Меню

Расчет плотности тока в трансформаторе

Расчет трансформатора

Силовой трансформатор является наиболее простым примером преобразования электрической энергии. Даже при условии постоянного совершенствования радиоэлектронных устройств и источников питания на их основе блоки питания на основе трансформаторов переменного напряжения не теряют актуальности.

Силовой трансформатор

Трансформаторы для блока питания имеют большие габариты и массу, работают в ограниченном диапазоне допустимого входного напряжения, но при этом очень просты в реализации, отличаются высокой надежностью и ремонтопригодностью.

Типы магнитопроводов

Основой трансформатора переменного тока является магнитопровод, который должен обладать определенными магнитными свойствами. В трансформаторах используется сталь особого состава и со специфической обработкой (трансформаторное железо). В процессе работы трансформатора в магнитопроводе образуются вихревые токи, которые нагревают сердечник и ведут к снижению КПД трансформатора. Для снижения вихревых токов сердечник выполняют не монолитным, а собранным из тонких стальных пластин или лент, покрытых непроводящим оксидным слоем.

По типу используемого металла сердечники разделяют на:

  • Пластинчатые;
  • Ленточные.

Первый тип сердечников собирается в виде пакета из отдельных пластин соответствующей формы, а второй – наматывается из ленты. В дальнейшем ленточный сердечник может быть разрезан на отдельные сегменты для удобства намотки провода.

По типу магнитопровода различают сердечники:

  • Броневые;
  • Стержневые.

Каждый из перечисленных типов может различаться формой пластин или сегментов:

  • Броневый;
  • Ш образный;
  • Кольцевой.

Форма и тип сердечника в теории не влияют на методику расчета, но на практике это следует учитывать при определении КПД и количества витков обмоток.

Типы сердечников

Кольцевой (тороидальный) сердечник отличается наилучшими свойствами. Трансформатор, выполненный на таком магнитопроводе, будет иметь максимальный КПД и минимальный ток холостого хода. Это оправдывает самую большую трудоемкость выполнения обмоток, поскольку в домашних условиях эта работа выполняется исключительно вручную, без использования намоточного станка.

Исходные данные

Исходными данными, на основе которых производится расчет трансформатора, в обязательном порядке являются:

  • Напряжение сети;
  • Напряжение и количество вторичных обмоток;
  • Токи потребления нагрузок.

Для полного и точного расчета понижающего трансформатора необходимо учитывать температурный режим, допускаемые отклонения напряжения первичной обмотки и еще некоторые факторы, однако практика показывает, что трансформаторы, изготовленные по данным упрощенного расчета, имеют достаточно хорошие параметры. Далее будет рассказано, как рассчитать трансформатор, не прибегая к сложным и громоздким вычислениям.

Порядок расчета

Расчет силового трансформатора начинается с определения габаритной мощности. Для начала определяется суммарная полная мощность всех вторичных обмоток:

Как рассчитать мощность трансформатора, если неизвестны мощности обмоток? Узнать ее поможет известная из курса физики формула:

Габаритная мощность трансформатора находится из полной с учетом КПД, который различается для устройств разной мощности. Опытным путем установлены следующие ориентировочные значения КПД:

  • До 50 Вт – 0.6 (60%);
  • От 50 до 100 Вт – 0.7 (70%);
  • От 100 до 150 Вт – 0.8 (80%).

Более мощный трансформатор будет иметь КПД 0.85.

Таким образом, расчет габаритной мощности выглядит таким образом:

Рг = КПД∙Рс, где Рс – полная мощность.

На основе габаритной мощности трансформатора можно определить площадь поперечного сечения магнитопровода:

Согласно данной формуле, искомая площадь сечения получается в квадратных сантиметрах. По полученным данным подбирают сердечник с близким или несколько большим значением сечения. Используя разборные сердечники из Ш и П образных пластин, можно в некоторых пределах изменять толщину набора, добавляя или убирая по несколько пластин.

Как определить мощность неизвестного трансформатора? Нужно возвести в квадрат площадь сердечника, выраженную в квадратных сантиметрах.

Обратите внимание! Поперечное сечение магнитопровода должно, по возможности, иметь приближенную к квадрату форму.

После выбора магнитопровода, рассчитываем намоточные данные. Имея в наличии магнитопровод и зная площадь его сечения, можно выполнить расчет обмоток трансформатора (количества витков в обмотках). Принято за основу расчета брать количество витков, которые приходятся на 1 В напряжения, поскольку данное число одинаково для всех обмоток и зависит от характеристик магнитопровода и частоты напряжения питающей сети. Полная формула, которая учитывает частоту сети, магнитную индукцию в сердечнике, имеет большую сложность и в расчетах практически никогда не применяется. Вместо этого используют упрощенный вариант, который учитывает лишь материал и конструкцию сердечника:

N=k/S, где k – коэффициент из следующего перечня:

  • Ш и П образные пластины магнитопровода – k = 60;
  • Ленточный сердечник – k = 50;
  • Тороидальный магнитопровод – k = 40.

