Меню

Расчет токов кз нулевой последовательности

Пример расчета релейной защиты и автоматики участка сети напряжением 220 кВ

Произвести расчет уставок и выбрать принципы релейной защиты и автоматики участка сети напряжением 220 кВ, приведенного на рис.1. Параметры генераторов, трансформаторов, линий, а также режимы заземления нейтралей трансформаторов, места установки коммутационной аппаратуры и расчетные точки КЗ даны на рис.1. Все линии 220 кВ оборудованы грозозащитными тросами.

  1. Составление схемы замещения прямой последовательности
  2. Составление схемы замещения нулевой последовательности
  3. Выбор расчетных режимов и вычисление токов короткого замыкания
  4. Вычисление токов однофазных КЗ.

Составление схемы замещения прямой последовательности

Для расчета токов КЗ в именованных единицах принимаем среднее номинальное напряжение сети Uср.н = 230 кВ.

Сопротивление генератора станции А

Сопротивление трансформатора блока станции А

Сопротивления автотрансформатора подстанции Б

где напряжения короткого замыкания обмоток автотрансформатора:

Рис.1. Исходная схема участка сети к примеру расчета

Сопротивления трансформатора подстанции Г

где напряжения короткого замыкания обмоток

Сопротивления трансформатора подстанции Д

Сопротивление прямой последовательности одной цепи линии АБ

Сопротивление прямой последовательности линии БВ

Сопротивление прямой последовательности линии БГ

Сопротивление отпайки к подстанции Д

На основании исходной схемы сети составляется схема замещения прямой (обратной) последовательности (рис.2). Точки 2, 4, 6, 9 приняты в средине линий.

Дробные значения у сопротивлений указывают: номер сопротивления (ветви) – в числителе, величину сопротивления – в знаменателе.

Рис.2. Схема замещения прямой (обратной) последовательности для рассматриваемого участка сети

Составление схемы замещения нулевой последовательности

1. Сопротивления нулевой последовательности трансформаторов и автотрансформаторов:

2. Сопротивления нулевой последовательности одноцепных линий определяются с учетом табл.1:

3. Сопротивления нулевой последовательности двуцепной линии определяются с учетом данных (Xл = 32Ом) и рис.3:

4. Составляется схема замещения нулевой последовательности (рис.3). Обозначения на схемы приняты такие же, как и для схемы замещения прямой последовательности.

Рис.3. Схема замещения нулевой последовательности для рассматриваемого участка сети

Выбор расчетных режимов и вычисление токов короткого замыкания

1. Выбор расчетных режимов. Основные режимы, при которых расчету подлежат все точки КЗ, указанные на соответствующих схемах замещения:а) максимальный – в работе находятся все генераторы, трансформаторы и линии при максимальном режиме смежной системы;б) минимальный – отключен один блок на станции А при минимальном режиме работы смежной системы.

Дополнительные расчетные режимы для согласования защит линий, соответствующие максимальным и минимальным токам защит линий и требуемым значениям коэффициентов чувствительности:

а) максимальный режим – отключена и заземлена одна из параллельных линий, расчетные точки КЗ 1, 2, 3;

б) максимальный режим – каскадное отключение КЗ у шин подстанции А (точка 1′) и у шин подстанции Б (точка 3′);

в) то же, что и п.б, но в минимальном режиме;

г) расчетные режимы для согласования защит линий.

2. Вычисление токов трехфазных КЗ. Определение токов КЗ для каждой точки производится в следующем порядке:

а) сворачивается схема замещения (прямой последовательности) относительно данной точки КЗ с учетом того, что ЭДС всех источников равны и совпадают по фазе;

б) вычисляется ток КЗ в месте повреждения по (1.4);

в) полный ток в месте повреждения распределяется по ветвям схемы замещения.

В качестве примера приведем расчет токов КЗ для точки 2. После преобразований сопротивлений со стороны подстанций А и Б схема замещения имеет вид, приведенный на рис.4,а.

Рис.4. Преобразование схемы замещения прямой последовательности при КЗ в точке 2

Затем, объединяя источники питания, преобразуем треугольник сопротивлений 11, 29, 30 в эквивалентную звезду:

Далее после простейших преобразований получим (рис.1,б,в):

Полный ток в месте повреждения:

Ток повреждения, протекающий со стороны подстанции А, ветвь 9 (то же ветвь 34):

Ток ветви 10 (то же ветвь 35):

При КЗ посредине линии ток неповрежденной линии находится:

Примечание: Ток неповрежденной линии совпадает по направлению с током поврежденной ветви, имеющим большее значение (в примере протекает от подстанции А к подстанции Б).

