Меню

Расчет тока насыщения сердечника

Тема: Предельный ток, для индуктивности на феррите (насыщение)

Обратные ссылки
Опции темы

Предельный ток, для индуктивности на феррите (насыщение)

Кто может объяснить, как посчитать или приблизительно оценить предельный ток для индуктивности намотанной, например, на ферритовом кольце?
С толщиной проводника в принципе всё ясно. А вот насыщение магнитопровода — вот в чём вопрос!

Хочу использовать повышающий DC-DC преобразователь LM2704. Для его применения нужна индуктивность 2-10 мкГн с допустимым током да 1А. Вот собственно и возник вопрос на каком кольце её мотать
Только не надо предлагать типо намотать на здоровенном кольце, чтобы уж наверняка не промахнуться. Устройство портативное, размер и вес ограниченны!

Этот же момент беспокоит ещё и в передатчике 3,5 МГц для СРП.
Там для согласования с антенной.
. в качестве антенны провод 5-8 метров вертикально закинутый на дерево, эквивалентное сопротивление такой антенны 5-15 кОм и емкость 20-40 пФ.
. так вот для согласования выходного каскада передатчика с этой антенной намечается П-контур. В антенну пологается загнать мощность 1-2 Вт, так вот как выбрать кольцо для индуктивности П-контура? Индуктивность получается порядка 5-20 мкГн

Повторюсь, что вопросы возникли из-за желания сделать устройство как можно меньших габаритов! После батареек — кольца самые габаритные детали. Всё остальное просто мизер-SMD

ВложенияВложения

  • LM2704.pdf (310.2 Кб, Просмотров: 2100)
  • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!
  • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!
  • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!
  • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

Сообщение от UN7CI

Идею понял, не уяснил только конкретную реализацию измерения и получение результата в цифрах

Повышаем амплитуду напряжения (линейно), соответственно и ток толжен расти линейно. Пока нет насыщения наша индуктивность — линейный элемент. А в момент насыщения и выше? Возрастание тока от напряжения прекратится? или что? я запутался
В итоге мне необходимо оценть, смогу ли я на данном кольце сделать индуктивность 2-10 мкГн смакс током до 1А

  • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

Сообщение от EvgenF

  • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!
  • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!
  • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

Присмотрел дроссель SDR0604-100ML фирмы Bourns

Я прикрепил файл с таблицей, и хотел узнать, что значит столбец SRF Min. (MHz) ??
Знающие люди, поясните пожалуйста!

Меня интересует могу ли я использовать такой же дроссель в качестве индуктивности в выходном согласующем П-фильтре для согласования выходного каскада передатчика (3,5 МГц, 1-2 Вт) с антенной (провод 5-8 метров вертикально на дереве, экв. сопрот. антенны

5. 10 кОм) ??
По частотам вроде подходит (загадочная SRF Min. (MHz))
А вот по мощи вопрос остаётся открытым. У катушки предельный параметр — макс. ток DC. А вот как его с радиочастотной мощностью (в согласующем П-звене) сопоставить и определить, потянет или в насыщение войдёт — ответ не ясен.
Подскажите пожалуйста

МиниатюрыМиниатюры

  • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

Сообщение от EvgenF

Присмотрел дроссель SDR0604-100ML фирмы Bourns

Я прикрепил файл с таблицей, и хотел узнать, что значит столбец SRF Min. (MHz) ??
Знающие люди, поясните пожалуйста!

Меня интересует могу ли я использовать такой же дроссель в качестве индуктивности в выходном согласующем П-фильтре для согласования выходного каскада передатчика (3,5 МГц, 1-2 Вт) с антенной (провод 5-8 метров вертикально на дереве, экв. сопрот. антенны

5. 10 кОм) ??
По частотам вроде подходит (загадочная SRF Min. (MHz))
А вот по мощи вопрос остаётся открытым. У катушки предельный параметр — макс. ток DC. А вот как его с радиочастотной мощностью (в согласующем П-звене) сопоставить и определить, потянет или в насыщение войдёт — ответ не ясен.
Подскажите пожалуйста

Читайте также:  Как рассчитать ток автомата по нагрузке

Там черным по белому написано , что назначение —
— преобразователи постоянного тока (DC/DC) ,
а частота измерений — 1 кГц .
А частота в мегагерцах — это гарантированная
собственная (т.к. индуктивность не идеальная)
частота среза импульсной помехи .