Как видно, при использовании тороидального сердечника количество витков будет минимальным.

Тороидальный трансформатор

Зная количество витков на вольт, легко определить намоточные данные обмоток на любое напряжение:

Для первичной обмотки это будет:

Обратите внимание! Поскольку для понижающих трансформаторов сечение провода и количество витков сетевой обмотки больше всех остальных, то и омические потери в проводах также будут выше, поэтому для маломощных трансформаторов (до 100 Вт) нужно учесть эти потери, увеличив количество витков первичной обмотки на 5%.

Если рассчитывается трансформатор стержневого типа, то обычно обмотки делят пополам и наматывают их на обоих стержнях равномерно. Части одинаковых обмоток затем соединяют последовательно.

Не менее важным этапом расчета трансформатора является определение сечения проводников обмотки. Здесь за основу берется такое значение тока в проводах, которое вызывает их минимальный нагрев. Чем выше сечение провода, тем меньше плотность тока через единицу сечения и, соответственно, меньше нагрев. Но чрезмерное увеличение сечения обмоточных проводов приводит к увеличению массы трансформатора, завышению стоимости, а также вероятности того, что обмотки просто не поместятся в окнах магнитопровода.

Принято считать оптимальным плотность тока в обмотках 4-7 А на 1 мм2. Меньшее значение плотности используется для расчета сечения проводов первичной обмотки или любой другой, которая находится ближе к сердечнику магнитопровода. У данных обмоток наихудшие условия охлаждения.

Чтобы не оперировать плотностями тока и сложными формулами перевода площади сечения в диаметр, можно посчитать диаметр, используя их упрощенный вариант:

  • d = 0.7∙√I – для проводников первичной обмотки;
  • d = 0.6∙√I – для проводников вторичных обмоток.

Для обмоток используется изолированный обмоточный провод по сечению, наиболее близкому к расчетному, но не меньше его.

Важно! Формула дает расчётное значение для голого провода, без учета изоляции.

Для измерения диаметра неизвестного провода необходим микрометр. Приблизительно определить диаметр можно, намотав на карандаш десять витков и измерив длину намотки.

Чтобы определить, поместятся ли обмотки в окнах магнитопровода, подсчитайте коэффициент заполнения окна:

K=0.008∙(d12 ∙w1+ d22 ∙w2+ d32 ∙w3+…)/Sокна.

Если получившееся значение больше 0.3, то обмотки не поместятся, а перемотка наполовину готового устройства к хорошему результату не приведет. Выходов несколько:

  • Использовать магнитопровод с большим сечением;
  • Увеличить плотность тока в обмотках (не более 5%);
  • Понизить число витков во всех обмотках одновременно (также не более 5%).

Уменьшение количества витков приведет к появлению повышенного тока холостого хода и потерям в трансформаторе, которые буду выражены в повышении его температуры. Поэтому использование последних двух способов можно рекомендовать исключительно как крайнюю меру.

Выполнение обмоток

Обмотки трансформатора выполняют на каркасе из изоляционного материала. Каркас может быть цельным или разборным. Несмотря на кажущуюся сложность, разборный каркас изготовить легче, к тому же его размеры легко пересчитать под любой имеющийся сердечник. Из материалов для каркаса можно взять листовой гетинакс, текстолит или стеклотекстолит. В щечках каркаса нужно предусмотреть отверстия для выводов.

Разборный каркас

Выводы обмоток выполняют гибким многожильным проводом, тщательно заизолировав место пайки. Саму обмотку выполняют, по возможности, виток к витку. Такая намотка позволяет лучше использовать свободное место, сокращает расход провода, а главное – в местах пересечения проводов при некачественно выполненной намотке существует риск повреждения изоляции и междувитковых замыканий. Это правило не касается тонкого провода с диаметром менее 0.2 мм, поскольку рядовую обмотку в домашних условиях на нем выполнить очень тяжело.

Каждую обмотку необходимо изолировать одна от другой, особенно первичную обмотку. Для изоляции можно использовать несколько слоев ФУМ ленты. Она выполнена из фторопласта, который обладает хорошими электроизоляционными свойствами.

Важно! ФУМ лента имеет малую толщину, а фторопласт обладает текучестью, поэтому делать нужно несколько слоев изоляции.

ФУМ лента

Сборка трансформатора

Качество трансформатора во многом зависит от правильности сборки магнитопровода. При сборке Ш образного броневого сердечника соседние пластины нужно укладывать поочередно в разные стороны. Пакет пластин должен быть уложен максимально плотно. После сборки его нужно обязательно плотно стянуть винтами. Неплотно стянутый трансформатор издает сильный шум во время работы. Особое внимание следует уделить плотному прилеганию Ш образных пластин с пластинами перекрытия. Зазор между ними приведет к тому, что сердечник станет разомкнутым, а отсюда вытекает следующее:

  • Повышение тока холостого хода;
  • Снижение КПД;
  • Повышенное магнитное поле рассеивания.