Результаты расчетов токов трехфазных КЗ для соответствующих точек и режимов приведены в табл.1.

Определение токов при двухфазных КЗ производится по данным табл.1 с учетом соотношения (1.5).

Таблица 1. Результаты расчетов токов при трехфазных коротких замыканиях.

Источник

Что такое напряжение нулевой последовательности? Схемы, применение, физический смысл

Система трехфазных напряжений в нормальном режиме работы является симметричной. Но, стоит произойти короткому замыканию, как симметрия нарушается. Для удобства распознавания видов КЗ и проведения расчетов применяется метод симметричных составляющих. Согласно ему любую трехфазную систему с момента КЗ можно, для удобства расчетов, представить в виде суммы напряжений трех симметричных систем:

  • прямой последовательности;
  • обратной последовательности;
  • нулевой последовательности.

Все они являются мнимыми величинами, не существующими на самом деле. Но с помощью некоторых ухищрений их можно сделать реально осязаемыми, и применить на практике.

Устройства, выделяющие из системы трехфазных напряжений напряжение нужной последовательности, называют фильтрами. Рассмотрим одно из таких устройств, применяемое на практике для фиксации замыканий на землю.

Назначение дополнительных обмоток ТН

Особенностью напряжения нулевой последовательности (3Uo) является тот факт, что оно не появляется в результате междуфазных замыканий, а является только следствием КЗ на землю. Причем, не важно, где происходит замыкание: в электроустановке с изолированной или глухозаземленной нейтралью.

Фильтром для выделения этой величины являются специальные обмотки трансформаторов напряжения (ТН).

Этот процесс происходит по-разному в зависимости от конструкции трансформаторов. Если используются три одинаковых ТН, у каждого из них имеется специальная обмотка, выводы которой обозначены буквами «Ад» и «Хд». Эти обмотки соединяются между собой последовательно, с обязательным соблюдением направления. Провод от вывода «Хд» фазы «А» идет на вывод «Ад» фазы «В» и так далее. Такая схема включения называется разомкнутым треугольником.

Читайте также:  Если не заводится генератор тока

napryg 3

В итоге на оставшихся разомкнутыми выводах «Ад» первой фазы и «Хд» последней в любого случае повреждения в сети, связанного с замыканием на землю, появится 3Uo. Можно его измерить, а также использовать для работы сигнализации, подключив к обмотке реле напряжения. Можно использовать и для работы защит, но об этом – немного позднее.

В трансформаторах напряжения, объединяющих обмотки трех фаз в одном корпусе, не требуется выполнять внешние соединения для фильтра 3Uo. Все уже выполнено заранее, внутри корпуса трансформатора.

napryg 2

Если в предыдущем случае выделение 3Uo происходит путем последовательного сложения векторов напряжений за счет коммутации проводников, то внутри трехфазного ТН это происходит за счет сложения магнитных потоков в сердечнике. Поэтому, в зависимости от его формы, внутренняя схема соединений обмоток Ад-Хд может отличаться.

napryg 4

Но сути это не меняет: в итоге на корпусе рядом с выводами основных обмоток, использующихся для учета, измерения и защиты, появляется выводы от объединенной дополнительной обмотки 3Uo. Обозначается она точно так же, как и на однофазных ТН.

Интересное видео о ТЗНП смотрите ниже:

Сигнализация о замыкании на землю

В сетях 6-10 кВ, где нейтраль изолирована, работа с «землей» возможна некоторое время. Но замыкание нужно активно искать. И чем раньше начнется поиск, тем лучше.

Для контроля изоляции используются вольтметры, подключенные к обмоткам ТН на фазные напряжения.

В сети без повреждений все они показывают одинаковую величину. Стоит случиться однофазному замыканию, как показания вольтметра поврежденной фазы снизятся. Вольтметр покажет ноль при полном устойчивом КЗ. Так определяется фаза с повреждением.

Но, чтобы взглянуть на вольтметры, нужно сгенерировать предупредительный сигнал.

Для этого используется контроль величины 3Uo с помощью реле.

При его срабатывании зажигается табло, привлекающее к себе внимание.

Величину 3Uo принято регистрировать с помощью самопишущих приборов, а также она обязательно записывается аварийными осциллографами или микропроцессорными терминалами в момент любой аварии, даже не связанной с замыканиями на землю.

