В трехфазную четырехпроводную сеть с линейным напряжением Uл включили звездой разные по характеру сопротивления (рисунок 1). Определить фазное напряжение, активную, реактивную, полную мощности. Найти линейные токи и начертить в масштабе векторную диаграмму цепи. По векторной диаграмме определить числовое значение тока в нулевом проводе (задача для четных номеров).

Рисунок 1. Рисунок 2.

2. В трехфазную сеть с линейным напряжением Uл включены треугольником разные по характеру сопротивления (рисунок 2). Определить фазные и линейные токи, активную, реактивную и полную мощности потребляемой всей цепью. Начертить векторную диаграмму цепи и по ней определить числовые значения линейных токов. (задача для нечетных номеров)

ПРИМЕЧАНИЕ. Все данные приведены в таблице №1. Схему рисовать исходя из данных.

№ п.п. Дополнительный параметр Сопротивления фазы А, Ом Сопротивления фазы В, Ом Сопротивления фазы С, Ом
R XL XC R XL XC R XL XC
1. Uл=380 В
2. Uл=380 В
3. Uф=220 В
4. Uл=660 В
5. Uф=380 В
6. Uл=380 В
7. Uф=220 В
8. Uл=220 В

№ п.п. Дополнительный параметр Сопротивления фазы А, Ом Сопротивления фазы В, Ом Сопротивления фазы С, Ом
R XL XC R XL XC R XL XC
9. Uф=220 В
10. Uл=380 В
11. Uл=680 В
12. Uф=127 В
13. Uл=180 В
14. Uф=220 В
15. Uл=480 В
16. Uл=220 В
17. Uл=280 В
18. Uф=380 В
19. Uф=320 В
20. Uф=200 В
21. Uф=300 В
22. Uф=120 В
23. Uл=400 В
24. Uф=220 В
25. Uл=600 В
26. Uф=320 В
27. Uф=420 В
28. Uф=420 В
29. Uф=200 В
30. Uф=220 В

1.6. Примеры решения типовых задач

Определить эквивалентное сопротивление цепи показанной на рис.1, если R1=R3=R5=R6=3 Ом, R2=20 Ом, R4=24 Ом. Найти силу тока идущего через каждый резистор, если к цепи приложено напряжение U=36В.

1. Определяем эквивалентное сопротивление цепи Rэк. Сопротивления R3, R4, R5 соединены последовательно

2. Сопротивления R2 и R3-5 соединены параллельно, поэтому

3. Сопротивления R1, R2-5, R6 соединены последовательно

4. Показываем на схеме токи, протекающие по каждому сопротивлению, и находим их. Так как напряжение U приложено ко всей цепи, то согласно закону Ома

5. Так как сопротивления R1, R2-5, R6 соединены последовательно, то А

6. Найдем падения напряжения

Указания к решению задач 2 и 3.

Эти задачи относятся к разветвленным и неразветвленным переменного тока. Перед их решением изучите материал темы 3.1., ознакомьтесь с методикой построения векторных диаграмм.

Пример 2. Активное сопротивление катушки rк=6 Ом, индуктивность ее L=0,0318. Последовательно с катушкой включено активное сопротивление R=2 Ом и конденсатор емкостью С=795 мкФ. К цепи приложено напряжение U=100 В. Определить: полное сопротивление цепи, силу тока, коэффициент мощности, активную, реактивную и полную мощности, напряжения на каждом сопротивлении. Начертить в масштабе векторную диаграмму. Частота тока в цепи f=50 Гц.

Решение:

1. Найдем индуктивное сопротивление катушки и емкостное сопротивление конденсатора

2. Полное сопротивление цепи Ом

4. Коэффициент мощности , по таблице Брадиса находим

Определяя угол сдвига фаз через четную функцию косинус, мы теряем знак угла. Поэтому в тех случаях, где важен знак угла, следует пользоваться нечетными его функциями (синусом или тангенсом). В нашем примере

Знак плюс у угла показывает, что напряжение опережает ток.