При сборке разрезного ленточного сердечника нужно обращать внимание на соответствие частей друг другу, поскольку при изготовлении они подгоняются путем шлифовки. Для понижения шума торцы пакетов пластин можно покрыть слоем лака.

Ленточный сердечник

Обратите внимание! Части ленточного магнитопровода требуют аккуратного обращения, поскольку расслоившиеся ленты практически невозможно установить на прежнее место. Пластины разборного сердечника нельзя гнуть и подвергать ударам, поскольку это нарушит структуру металла, и он потеряет свои свойства. В крайнем случае, изогнутые под большим радиусом пластины нужно аккуратно разогнуть руками и при сборке уложить их в середину пакета пластин. При дальнейшей стяжке они выровняются.

Читайте также:  Методика измерения сопротивления растеканию тока заземляющего устройства

Расчет сетевого трансформатора не представляет сложности. Важнее здесь определиться с предъявляемыми к нему требованиями. От правильности поставленной задачи будет зависеть точность дальнейших расчетов. Для силового трансформатора расчет так же удобно выполнить, используя он-лайн калькулятор. По такой же методике рассчитывается повышающий трансформатор.

Видео

Источник

Силовые трансформаторы, простой расчет

Заставка v

В статье на конкретном примере приводится простой метод расчета силового трансформатора для блока питания или зарядного устройства.

  1. Перед тем, как использовать силовой трансформатор необходимо определиться с его мощностью.

Например, нужно рассчитать силовой трансформатор для зарядного устройства, которым будем заряжать автомобильные аккумуляторы емкостью до 60 А/час.

Как известно, ток заряда равен 0,1 от емкости аккумулятора, в нашем случае это 6 Ампер.

Напряжение для заряда аккумулятора должно быть не менее 15 В, плюс падение напряжения на диодах и токоограничивающем резисторе, примем его около 5 В.

Итого, напряжение вторичной обмотки должно быть около 20 В, при токе до 6 А. Мощность при этом, будет равна Р = 6 А х 20 В = 120 Вт.

Схема 3нv

К.п.д. силового трансформатора при мощности до 60 Вт составляет 0,75. При мощности до 150 Вт 0,8 и при больших мощностях 0,85.

В нашем случае принимаем к.п.д. равным 0,8.

При мощности вторичной обмотки 120 Вт, с учетом к.п.д. мощность первичной обмотки равна:

120 Вт : 0,8 = 150 Вт.

  1. По этой мощности определяем площадь поперечного сечения сердечника, на котором будут расположены обмотки.

S (см 2 ) = (1,0 ÷1,2) √Р

Коэффициент перед корнем квадратным из мощности зависит от качества электротехнической стали сердечника.

Принимаем его равным среднему значению 1,1 и получаем площадь сердечника равной 13,5 см 2 .

Сердечник 1v

  1. Теперь нужно определить дополнительную величину – количество витков на вольт. Обозначим ее N.

Коэффициент от 50 до 70 зависит от качества стали. Возьмем среднее значение 60. Получаем количество витков на вольт равным:

Округлим это значение до 4,5 витка на вольт.

Первичная обмотка будет работать от 220 В. Ее количество витков равно 220 х 4,5 = 990 витков.

Вторичная обмотка должна выдавать 20 В. Ее количество витков равно 20 х 4,5 = 90 витков.

  1. Осталось определить диаметр провода обмоток.

Для этого нужно знать ток каждой обмотки. Для вторичной обмотки ток нам известен, его величина 6 А.

Ток первичной обмотки определим, как мощность, деленную на напряжение. (Сдвиг фаз для упрощения расчета учитывать не будем).

I1 = 150 Вт / 220 В = 0,7 А

Диаметр провода определяем по формуле:

Коэффициент перед корнем квадратным влияет на плотность тока в проводе. Чем больше его значение, тем меньше будет греться провод при работе. Примем среднее значение.

Для меди плотность тока до 3,2 А/мм кв, для алюминиевых проводов до 2А/мм кв.

Диаметр провода первичной обмотки:

D1 = 0,75 √0,7 = 0,63 мм

Диаметр провода вторичной обмотки:

D2 = 0,75 √6 = 1,84 мм

Для намотки выбираем ближайший больший диаметр. Если нет толстого провода для вторичной обмотки, можно намотать ее в два провода. При этом суммарная площадь сечения проводов должна быть не меньше площади сечения для рассчитанного диаметра провода. Как известно, площадь сечения равна πr² , где π это 3,14, а r — радиус провода.

Вот и весь расчет.

Если вторичных обмоток несколько, сумма их мощностей не должна превышать величину, равную мощности первичной обмотки, умноженной на к.п.д. Количество витков на вольт одинаково для всех обмоток конкретного трансформатора. Если известно количество витков на вольт, можно намотать обмотку на любое напряжение, главное, чтобы она влезла в окно магнитопровода. Диаметр провода каждой обмотки определяется исходя из величины тока этой обмотки.