Еще один пример применения сигнализации, работающей от 3Uo, связан с эксплуатацией установок компенсации емкостных токов.

Отключать разъединитель дугогасящей катушки запрещено при наличии «земли» в сети. Для этого рядом с коммутационным устройством устанавливается индикаторная лампа, либо блок-замок рукоятки блокируется при наличии 3Uo системой автоматики.

Использование 3Uo в составе защит

В сетях с изолированной нейтралью совместное использование напряжений и токов нулевой последовательности позволяет определить направление на точку короткого замыкания. Но в настоящее время существуют более эффективные методы точного определения места повреждения в этих сетях.

Гораздо большую пользу подобная схема приносит в сетях в глухозаземленной нейтралью (ЛЭП-110 кВ и выше).

Подключение напряжения 3Uo (нулевой последовательности) и тока 3Io к обмоткам реле направления мощности позволяет определить, произошло ли однофазное КЗ в линии или вне ее. Так обеспечивается селективность работы защиты от однофазных замыканий на землю.

Источник

Расчет токов однофазного кз в сети 0,4 кВ

В данной статье речь пойдет об определении величины тока однофазного тока к.з. в сетях 0,4 кВ с глухозаземленной нейтралью.

Данный вопрос очень актуален, так как электрические сети 0,4 кВ, являются наиболее распространёнными.

В настоящее время существует два метода расчета однофазного КЗ – точный и приближенный и оба метода основаны на методе симметричных составляющих.

1. Точный метод определения тока однофазного КЗ

1.1 Точный метод определения тока однофазного КЗ, представлен в ГОСТ 28249-93 формула 24, и рассчитывается по формуле:

Точный метод определения тока однофазного КЗ

Используя данный метод можно с большой степенью точности определять токи КЗ при известных сопротивлениях прямой, обратной и нулевой последовательности цепи фаза-нуль.

К сожалению, на практике данный метод не всегда возможно использовать, из-за отсутствия справочных данных на сопротивления прямой, обратной и нулевой последовательности для кабелей с алюминиевыми и медными жилами с учетом способов прокладки фазных и нулевых проводников.

2. Приближенный метод определения тока однофазного КЗ

2.1 Приближенный метод определения тока однофазного кз при большой мощности питающей энергосистемы (Хс Приближенный метод определения тока однофазного кз при большой мощности питающей энергосистемы

где:

  • Uф – фазное напряжение сети, В;
  • Zт – полное сопротивление трансформатора току однофазного замыкания на корпус, Ом;
  • Zпт – полное сопротивление петли фаза-нуль от трансформатора до точки КЗ, Ом.

2.2 Если же питающая энергосистема имеет ограниченную мощность, то тогда ток однофазного кз определяется по формуле 2-26 [ Л3, с 39]:

Приближенный метод определения тока однофазного кз при ограниченной мощности питающей энергосистемы

2.3 Значение Z определяется по таблице 2.9 или можно определить по формуле 2-25 [ Л3, с 39]:

Определения суммарного сопротивления цепи

где:
х и r; х и r; х и r — индуктивное и активное сопротивления трансформатора токам прямой, обратной и нулевой последовательности, мОм. Принимаются по таблице 2.4 [Л3, с 29].

Таблица 2.9 - Значения суммраного сопротивления цепи

Таблица 2.4 - Активные и интуктивные сопротивления 6(10)/0,4 кВ

Значение Zт/3 для различных трансформаторов с вторичным напряжением 400/230 В, можно принять по таблицам 2, 3, 4 [Л1, с 6,7].

Таблица 2 - Расчетные сопротивления масляных трансформаторов по ГОСТ 11920-73 и ГОСТ 12022-76 при вторичном напряжении 400/230 В

Таблица 3,4 - Расчетные сопротивления трансформаторов с негорючим заполнением по ГОСТ 16555-75 при вторичном напряжении 0,4 кВ

Сопротивления контактов шин, аппаратов, трансформаторов тока в данном методе не учитываются, поскольку арифметическая сумма Zт/3 и Zпт создает не который запас.

2.4 Полное сопротивление трансформатора Zт, определяется по формуле 2-24 [Л3, с 39]:

Полное сопротивление трансформатора Zт

2.5 Полное сопротивление петли фаза-нуль, определяется по формуле 2-27 [Л3, с 40]:

Полное сопротивление петли фаза-нуль

где:

  • Zпт.уд. – полное удельное сопротивление петли фаза-нуль для каждого участка от трансформатора до места КЗ определяется по таблицам 2.10 – 2.14 [Л3, с 41,42] или по таблицам [Л2], мОм/м;
  • l – длина участка, м.