Эта катушка для радиочастот категорически непригодна .
Лучше всего не изголяться , а рассчитать и намотать на отечественном кольце из ВЧ феррита .

  • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

1) добротность Q=25 на частоте 2,5 МГц, чем же непригодна эта индуктивность для моей частоты 3,5 МГц ? На чем основывается ваше утверждение?

А SFR это возможно собственная резонансная частота катушки?

2) допустим намотаю сам на колце. Какого размера брать? Опять же по формулам я определю максимальный ток DC для индуктивности на ферритовом кольце. Но как мне радиочастотную мощность то привести к этому параметру?
Как всетаки определить, какую мощность способна пропустить индуктивность (допустим как элемент П-фильтра) на ферритовом кольце, без работы в режиме насыщения? Величину постоянного тока знаем, а ВЧ мощность-то как тут сравнить?

  • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!
  • Поделиться
    • Поделиться этим сообщением через
    • Digg
    • Del.icio.us
    • Technorati
    • Разместить в ВКонтакте
    • Разместить в Facebook
    • Разместить в MySpace
    • Разместить в Twitter
    • Разместить в ЖЖ
    • Разместить в Google
    • Разместить в Yahoo
    • Разместить в Яндекс.Закладках
    • Разместить в Ссылки@Mail.Ru
    • Reddit!

Сообщение от EvgenF

1) добротность Q=25 на частоте 2,5 МГц, чем же непригодна эта индуктивность для моей частоты 3,5 МГц ? На чем основывается ваше утверждение?

А СФР это возможно собственная резонансная частота катушки?

2) допустим намотаю сам на колце. Какого размера брать? Опять же по формулам я определю максимальный ток ДЦ для индуктивности на ферритовом кольце. Но как мне радиочастотную мощность то привести к этому параметру?
Как всетаки определить, какую мощность способна пропустить индуктивность (допустим как элемент П-фильтра) на ферритовом кольце, без работы в режиме насыщения? Величину постоянного тока знаем, а ВЧ мощность-то как тут сравнить?

В данном случае добротность — это отношение
активного сопротивления провода и модуля реактивного
сопротивления , равного омега*ф .
Попросту этот параметр характеризует ,
что провод при изготовлении не украли (то есть
взяли паспортной толщины , а не меньшей (разницу
в весе можно сдать в ВТОРЦВЕТМЕТ , это китайцы
тоже знают. ) ) . А чтобы значение выглядело
прилично большим , частоту измерения максимально
завышают (Q растет с ростом ф изм.).
Только нигде не написано , на каком токе эти измерения проводят , и сколько секунд (чтоб дым не успел пойти).

По поводу собственной резонансной частоты —
— может такое быть , это частота контура ,
образованного собственной Л и С монтажа (паечных
площадок ) . только здесь это не в пень .

Леонид3 правильно заметил — считайте ток .
А мощьность получайте через сопротивление
(точнее- импеданс антены ) .

Источник

Трансформаторы тока в переходных режимах

Измерительные трансформаторы являются неотъемлемой частью любой энергоустановки. С помощью измерительных трансформаторов осуществляется учет электроэнергии, измерения параметров сети, они являются первичными источниками сигнала для релейных защит, устройств телемеханики и автоматики. Мы уже затрагивали тему выбора трансформаторов тока в целях учета электрической энергии, сегодня уделим внимание общим принципам их классификации и конструкции, а также нормативно-технической базе в части обеспечения функционала релейных защит.

В первую очередь нужно отметить, что важным аспектом работы современных микропроцессорных релейных защит является их быстродействие, которое должно обеспечиваться не только собственными возможностями программно-технических комплексов устройств РЗА, но и возможностями первичных аналоговых преобразователей, таких как трансформаторы тока.

Токовые цепи релейных защит, как правило, питаются таким же образом, как приборы учета и устройства измерения — источником аналогового сигнала для них являются трансформаторы тока. Отличие состоит в условиях работы: измерительные приборы работают в классе точности при фактическом первичном токе, не превышающем номинального, тогда как устройства релейной защиты рассчитаны на работу в режимах короткого замыкания или перегрузки, когда фактический ток значительно превышает номинальный ток трансформатора. К тому же, такие режимы являются переходными — в составе первичного тока появляются свободные апериодические составляющие.