Овладев этой простой методикой, вы сможете не только изготовить нужный вам силовой трансформатор, но и подобрать уже готовый.

Материал статьи продублирован на видео:

Источник

Расчет трансформатора: онлайн калькулятор или дедовский метод для дома — выбери сам

Ремонт современных электрических приборов и изготовление самодельных конструкций часто связаны с блоками питания, пускозарядными и другими устройствами, использующими трансформаторное преобразование энергии. Их состояние надо уметь анализировать и оценивать.

Считаю, что вам поможет выполнить расчет трансформатора онлайн калькулятор, работающий по подготовленному алгоритму, или старый проверенный дедовский метод с формулами, требующий вдумчивого отношения. Испытайте оба способа, используйте лучший.

  • Как пользоваться онлайн калькулятором для расчета трансформатора пошагово
    • Подготовка исходных данных за 6 простых шагов
    • Выполнение онлайн расчета трансформатора
  • Как рассчитать силовой трансформатор по формулам за 5 этапов
    • Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода
    • Особенности вычисления коэффициента трансформации и токов внутри обмоток
    • Как вычислить диаметры медного провода для каждой обмотки
    • Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты
    • Учет свободного места внутри окна магнитопровода
  • 4 практических совета по наладке и сборке трансформатора: личный опыт

Сразу заостряю ваше внимание на том вопросе, что приводимые методики не способны точно учесть магнитные свойства сердечника, который может быть выполнен из разных сортов электротехнических стали.

Поэтому реальные электрические характеристики собранного трансформатора могут отличаться на сколько-то вольт или число ампер от полученного расчетного значения. На практике это обычно не критично, но, всегда может быть откорректировано изменением числа количества в одной из обмоток.

Поперечное сечение магнитопровода передает первичную энергию магнитным потоком во вторичную обмотку. Обладая определенным магнитным сопротивлением, оно ограничивает процесс трансформации.

От формы, материала и сечения сердечника зависит мощность, которую можно преобразовывать и нормально передавать во вторичную цепь.

Как пользоваться онлайн калькулятором для расчета трансформатора пошагово

Подготовка исходных данных за 6 простых шагов

Шаг №1. Указание формы сердечника и его поперечного сечения

Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.

Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:

  1. Ширину пластины под катушкой с обмоткой.
  2. Толщину набранного пакета.

Вставьте эти данные в соответствующие ячейки таблицы.

Шаг №2. Выбор напряжений

Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.

Заполните указанные ячейки.

Шаг №3. Частота сигнала переменного тока

По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.

Их создают из других материалов сердечника и рассчитывают иными способами.

Шаг №4. Коэффициент полезного действия

У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.

Но, вы можете откорректировать его значение вручную.

Шаг №5. Магнитная индуктивность

Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.

По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.

Шаг №6. Плотность тока

Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.

Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.

Выполнение онлайн расчета трансформатора

После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.

Как рассчитать силовой трансформатор по формулам за 5 этапов

Привожу упрощенную методику, которой пользуюсь уже несколько десятков лет для создания и проверки самодельных трансформаторных устройств из железа неизвестной марки по мощности нагрузки.

По ней мне практически всегда получалось намотать схему с первой попытки. Очень редко приходилось добавлять или уменьшать некоторое количество витков.

Этап №1. Как мощность сухого трансформатора влияет на форму и поперечное сечение магнитопровода

В основу расчета положено среднее соотношение коэффициента полезного действия ŋ, как отношение электрической мощности S2, преобразованной во вторичной обмотке к приложенной полной S1 в первичной.

Потери мощности во вторичной обмотке оценивают по статистической таблице.

Мощность трансформатора, ватты Коэффициент полезного действия ŋ
15÷50 0,50÷0,80
50÷150 0,80÷0,90
150÷300 0,90÷0,93
300÷1000 0,93÷0,95
>1000 0.95÷0,98

Электрическая мощность устройства определяется произведением номинального тока, протекающего по первичной обмотке в амперах, на напряжение бытовой проводки в вольтах.

Она преобразуется в магнитную энергию, протекающую по сердечнику, полноценно распределяясь в нем в зависимости от формы распределения потоков:

  1. для кольцевой фигуры из П-образных пластин площадь поперечного сечения под катушкой магнитопровода рассчитывается как Qc=√S1;
  2. у сердечника из Ш-образных пластин Qc=0,7√S1.
Читайте также:  Сила тока обратно пропорциональна квадрату расстояния

Сердечники трансформаторов

Этап №2. Особенности вычисления коэффициента трансформации и токов внутри обмоток

Силовой трансформатор создается для преобразования электрической энергии одной величины напряжения в другое, например, U1=220 вольт на входе и U2=24 V — на выходе.