Ниже представлены справочные таблицы со значениями удельного сопротивления петли фаза-нуль для различных кабелей и шинопроводов согласно [Л3, с 41,42].

Таблицы 2.10, 2.11 - Полное удельное сопротивление петли фаза-нуль для кабелей

Таблицы 2.12 - 2.15 - Полное удельное сопротивление петли фаза-нуль для кабелей и шинопроводов

Справочные таблицы 7, 10 со значениями активных сопротивления медных и алюминиевых проводов, кабелей [Л1, с 6, 14].

Таблица 7 - Активные сопротивления медных и алюминиевых проводов и кабелей с резиновой и пластмассовой изоляцией при температуре жилы +65 С, Ом/км

Таблица 10 -Активные сопротивления кабелей с бумажной изоляцией при температуре жилы +80 С, Ом/км

Справочные таблицы 11, 12, 13 со значениями полного расчетного сопротивления цепи фаза-нуль для 3(4) — жильных кабелей с различной изоляций и при температуре жилы +65(+80) С [Л1, с 15, 16].

Таблицы 11 - 13 - со значениями полного расчетного сопротивления цепи фаза-нуль для 3(4)- жильных кабелей с различной изоляций и при температуре жилы +65(+80)

На практике согласно [Л1, с 5] рекомендуется использовать приближенный метод определения тока однофазного КЗ. При таком методе, допустимая погрешность в расчете тока однофазного КЗ при неточных исходных данных в среднем равна – 10% в сторону запаса; 18-20% — при схеме соединения трансформатора Y/Y0, когда преобладает активная нагрузка и для зануления используется 4-я жила либо оболочка кабеля; 10-12% — при использовании стальных труб для зануления электропроводки.

Из выше изложенного, следует, что при использовании данного метода, создаётся не который запас при расчете, который гарантирует срабатывания защитного аппарата, согласно требованиям ПУЭ.

1. Рекомендации по расчету сопротивления цепи «фаза-нуль». Главэлектромонтаж. 1986 г.
2. ГОСТ 28249-93 – Методы расчета в электроустановках переменного тока напряжением до 1 кВ.
3. Беляев А.В. Выбор аппаратуры, защит и кабелей в сети 0,4 кВ. Учебное пособие. 2008 г.

Источник



Расчет токов короткого замыкания для начинающих электриков

При проектировании любой энергетической системы специально подготовленные инженеры электрики с помощью технических справочников, таблиц, графиков и компьютерных программ выполняют ее анализ на работу схемы в различных режимах, включая:

2. номинальную нагрузку;

3. аварийные ситуации.

Особую опасность представляет третий случай, когда в сети возникают неисправности, способные повредить оборудование. Чаще всего они связаны с «металлическим» закорачиванием питающей цепи, когда между разными потенциалами подводимого напряжения подключаются случайным образом электрические сопротивления размерностью в доли Ома.

Такие режимы называют токами коротких замыканий или сокращенно «КЗ». Они возникают при:

сбоях в работе автоматики и защит;

ошибках обслуживающего персонала;

повреждениях оборудования из-за технического старения;

стихийных воздействиях природных явлений;

диверсиях или действиях вандалов.

Токи коротких замыканий по своей величине значительно превышают номинальные нагрузки, под которые создается электрическая схема. Поэтому они просто выжигают слабые места в оборудовании, разрушают его, вызывают пожары.

Осциллограмма переменных токов

Осциллограмма постоянных токов

Кроме термического разрушения они еще обладают динамическим действием. Его проявление хорошо показывает видеоролик:

Чтобы при эксплуатации исключить развитие подобных аварий с ними начинают бороться еще на стадии создания проекта электрического оборудования. Для этого теоретически вычисляют возможности возникновения токов коротких замыканий и их величины.

Эти данные используются для дальнейшего создания проекта и выбора силовых элементов и защитных устройств схемы. С ними же продолжают постоянно работать и при эксплуатации оборудования.

Токи возможных коротких замыканий рассчитывают теоретическими методами с разной степенью точности, допустимой для надежного создания защит.