Как известно, работа трансформатора тока характеризуется уравнением намагничивающих сил: I1 • w1 + I2 • w2 = Iнам • w1

I1 ток в первичной обмотке;
w1количество витков первичной обмотки;
I2 ток во вторичной обмотке;
w2 количество витков вторичной обмотки;
Iнам ток намагничивания.

Из приведенного выражения видно, что первичный ток трансформируется во вторичную обмотку не полностью — часть его уходит на формирование тока намагничивания, создающего рабочий магнитный поток в сердечнике ТТ (поток, формирующий ЭДС во вторичной обмотке, под воздествием которой там и протекает ток). Это происходит как в установившихся, так и в переходных режимах. В переходном процессе каждая составляющая, протекая по первичной обмотке трансформатора тока, делится на две части: одна трансформируется во вторичную обмотку, а вторая идет на намагничивание сердечника. В связи с тем, что скорость изменения апериодической составляющей гораздо меньше скорости изменения переменной составляющей, а периодическая составляющая плохо трансформируется во вторичную цепь и большая ее часть идет на насыщение сердечника. Это, в свою очередь, ухудшает трансформацию периодической составляющей во вторичную цепь и также повышает долю этого тока в токе намагничивания. Возникает так называемое, «подмагничивающее действие». Учитывая, что в сердечниках ТТ во многих случаях имеет место остаточная магнитная индукция, которая сохраняется в течение длительного времени (дни, недели и даже месяцы), наихудший режим работы возникает в случае, если остаточный магнитный поток в сердечнике совпадает по направлению с магнитным потоком, создаваемым апериодической составляющей тока намагничивания.

Читайте также:  Сопротивление по постоянному току вах

В результате трансформатор начинает работать в режиме насыщения, т.е. когда ток намагничивания растет значительно быстрее рабочего магнитного потока.

Все вышеописанное вносит искажения в величину и фазу вторичного тока, создавая тем самым погрешность (именно величина тока намагничивания определяет точность работы ТТ). И, несмотря на то, что в релейных защитах точность траснформации имеет гораздо меньшее значение, чем в измерительной технике, погрешности могут быть настолько велики, что могут вызвать существенную задержку срабатывания устройств РЗА, а также их ложное действие или отказ. Это особенно актуально для дифференциальных защит, т.к. вместе с токами намагничивания ТТ возрастают и токи небаланса в схеме защиты. Также ситуацию может ухудшить применение промежуточных быстронасыщающихся трансформаторов тока.

Существует несколько способов борьбы с остаточной намагниченностью сердечника, как с одной из основных причин возникновения насыщения. Один из методов — применение трансформаторов тока с сердечниками без стали, обладающих линейными свойствами. Но использование таких трансформаторов тока может быть весьма ограниченным, в связи с небольшой мощностью вторичных обмоток. Второй метод (наиболее распостраненный) — изготовление сердечников из электротехнической стали, имеющих немагнитные зазоры. Этот метод по сравнению с использованием сердечников без стали позволяет конструировать сердечники меньшего сечения. Однако в России трансформаторы тока с такими сердечниками не выпускались и не выпускаются. Нужно отметить, что европейские производители успешно производят такие изделия в вполне приемлемых габаритах, размещая в корпусе трансформатора как обмотки с привычными нам классами точности, так и специализированные обмотки для работы РЗА в переходных процессах. Почему же сложилась такая ситуация? Наверное, отнюдь не потому, что российские конструкторы гораздо хуже европейских знают свое дело и не потому, что эксплуатирующие организации не желают располагать таким оборудованием.

Рассмотрим действующую нормативную базу, регламентирующую производство трансформаторов тока. Действующий сегодня ГОСТ 7746-2001 «Трансформаторы тока. Общие технические условия» включает в себя два класса точности релейных защит — 5Р и 10Р (пределы допускаемых погрешностей — см. Таблицу 1). Ни в одном из этих классов не нормируется работа ТТ в переходных режимах — указанные в ГОСТ погрешности имеют место при нормальных режимах и токе предельной кратности (также в установившемся режиме).