5. Активная мощность Вт

6. Реактивная мощность Вар

7. Полная мощность ВА

8. Для построения векторной диаграммы найдем напряжения на сопротивлениях цепи

Построение векторной диаграммы начнем с выбора масштабов для тока и напряжения. Задаемся масштабом по току: в 1 См-4 А и масштабом по напряжению: в 1См – 20 В.

Построение векторной диаграммы начнем с вектора тока, который откладываем по горизонтали в масштабе

Вдоль вектора тока откладываем напряжения на активных сопротивлениях rk и R:

Из конца вектора UR откладываем в сторону опережения (против часовой стрелки) вектора тока на 90 0 вектор напряжения UL на индуктивном сопротивлении. Длина вектора

Из конца вектора UL откладываем в сторону отставания от вектора тока на 90 0 вектор напряжения на емкостном сопротивлении UC. Длина вектора

Геометрическая сумма векторов Uk, UR, UL, UC представляет полное напряжение U. Так как длина вектора равна 5 см, то величина напряжения составит

Пример 3. Катушка с активным сопротивлением r=20 Ом и индуктивным сопротивлением XL= 15 Ом, соединена параллельно с конденсатором, емкостное сопротивление которого XC=50 Ом. Определить токи в ветвях и в неразветвленной части цепи, активные и реактивные мощности ветвей и всей цепи; начертить в масштабе векторную диаграмму. К цепи приложено напряжение U=100 В.

Решение:

1. Найдем токи в ветвях

2. Углы сдвига фаз будем находить по синусам во избежание потери знаков углов:

1>0, т.е. напряжение опережает ток)

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Алгоритм расчета неразветвленной цепи однофазного переменного тока

Действия Формулы Единицы измерения
1. Определение эквивалентного активного, индуктивного и емкостного сопротивлений Ом
2. Определение полного сопротивления цепи Ом
3. Определение коэффициента мощности цепи
4. Определение силы тока в цепи А
5. Определение напряжения на активном сопротивлении В
6. Определение напряжения на индуктивном сопротивлении В
7. Определение напряжения на емкостном сопротивлении В
8. Определение активной мощности Р = I 2 R Вт
9. Определение реактивной индуктивной мощности Q L = I 2 XL вар
10. Определение реактивной емкостной мощности Q С = I 2 X С вар
11. Определение реактивной мощности цепи Q=QL-QC вар
12. Определение полной мощности S=UI В∙А
Читайте также:  Акб это постоянный ток

Практическая работа№3

«Расчет неразветвленной цепи переменного тока»

Цель работы:

Формирование умений, необходимых для расчета неразветвленных цепей переменного тока и построения векторных диаграмм.

Задачи

— начертить расчетную схему

— составить алгоритм расчета конкретной электрической цепи переменного тока

— построить векторную диаграмму

Задание: Начертить расчетную схему с учетом отсутствующих сопротивлений (т.е. равных 0). Определить ток, напряжение на участках цепи, коэффициент мощности, активную, реактивную и полную мощности. Построить векторную диаграмму.

Источник



Расчет неразветвленных цепей переменного тока

ads

Порядок расчета, установленный для цепи при последовательном соединении катушки и конденсатора, можно применить и для цепи, содержащей произвольное число катушек и конденсаторов, соединенных последовательно.

Расчет неразветвленных цепей переменного тока

На рис. 14.7, а для примера дана схема неразветвленной цепи, состоящей из пяти участков: конденсатора (R1 Х1) и катушки (R2, Х2), представленных активными и реактивными сопротивлениями; резистора R3; идеальных конденсатора Х4 и катушки Х5.

Предположим, что кроме сопротивлений известен ток в цепи i = Imsinωt. Требуется найти напряжения на участках, общее напряжение в цепи и мощность.