Какие электрические процессы заложены в основу расчета токов короткого замыкания

Первоначально заострим внимание на том, что любой вид приложенного напряжения, включая постоянное, переменное синусоидальное, импульсное или любое другое случайное создает токи аварий, которые повторяют образ этой формы или изменяют ее в зависимости от приложенного сопротивления и действия побочных факторов. Все это приходится предусматривать проектировщикам и учитывать в своих расчетах.

Оценку возникновения м действия токов коротких замыканий позволяют выполнить:

величина силовой характеристики мощности, приложенной от источника напряжения;

структура используемой электрической схемы электроустановки;

значение полного приложенного сопротивления к источнику.

Действие закона Ома

За основу расчета коротких замыканий взят принцип, определяющий, что силу тока можно вычислить по величине приложенного напряжения, если поделить ее на значение подключенного сопротивления.

Он же действует и при расчете номинальных нагрузок. Разница лишь в том, что:

во время оптимальной работы электрической схемы напряжение и сопротивление практически стабилизированы и изменяются незначительно в пределах рабочих технических нормативов;

при авариях процесс происходит стихийно случайным образом. Но его можно предусмотреть, просчитать разработанными методиками.

Мощность источника напряжения

С ее помощью оценивают силовую энергетическую возможность совершения разрушительной работы токами коротких замыканий, анализируют длительность их протекания, величину.

Электрическая мощность переменного тока

Рассмотрим пример, когда один и тот же кусок медного провода сечением полтора квадратных мм и длиной в полметра вначале подключили напрямую на клеммы батарейки «Крона», а через некоторое время вставили в контакты фазы и нуля бытовой розетки.

В первом случае через провод и источник напряжения потечет ток короткого замыкания, который разогреет батарейку до такого состояния, что повредит ее работоспособность. Мощности источника не хватит на то, чтобы сжечь подключенную перемычку и разорвать цепь.

Во втором случае сработают автоматические защиты. Допустим, что они все неисправны и заклинили. Тогда ток короткого замыкания пройдет через домашнюю проводку, достигнет вводного щитка в квартиру, подъезд, здание и по кабельной или воздушной линии электропередач дойдет до питающей трансформаторной подстанции.

В итоге к обмотке трансформатора подключается довольно протяженная цепь с большим количеством проводов, кабелей и мест их соединения. Они значительно увеличат электрическое сопротивление нашей закоротки. Но даже в этом случае высока вероятность того, что она не выдержит приложенной мощности и просто сгорит.

Конфигурация электрической схемы

При питании потребителей к ним подводится напряжение разными способами, например:

через потенциалы плюсового и минусового выводов источника постоянного напряжения;

фазой и нулем однофазной бытовой сети 220 вольт;

трехфазной схемой 0,4 кВ.

В каждом из этих случаев могут произойти нарушения изоляции в различных местах, что приведет к протеканию через них токов короткого замыкания. Только для трехфазной цепи переменного тока возможны короткие замыкания между:

всеми тремя фазами одновременно — называется трехфазным;

двумя любыми фазами между собой — междуфазное;

любой фазой и нулем — однофазное;

фазой и землей — однофазное на землю;

двумя фазами и землей — двухфазное на землю;

тремя фазами и землей — трехфазное на землю.

Виды КЗ в трехфазной сети

При создании проекта электроснабжения оборудования все эти режимы требуется просчитать и учесть.

Влияние электрического сопротивления цепи

Протяженность магистрали от источника напряжения до места образования короткого замыкания имеет определенное электрическое сопротивление. Его величина ограничивает токи короткого замыкания. Наличие обмоток трансформаторов, дросселей, катушек, обкладок конденсаторов добавляют индуктивные и емкостные сопротивления, формирующие апериодические составляющие, искажающие симметричную форму основных гармоник.

Существующие методики расчета токов короткого замыкания позволяют их вычислить с достаточной для практики точностью по заранее подготовленной информации. Реальное электрическое сопротивление уже собранной схемы можно измерить по методике петли «фаза-ноль». Оно позволяет уточнить расчет, внести коррективы в выбор защит.

Замер сопротивления петли фаза-ноль

Основные документы по расчету токов коротких замыканий

1. Методика выполнения расчета токов КЗ

Она хорошо изложена в книге А. В. Беляева “Выбор аппаратуры, защит и кабелей в сетях 0,4 кВ”, выпущенной Энергоатомиздат в 1988 году. Информация занимает 171 страницу.

последовательность расчета токов КЗ;

учет токоограничивающего действия электрической дуги на месте образования повреждения;

принципы выбора защитной аппаратуры по значениям рассчитанных токов.