Таблица 1. Пределы допускаемых погрешностей вторичных обмоток для защиты в установившемся режиме при номинальной вторичной нагрузке

Источник

Выбор и расчёт сердечника трансформатора

Площадь сечения сердечника трансформатора -очень важный параметр. На величину магнитного потока, создаваемого в сердечнике трансформатора, кроме числа витков первичной обмотки и величины протекающего в ней тока, оказывает влияние и размер самого сердечника. Если трансформатор имеет сердечник малого размера, то создать в таком сердечнике магнитный поток большой величины нельзя и на выходе такого трансформатора получить большую мощность не удастся. Это объясняется тем, что материал, из которого изготовлен сердечник, имеет способность насыщаться. Явление насыщения трансформатора состоит в том, что, несмотря на увеличение тока в обмотке, магнитный поток в сердечнике, достигнув некоторой максимальной величины, далее практически не изменяется.

Предположим, что имеется катушка с железным сердечником, по которой протекает постоянный ток. При увеличении тока магнитный поток будет также увеличиваться. При малых величинах тока возрастание потока окажется пропорциональным увеличению тока. Затем поток будет нарастать всё медленнее и наконец при некоторой величине тока перестанет увеличиваться совсем. Наступит насыщение стали (насыщение сердечника).

В трансформаторе режим насыщения приводит к тому, что передача энергии из первичной обмотки во вторичную частично прекращается. Нормальная работа трансформатора возможна лишь тогда, когда магнитный поток в его сердечнике изменяется пропорционально изменению тока в первичной обмотке. Для выполнения этого условия необходимо, чтобы сердечник не был в состоянии насыщения, а это возможно лишь тогда, когда его объём и сечение не меньше вполне определённой величины. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.

Расчёт мощности трансформатора . Формула.

На практике часто приходится рассчитывать сечение сердечника по заданной мощности трансформатора:

Если известно сечение сердечника, то можно ориентировочно рассчитать мощность трансформатора по формуле:

Источник



Насыщение ферритовых сердечников, а также сердечников из
распылённого железа и трансформаторной стали.
Онлайн калькуляторы — как не загнать сердечник в насыщение.
Зависимость магнитной индукции от тока в обмотке и количества витков.
Влияние воздушного зазора на режим работы магнитопровода.

Итак, мы решили поразвлечься и всерьёз сваять что-нибудь стоящее своими руками, как то: индуктивный фильтр для блока питания, дроссель для усилительного каскада, выходной трансформатор для однотактного УНЧ, или фиг его знает — чего ещё похуже.
Что объединяет этих жертв нашего волеизъявления?
Каждое из перечисленных моточных изделий содержит магнитомягкий магнитопровод, и через каждое из них протекает постоянный ток. И если к переменному току, даже значительных величин, магнитопровод относится сдержанно-положительно, то к постоянке питает явную антипатию и может резко войти в насыщение от её переизбытка.
При насыщении сердечника его относительная магнитная проницаемость резко уменьшается, что влечёт за собой пропорциональное уменьшение индуктивности изделия.

Читайте также:  Как регулировать пусковой ток

На этой странице порассуждаем о тороидальных магнитопроводах из ферритов, распылённого железа, электротехнической стали и их способности противостоять постоянному току.

Для наглядности рассмотрим график зависимости B от H , называемый петлёй гистерезиса, для распространённого, где-то даже народного, феррита марки N87 фирмы EPCOS.

Здесь:
H — напряжённость магнитного поля, а
B — магнитная индукция в сердечнике.

Зависимость приведена при температуре изделия +25 гр.С.

Интересующие нас параметры из datasheet-а производителя:

Начальная магнитная проницаемость —
µ = 2200 ,
Магнитная индукция насыщения при H=1200 А/м — Bнас = 0,490 Т .

Если внимательно присмотреться к графику, то легко заметить, что в области малых и средних индукций зависимость практически линейна и её наклон примерно равен µ . Именно на этот участок в большинстве случаев и должен приходиться диапазон рабочих индукций.
При дальнейшем повышении напря- жённости магнитного поля магнитная проницаемость начинает быстро падать, пока не наступает момент, при котором дальнейший рост магнитной индукции в сердечнике стопорится на определённой величине. В спецификациях это величина приводится, как значение магнитной индукции насыщения — Bнас , или Bs , т.е. величина, при которой значение магнитной проницаемости падает до неприлично малых значений.

Так что давайте без лишних прелюдий и телодвижений сделаем фундаментальный вывод — для нормальной работы катушки, намотанной на магнитопроводе, рабочие значения магнитной индукция в сердечнике не должны превышать величину 0,75 — 0,8 от значения справочной характеристики Bнас (Bs) .

Переходим к незамысловатым формулам!