Коэффициент трансформации в приведенном примере записывается как выражение 220/24 или дробь с первичной величиной напряжения в числителе, а вторичной — знаменателе. Он же позволяет определить соотношение числа витков между обмотками.

Коэффициент трансформации трансформатора

На первом этапе мы уже определили электрические мощности каждой обмотки. По ним и величине напряжения необходимо рассчитать силу электрического тока I=S/U внутри любой катушки.

Этап №3. Как вычислить диаметры медного провода для каждой обмотки

При определении поперечного сечения проводника катушки используется эмпирическое выражение, учитывающее, что плотность тока лежит в пределах 1,8÷3 ампера на квадратный миллиметр.

Расчет диаметра провода

Величину тока в амперах для каждой обмотки мы определили на предыдущем шаге.

Теперь просто извлекаем из нее квадратный корень и умножаем на коэффициент 0,8. Полученное число записываем в миллиметрах. Это расчетный диаметр провода для катушки.

Он подобран с учетом выделения допустимого тепла из-за протекающего по нему тока. Если место в окне сердечника позволяет, то диаметр можно немного увеличить. Тогда эти обмотки будут лучше приспособлены к тепловым нагрузкам.

Когда даже при плотной намотке все витки провода не вмещаются в окне магнитопровода, то его поперечное сечение допустимо чуть уменьшить. Но, такой трансформатор следует использовать для кратковременной работы и последующего охлаждения.

Этап №4. Определение числа витков обмоток по характеристикам электротехнической стали: важные моменты

Вычисление основано на использовании магнитных свойств железа сердечника. Промышленные трансформаторы собираются из разных сортов электротехнической стали, подбираемые под конкретные условия работы. Они рассчитываются по сложным, индивидуальным алгоритмам.

Домашнему мастеру достаются магнитопроводы неизвестной марки, определить электротехнические характеристики которой ему практически не реально. Поэтому формулы учитывают усредненные параметры, которые не сложно откорректировать при наладке.

Для расчета вводится эмпирический коэффициент ω’. Он учитывает величину напряжения в вольтах, которое наводится в одном витке катушки и связан с поперечным сечением магнитопровода Qc (см кв).

Расчет числа витков трансформатора

В первичной обмотке число витков вычислим, как W1= ω’∙U1, а во вторичной — W2= ω’∙U2.

Этап №5. Учет свободного места внутри окна магнитопровода

На этом шаге требуется прикинуть: войдут ли все обмотки в свободное пространство окна сердечника с учетом габаритов катушки.

Для этого допускаем, что провод имеет сечение не круглое, а квадрата со стороной одного диаметра. Тогда при совершенно идеальной плотной укладке он займет площадь, равную произведению единичного сечения на количество витков.

Увеличиваем эту площадь процентов на 30, ибо так идеально намотать витки не получится. Это будет место внутри полостей катушки, а она еще займет определенное пространство.

Далее сравниваем полученные площади для катушек каждой обмотки с окном магнитопровода и делаем выводы.

Второй способ оценки — мотать витки «на удачу». Им можно пользоваться, если новая конструкция перематывается проводом со старых рабочих катушек на том же сердечнике.

4 практических совета по наладке и сборке трансформатора: личный опыт

Сборка магнитопровода

Степень сжатия пластин влияет на шумы, издаваемые железом сердечника при вибрациях от протекающего по нему магнитного потока.

Одновременно не плотное прилегание железа с воздушными зазорами увеличивает магнитное сопротивление, вызывает дополнительные потери энергии.

Если для стягивания пластин используются металлические шпильки, то их надо изолировать от железа сердечника бумажными вставками и картонными шайбами.

Иначе по этому креплению возникнет искусственно созданный короткозамкнутый виток. В нем станет наводиться дополнительная ЭДС, значительно снижающая коэффициент полезного действия.

Состояние изоляции крепежных болтов относительно железа сердечника проверяют мегаомметром с напряжением от 1000 вольт. Показание должно быть не менее 0,5 Мом.

Расчет провода по плотности тока

Оптимальные размеры трансформатора играют важную роль для устройств, работающих при экстремальных нагрузках.

Для питающей обмотки, подключенной к бытовой проводке лучше выбирать плотность тока из расчета 2 А/мм кв, а для остальных — 2,5.

Способы намотки витков

Быстрая навивка на станке «внавал» занимает повышенный объем и нормально работает при относительно небольших диаметрах провода.

Качественную укладку обеспечивает намотка плотными витками один возле другого с расположением их рядами и прокладкой ровными слоями изоляции из конденсаторной бумаги, лакоткани, других материалов.

Хорошо подходят для создания диэлектрического слоя целлофановые (не из полиэтилена) ленты. Можно резать их от упаковок сигарет. Отлично справляется с задачами слоя изоляции кулинарная пленка для запекания мясных продуктов и выпечек.

Она же придает красивый вид внешнему покрытию катушки, одновременно обеспечивая ее защиту от механических повреждений.