В книге публикуется справочная информация по:

автоматическим выключателям и предохранителям с анализом характеристик их защитных свойств;

выбору кабелей и аппаратуры, включая установки защиты электродвигателей, силовых сборок, вводных устройств генераторов и трансформаторов;

недостаткам защит отдельных видов автоматических выключателей;

особенностям применения выносных релейных защит;

примерам решения проектных задач.

2. Руководящие указания РД 153—34.0—20.527—98

Этот документ определяет:

методики расчетов токов КЗ симметричных и несимметричных режимов в электроустановках с напряжением до и выше 1 кВ;

способы проверок электрических аппаратов и проводников на термическую и электродинамическую стойкость;

методы испытания коммутационной способности электрических аппаратов.

Указания не охватывают вопросы расчета токов КЗ применительно к устройствам РЗА со специфическими условиями эксплуатации.

3. ГОСТ 28249-93

Документ описывает короткие замыкания, возникающие в электроустановках переменного тока и методику их расчета для систем с напряжением до 1 кВ. Он действует с 1 января 1995 года на территориях Беларуси, Кыргызстана. Молдовы, России, Таджикистана, Туркменистана и Украины.

Государственный стандарт определяет общие методы расчетов токов КЗ в начальный и любой произвольный временной момент для электроустановок с синхронными и асинхронными машинами, реакторами и трансформаторами, воздушными и кабельными ЛЭП, шинопроводами, узлами сложной комплексной нагрузки.

Технические нормативы проектирования электроустановок определены действующими государственными стандартами и согласованы Межгосударственным Советом по вопросам стандартизации, метрологии, сертификации.

Скачать ГОСТ 28249-93 (2003). Короткие замыкания в электроустановках. Методы расчета в электроустановках переменного тока напряжением до 1 кВ можно здесь: ГОСТ по расчету токов КЗ

Очередность действий проектировщика для расчета токов короткого замыкания

Первоначально следует подготовить необходимые для анализа сведения, а затем провести из расчет. После монтажа оборудования к процессе ввода его в работу и при эксплуатации проверяется правильность выбора и работоспособность защит.

Сбор исходных данных

Любую схему можно привести к упрощенному виду, когда она состоит из двух частей:

1. источника напряжения. Для сети 0,4 кВ его роль исполняет вторичная обмотка силового трансформатора;

2. питающей линии электропередачи.

Под них собираются необходимые характеристики.

Данные трансформатора для расчета токов КЗ

величину напряжения короткого замыкания (%) — Uкз;

потери короткого замыкания (кВт) — Рк;

номинальные напряжения на обмотках высокой и низкой стороны (кВ. В) — Uвн, Uнн;

фазное напряжение на обмотке низкой стороны (В) — Еф;

номинальную мощность (кВА) — Sнт;

полное сопротивление током однофазного КЗ (мОм) — Zт.

Данные питающей линии для расчета токов КЗ

К ним относятся:

марки и количество кабелей с указанием материала и сечения жил;

общая протяженность трассы (м) — L;

индуктивное сопротивление (мОм/м) — X0;

полное сопротивление для петли фаза-ноль (мОм/м) — Zпт.

Эти сведения для трансформатора и линии сосредоточены в справочниках. Там же берут ударный коэффициент Куд.

Последовательность расчета

По найденным характеристикам вычисляют для:

трансформатора — активное и индуктивное сопротивление (мОм) — Rт, Хт;

линии — активное, индуктивное и полное сопротивление (мОм).

Эти данные позволяют рассчитать общее активное и индуктивное сопротивление (мОм). А на их основе можно определить полное сопротивление схемы (мОм) и токи:

трехфазного замыкания и ударный (кА);

однофазного КЗ (кА).

По величинам последних вычисленных токов и подбирают автоматические выключатели и другие защитные устройства для потребителей.

Расчет токов короткого замыкания проектировщики могут выполнять вручную по формулам, справочным таблицам и графикам или с помощью специальных компьютерных программ.

Компьютерная программа расчетов токов КЗ

На реальном энергетическом оборудовании, введенном в эксплуатацию, все токи, включая номинальные и коротких замыканий, записываются автоматическими осциллографами.

Снятие осциллограммы токов

Такие осциллограммы позволяют анализировать ход протекания аварийных режимов, правильность работы силового оборудования и защитных устройств. По ним принимают действенные меры для повышения надежности работы потребителей электрической схемы.

Источник