Магнитная индукция в сердечнике равна:
B = µ×µ×n×I/l , где:
µ — магнитная проницаемость сердечника,
µ = 4π×10 -7 (Гн/м) — физическая константа, называемая магнитной постоянной,
n — количество витков обмотки,
I — ток в обмотке,
l — средняя длина магнитного контура.

Поскольку рабочий режим магнитопровода мы выбираем в линейной области петли гестерезиса, то в качестве значения µ можно использовать паспортную характеристику начальной магнитной проницаемости сердечника.

Теперь можно рисовать калькулятор для расчёта магнитной индукции в катушке с учетом выбранного типа сердечника и конкретного количества витков обмотки.

Для удобства восприятия, помещу сюда и значение индуктивности полученного моточного изделия. Формулы для вычислений этого параметра выглядят следующим образом:
L=0,0002×µ×h×n 2 ×ln(Dвнешн/Dвнутр) при соблюдении условия Dвнешн/Dвнутр>1,75 ,
L=0,0004×µ×h×n 2 ×(Dвнешн-Dвнутр)/(Dвнешн+Dвнутр) при Dвнешн/Dвнутр

ТАБЛИЦА РАСЧЁТА МАГНИТНОЙ ИНДУКЦИИ В КАТУШКЕ С ТОРОИДАЛЬНЫМ СЕРДЕЧНИКОМ.

Увы, но значительных токов через катушки на ферритовых кольцах, или торах из трансформаторной стали нам пропустить не удастся — нужны танцы с бубнами в виде немагнитных воздушных зазоров.
Другое дело — сердечники из распылённого железа, представляющие собой магнитопровод с немагнитными зазорами, технологически распределёнными по всему объёму магнитопровода. Их очевидный плюс — высокая индукция насыщения, минус — малые величины магнитной проницаемости.

В связи с этим, в некоторых случаях (в основном на низких частотах) предпочтительным является использование именно сердечников из ферритов (или железа) с пропилом для создания малого воздушного зазора. Данная мера позволяет в значительной мере увеличить величину допустимых токов через катушку без ввода магнитопровода в режим насыщения. Длина этого воздушного зазора позволяет регулировать как величину максимально-допустимой напряжённости магнитного поля в сердечнике, так и параметр изменившейся магнитной проницаемости, называемой эквивалентной магнитной проницаемостью сердечника с зазором — µэф . Значение этого параметра вычисляется по формуле:
µэф = µ/(1+lз×µ/l) , где:
µ — начальная магнитная проницаемость сердечника,
l — средняя длина магнитного контура,
lз — длина воздушного зазора (толщина пропила).

Давайте посчитаем этот параметр.

РАСЧЁТ ЭКВИВАЛЕНТНОЙ МАГНИТНОЙ ПРОНИЦАЕМОСТИ СЕРДЕЧНИКА С ЗАЗОРОМ.

Таблица даёт приблизительную, но, в большинстве своём, приемлемую точность расчёта при величинах длины воздушного зазора 0,2-2 мм.

Для Ш-образных сердечников в качестве внутреннего и внешнего диаметров следует вводить справочную характеристику длины магнитного контура le .

Определив ниже магнитную проницаемость сердечника с зазором, следует ввести это значение в предыдущий калькулятор и заново произвести вычисления магнитной индукции и индуктивности катушки.

Для наглядности приведу два графика петли гистерезиса Ш-образного ферритового сердечника марки N87 без немагнитного воздушного зазора и с зазором около 1 мм. Феррит ETD 59/31/22, достаточно крупный, с средней длиной магнитного контура le = 139 мм.
Механизмы влияния зазора у Ш-образных и тороидальных сердечников абсолютно идентичны.

Эквивалентная магнитная проницаемость сердечника с зазором уменьшилась и составила величину 160 единиц. Соответственно, уменьшился и наклон петли, позволяя сердечнику работать при гораздо больших значениях напряжённости магнитного поля вдали от области магнитной индукции насыщения сердечника.
А учитывая то, что значение напряжённости H прямо пропорционально, протекающему через катушку току, можно с уверенностью сказать, что область безопасных индукций теперь соответствует более чем на порядок большим токам в обмотке.

Линейная область петли гистерезиса также заметно увеличилась, что позволяет увеличить максимальные рабочие значения магнитной индукция в сердечнике вплоть до 0,85-0,9 от значения справочной характеристики Bнас (Bs).

Источник