Обмотки сварочных и пускозарядных устройств, работающие в экстремальных условиях с высокими нагрузками, желательно дополнительно пропитывать между рядами слоями силикатного клея (жидкое стекло).

Ему требуется дать время, чтобы засох. После этого наматывают очередной слой, что значительно удлиняет сроки сборки. Зато созданный по такой технологии трансформатор хорошо выдерживает высокие температурные нагрузки без создания межвитковых замыканий.

Как вариант такой защиты работает пропитка рядов провода разогретым воском, но, жидкое стекло обладает лучшей изоляцией.

Когда длины провода не хватает для всей обмотки, то его соединяют. Подключение следует делать не внутри катушки, а снаружи. Это позволит регулировать выходное напряжение и силу тока.

Замер тока на холостом ходу трансформатора

Мощные сварочные аппараты требуют точного подбора объема пластин и количества витков под рабочее напряжение, что взаимосвязано.

Выполнить качественную наладку позволяет замер тока холостого хода при оптимальной величине напряжения на входной обмотке питания.

Его значение должно укладываться в предел 100÷150 миллиампер из расчета на каждые 100 ватт приложенной мощности для трансформаторных изделий длительного включения. Когда используется режим кратковременной работы с частыми остановками, то его можно увеличить до 400÷500 мА.

Выполняя расчет трансформатора онлайн калькулятором или проверку его вычислений дедовскими формулами, вам придется собирать всю конструкцию в железе и проводах. При первых сборках своими руками можно наделать много досадных ошибок.

Чтобы их избежать рекомендую посмотреть видеоролик владельца Юность Ru. Он очень подробно и понятно объясняет технологию сборки и расчета. Под видео расположено много полезных комментариев, с которыми тоже следует ознакомиться.

Если заметите в ролике некоторые моменты, которые немного отличаются от моих рекомендаций, то можете задавать вопросы в комментариях. Обязательно обсудим.

Источник



Правильный расчет силового трансформатора

Сразу оговорюсь, что буду рассматривать однофазные трансформаторы для питания наземной стационарной радиоаппаратуры мощностью в десятки — сотни ватт, что имеет самое распространенное применение.

Прежде, чем приступить к расчетам трансформатора, которых может быть великое множество, необходимо договориться о критериях его качества, что непременно отразится на построении расчетных формул. Я считаю, что главный качественный показатель силового трансформатора для радиоаппаратуры это его надежность. Следствие надежности — это минимальный нагрев трансформатора при работе (иными словами он должен быть всегда холодным!) и минимальная просадка выходных напряжений под нагрузкой (иными словами, трансформатор должен быть «жестким»).

Другие критерии оптимизации кроме надежности, как-то: экономия меди, минимальные габариты или вес, высокая удельная мощность, удобство намотки, минимизация стоимости, ограниченный срок службы (чтобы новые покупали чаще, взамен сгоревших) я не считаю приемлемыми в инженерной практике. Методики «вышибания» из имеющегося типоразмера сердечника наимаксимальнейшей мощности, я тоже считаю неприемлемыми. — Такие трансформаторы долго не работают и греются как черти.

Хотите экономить — покупайте китайскую дешевку или советский ширпотреб. Но помните: «Скупой всегда платит дважды!».

Трансформатор должен работать и не создавать проблем. Это его главная функция.
Исходя из этого, будем его и рассчитывать!
Прежде всего, необходимо уяснить для себя некоторую минимальную теорию.

Итак: силовой трансформатор. Не идеальный. А по сему, эти неидеальности нужно понимать и правильно учитывать. Главных неидеальностей у силового трансформатора — две.
1. Потери на активном сопротивлении провода обмоток (зависят от материала провода и от плотности, протекающего через него тока).
2. Потери на перемагничивание в сердечнике, — на неком «магнитном сопротивлении» (зависят от материала сердечника и от значения магнитной индукции).

Именно эти две неидеальности должны быть разумно-минимальными, чтобы трансформатор удовлетворял требованиям надежности.

Активное сопротивление обмоток и, как следствие, их нагрев, определяется заложенной при расчете плотностью тока в проводе. А по сему, ее значение должно быть оптимальным. На основании большого практического опыта рекомендую использовать значение плотности тока в медном проводе не более 3,2 ампера на квадратный миллиметр сечения. При использовании серебряного провода, плотность тока можно увеличить до 3,5 ампер на квадратный миллиметр. А вот, для алюминиевого провода она не должна превышать значение 2 ампера на квадратный миллиметр. Указанные значения плотности тока категорически превышать нельзя! И из этих значений мы выведем формулы для определения диаметра провода обмоток, коими будем пользоваться в расчете.

Мотать обмотки более толстым проводом (при меньшем значении плотности тока) — можно. Более тонким — категорически нет! Однако, и более толстым проводом мотать обмотки не стоит, поскольку тогда мы рискуем не уложить нужное число витков в окно сердечника. А в хорошем трансформаторе должно быть много витков, чтобы свести к минимуму магнитные потери и чтобы не грелся его сердечник.