Векторная диаграмма

Произвольно выберем условно-положительное направление тока i, в данном случае по часовой стрелке. Для мгновенных величин в соответствии со вторым законом Кирхгофа уравнение напряжений (а — падение напряжение на активном сопротивлении; р — падение напряжения на реактивном элементе )

Для действующих величин необходимо записать векторную сумму:

Численно векторы напряжений определяются произведением тока и сопротивления соответствующего участка. На рис. 14.7, б построена векторная диаграмма, соответствующая этому уравнению. За исходный, как обычно при расчете неразветвленных цепей, принят вектор тока, а затем проведены векторы падения
напряжения на каждом участке схемы, причем направления их относительно веrтора тока выбраны в соответствии с характером сопротивления участков.

При построении диаграммы напряжений выбрана начальная точка 6 совпадающая с началом вектора тока i. Из этой точки проведен вектор U5.2 реактивного напряжения индуктивности (по фазе опережает ток на 90°) между точками 5 и 6 цепи. Из конца его проведен вектор U реактивного напряжения емкости (по фазе отстает от тока на 90° ) между точками 4 и 5 цепи. Затем отложен вектор U3a активного напряжения на резисторе (совпадает по фазе с током) между точками
3 и 4 цепи и т. д., если следовать по цепи против направления тока.Точки векторной диаграммы, где сходятся начало следующего вектора с концом предыдущего, обозначены теми же номерами, какими на схеме обозначены точки, отделяющие одни элемент от другого.

При таком, построении напряжение между любыми двумя точками цепи можно найти по величине и фазе, проведя вектор на диаграмме между точками с теми же номерами. Например, напряжение U5.2 между точками 5 и 2 выражается вектором, проведенным из точки 2 в точку 5 (вектор U2.5 направлен в обратную сторону); напряжение U3.1 между точками 3 и 1 выражается вектором, проведенным из точки
1 в точку 3.

Векторная диаграмма, построенная в соответствии с чередованием элементов цепи, называется топографической, так как точки, отделяющие векторы друг от друга, соответствуют точкам, разделяющим элементы схемы.

Расчетные формулы

Из векторной диаграммы видно, что все активные составляющие векторов напряжений направлены одинаково — параллельно вектору тока, поэтому векторное сложение их можно заменить арифметическим и найти активную составляющую напряжения цепи: Ua = U1a + U2a + U3a

Реактивные составляющие векторов напряжений перпендикулярны вектору тока, причем индуктивные напряжения направлены в одну сторону, а емкостные — в другую. Поэтому реактивная составляющая напряжения цепи Up определяется их алгебраической суммой, в которой индуктивные напряжения считаются положительными, а емкостные — отрицательными: Up = — U + U2p — U4p + U5p.

2

Векторы активного, реактивного и полного напряжений цепи образуют прямоугольный треугольник, из которого следует

Подставив падения напряжения, выраженные через ток и соответствующие сопротивления, получим:

3

Таким образом снова получена знакомая уже формула, связывающая ток, напряжение и полное сопротивление цепи [ср. (14.4) и (14.1)].

Полное сопротивление неразветвленной цепи

В этой формуле ∑Rn—общее активное сопротивление, равное арифметической сумме всех активных сопротивлений, входящих в неразветвленную цепь; ∑Xn — общее реактивное сопротивление, равное алгебраической сумме всех реактивных сопротивлений, входящих в неразветвленную цепь. В этой сумме индуктивные сопротивления считаются положительными, а емкостные — отрицательными. Полное сопротивление неразветвленной цепи

В общем случае полное сопротивление цепи определяется как гипотенуза прямоугольного треугольника, катетами которого являются выраженные в определенном масштабе активное и реактивное сопротивления всей цепи. Из треугольника сопротивлений следует:

треугольника сопротивлений следует

формулы для определения мощностей в цепи

От треугольника напряжений можно перейти также к треугольнику мощностей и получить уже известные формулы для определения мощностей в цепи:

Вместе с тем активную мощность цепи можно представить как арифметическую сумму активных мощностей в элементах с активным сопротивлением. Реактивная мощность цепи равна алгебраической сумме мощностей реактивных элементов.

В этой сумме мощность индуктивных элементов считается положительной, а емкостных — отрицательной:

7

Формулы (14.2)—(14.7) являются общими; из них можно получить конкретное выражение для любой неразветвленной цепи.

Источник