Читайте также:  Транзистор способен генерировать электрические колебания тока в эмиттере

Большинство холоднокатаных электротехнических сталей сохраняют свою линейность до значения магнитной индукции 1,35 Тесла или 13500 Гаусс. Но надо не забывать, что напряжение в розетке электросети может иметь разброс от 198 до 242 вольт, что соответствует нормированному 10-и процентному отклонению от номинала как в плюс, так и в минус. То есть, если мы хотим, чтобы во всем диапазоне питающих напряжений наш трансформатор работал надежно, надо его рассчитать так, чтобы сердечник не подходил бы к нелинейности при любом допустимом напряжении питающей сети. В том числе и при 242 вольтах. А по сему, на номинальном напряжении 220 вольт, магнитная индукция должна выбираться не более 1,2 Тесла или 12000 Гаусс.

Соблюдение этих двух указанных требований обеспечит высокий КПД трансформатора и высокую стабильность выходных напряжений при изменении тока нагрузки от нуля до максимального значения. Иными словами, мы получим очень «жесткий» трансформатор. Что и нужно! А вот увеличение расчетного значения индукции более 1,2 Тесла приведет не только к нагреву сердечника, но и к снижению «жесткости» трансформатора. Если расчитывать трансформатор на значение индукции более 1,3 Тесла, то мы получим «мягкий» трансформатор, выходные напряжения которого, плавно просаживаются при увеличении тока нагрузки от нуля до его номинального значения. Не для всех радиоустройств такие трансформаторы пригодны. Впрочем, в транзисторных схемах можно с успехом использовать стабилизатор выпрямленного напряжения. Но это — дополнительная схема, дополнительные габариты, дополнительная рассеиваемая мощность, дополнительные деньги и дополнительная ненадежность. Не лучше ли сразу сделать хороший трансформатор?

У мягкого питающего трансформатора напряжения на одних вторичных обмотках зависит от потребляемых токов в других — за счет просадки в общих цепях — на активном сопротивлении первичной обмотки и на магнитном сопротивлении. Например, если мы питаем от мягкого трансформатора двухтактный ламповый усилитель, работающий в режиме класса В или АВ, то изменение потребления по анодной цепи приведет к дополнительным колебаниям напряжения накала ламп. И, поскольку, напряжение накала ламп имеет также допустимый разброс в 10% от номинала, мягкий трансформатор внесет в это напряжение дополнительную нестабильность еще в 10, а то и в 15 процентов. А это неизбежно, сначала сократит выходную мощность усилителя на больших громкостях (инерционные просадки громкости), а с течением времени приведет к более ранней потери эмиссии у ламп.

Экономия на силовом трансформаторе аукается более дорогими потерями в радиолампах и в параметрах радиоустройств. Вот уж воистину: «Экономия — путь к разорению и нищете!»

В настоящее время наиболее распространены магнитопроводы следующих конфигураций:

Дальнейший расчет трансформатора будем вести по строгим классическим формулам из учебника электротехники:

1. При соблюдении достигнутых договоренностей КПД трансформатора (при наиболее часто встречающихся мощностях 80 — 200 Вт) будет не ниже 95 процентов, а то и выше. Поэтому, в формулах будем использовать значение КПД = 0,95.

2. Коэффициент заполнения окна сердечника медью для тороидальных трансформаторов составляет 0,35. Для обычных каркасных броневых или стержневых — 0,45. При широких каркасах и большой длине намотки одного слоя (h), значение Km может доходить и до значения 0,5 . 0,55, как, например, у магнитопроводов типа Б69 и Б35, параметры которых приведены на рисунке. При бескаркасной промышленной намотке Km может иметь значения и до 0,6 . 0,65. Для справки: теоретический предел значения Km для слоевого размещения круглого провода без изоляции в квадратном окне — 0,785.

Приведенные практические значения Km достижимы лишь при ровной укладке провода строго виток к витку, тонкой межслойной и межобмоточной изоляции и заделке выводов за пределами окна сердечника (на боковых вылетах обмотки). При изготовлении каркасных обмоток в любительских условиях, в условиях лабораторного или опытного производства, лучше принимать значение Km = 0,45 . 0,5.

Разумеется, все это касается обычных силовых трансформаторов для ламповой или транзисторной аппаратуры, с выходными и питающими напряжениями до 1000 вольт, где не предъявляются повышенные изоляционные требования к обмоткам и к заделке их выводов.

3. Габаритная мощность трансформатора, в ваттах, на конкретно выбранном сердечнике определяется по формуле:

Где:
η = 0,95 — КПД трансформатора;
Sc и So — площади поперечного сечения сердечника и окна, соответственно [кв. см];
f — нижняя рабочая частота трансформатора [Гц];
B = 1,2 — магнитная индукция [T];
j — плотность тока в проводе обмоток [A/кв.мм];
Km — коэффициент заполнения окна сердечника медью;
Kc = 0,96 — коэффициент заполнения сечения сердечника сталью;

4. Задавшись напряжениями обмоток, количество необходимых витков можно рассчитать по такой формуле:

Где:
U1, U2, U3, . — напряжения обмоток в вольтах, а n1, n2, n3, . — число витков обмоток.

Если изначальные договоренности нами в точности соблюдены, и мы делаем жесткий трансформатор, то число витков как первичной, так и вторичной обмоток определяется по одной и той же формуле. Если же мы будем использовать трансформатор при предельном значении мощности для имеющегося типоразмера сердечника, рассчитанное по этой формуле, или мы проектируем маломощные трансформаторы (менее 50 Вт), с большим числом витков и тонким проводом обмоток, то число витков вторичных обмоток следует увеличить в 1/√η раз. С учетом нашей договоренности, это составит 1,026 или больше рассчетного на 2,6%.

Что же касается напряжений накальных обмоток, то здесь стоит вспомнить указание самой главной книги по радиолампам: «Руководство по применению приемно-усилительных ламп», выпущенное для радиоинженеров-разработчиков Государственным комитетом по электронной технике СССР в 1964 году.

Надо открыть это руководство на 13-ой странице, внимательно рассмотреть график на рисунке 1, и уяснить из него, что оптимальное напряжение накала радиоламп для сохранения их максимальной надежности и, соответственно, долговечности составляет 95% от номинала. Что для ламп с напряжением накала 6,3 вольта, составит ровно 6 вольт. Поэтому не надо увеличивать число витков накальных обмоток на 2,6%. Пусть будет, как есть.

5. Определяем токи обмоток:
Ток первичной обмотки: I1 = P / U1
При использовании двухполупериодного выпрямителя средний ток каждой половины обмотки будет в 1,41 раза (корень из двух) меньше, чем необходимый выпрямленный ток нагрузки. В случае использования мостового полупроводникового выпрямителя, ток обмотки будет в 1,41 раза больше, чем выпрямленный ток нагрузки. Поэтому, надо не забыть в формулы для определения диаметров проводов подставлять потребления по постоянному току, в первом случае поделенные, а во втором, умноженные на 1,41.

6. Рассчитываем диаметры проводов обмоток исходя из протекающих в них токов по следующим формулам (для меди, серебра или алюминия):

Полученные значения округляем в сторону увеличения до ближайшего стандартного диаметра провода.

7. Делаем проверку расчета. Мощность первичной обмотки — произведение питающего напряжения на потребляемый ток, должна быть равна сумме мощностей всех вторичных обмоток. То есть: U1 x I1 = U2 x I2 + U3 x I3 + U4 x I4 + .

Намотав трансформатор, для проведения дальнейших расчетов выпрямителя необходимо замерить некоторые его параметры.

Активное сопротивление первичной обмотки.

Активное сопротивление вторичных обмоток.

Точные значения напряжений вторичных обмоток, разумеется, проверив, чтобы в сети при этом напряжение составляло 220 вольт. Если же оно отличается от номинала (но находится в пределах 198 — 242), то пропорционально пересчитать измеренные значения.

Ток холостого хода первичной обмотки (какой ток трансформатор потребляет из сети при отсутствии нагрузки на его вторичных обмотках).

К примеру,
Тороидальный силовой двухобмоточный трансформатор, мощностью 530 Ватт, который я сам, вручную, мотал в 1982 году на сердечнике от сгоревшего бытового переходного 400-ваттного автотрансформатора 127/220 вольт, называвшегося в торговой сети «Юг-400», имел следующие параметры:
Магнитная индукция при напряжении 220 вольт — 1,2 Тесла,
Число витков первичной обмотки (220 вольт) — 1100.
Диаметр провода первичной обмотки — 0,96 мм.
Число витков вторичной обмотки (127 вольт) — 635.
Диаметр провода вторичной обмотки — 1,35 мм.
При этом, ток холостого хода получился 7 (семь!) миллиампер.

На протяжении восемнадцати лет, не выключаясь, через этот трансформатор у меня питался «холостяцкий» холодильник «Саратов-II» (тот самый, при работе с которым сгорел автотрансформатор «Юг») после перевода нашего района на напряжение сети 220 вольт.

Для сравнения.
«Родная», промышленная, обмотка того самого трансформатора «Юг» на 220 вольт содержала 880 витков. Не удивительно, что он грелся как сволочь, даже будучи лишь автотрансформатором, и в конце-концов сгорел. Да, это и понятно, ведь, советская бытовая промышленность была заинтересована в увеличении покупательского спроса. Ну, вот и достигалось это не широкой номенклатурой товаров, а ограниченным сроком их работы!

Не надо экономить, — это, ведь, то же самое, что самому себе гадить.

Источник