Меню

Регулирует ток в цепи якоря

Регулирование частоты вращения двигателя постоянного тока независимого возбуждения ДПТ НВ

ads

Способы регулирования частоты вращения двигателей оцени­ваются следующими показателями: плавностью регулирования; диапазоном регулирования, определяемым отношением наиболь­шей частоты вращения к наименьшей; экономичностью регулиро­вания, определяемой стоимостью регулирующей аппаратуры и потерями электроэнергии в ней.

Из (29.5) следует, что регулировать частоту вращения двига­теля независимого возбуждения можно изменением сопротивле­ния в цепи якоря, изменением основного магнитного потока Ф, изменением напряжения в цепи якоря.

Регулирование частоты вращения ДПТ НВ введение дополнительного сопротивления в цепь якоря

Дополнительное сопротивление (реостат rд) включают в цепь яко­ря аналогично пусковому реостату (ПР). Однако в отличие от по­следнего оно должно быть рассчитано на продолжительное проте­кание тока.

При включении сопротивления rд в цепь якоря выражение частоты (29.5) принимает вид

где — частота вращения в режиме х.х.;

— изменение частоты вращения, вызван­ное падением напряжения в цепи якоря.

С увеличением rд возрастает , что ведет к уменьшению час­тоты вращения. Зависимость n = f(rд) иллюстрируется также и механическими характеристиками двигателя независимого воз­буждения (рис. 29.4, а): с повышением rд увеличивается наклон механических характеристик, а частота вращения при заданной нагрузке на валу (M = Mном ) уменьшается. Этот способ обеспечи­вает плавное регулирование частоты вращения в широком диапа­зоне (только в сторону уменьшения частоты от номинальной), од­нако он неэкономичен из-за значительных потерь электроэнергии в регулировочном реостате (I 2 a *rД), которые интенсивно растут с увеличением мощности двигателя.

clip_image002

Рис. 29.4. Механические характеристики двигателя параллельно­го возбуждения:

а — при введении в цепь якоря добавочного сопротивления;

б — при изменении основного магнитного потока;

в — при изменении напряже­ния в цепи якоря

Регулирование частоты вращения ДПТ НВ изменением основного магнитного потока

Этот способ регулирования в двигателе независимого возбуждения реализуется посредством реостата rрег в цепи обмотки возбуждения. Так, при уменьшении сопротивления реостата возрастает магнитный поток обмотки возбуждения, что сопровождается по­нижением частоты вращения [см. (29.5)]. При увеличении rрег час­тота вращения растет. Зависимость частоты вращения от тока воз­буждения выражается регулировочной характеристикой двигателя n=f(IВ) при и .

Из выражения (29.5) следует, что с уменьшением магнитного потока Ф частота вращения n увеличивается по гиперболическому закону (рис. 29.5,а). Но одновременно уменьшение Ф ведет к рос­ту тока якоря Ia = M/(Cм*Ф). При потоке ток якоря дости­гает значения , т. е. падение напряжения в цепи яко­ря достигает значения, равного половине напряжения, подведенного к якорю . В этих условиях частота вращения двигателя достигает максимума nmax. При дальнейшем уменьшении потока частота вращения двигателя начинает убывать, так как из-за интенсивного роста тока Ia второе слагаемое выражения (29.9) нарастает быстрее первого.

При небольшом нагрузочном моменте на валу двигателя мак­симальная частота вращения nmax во много раз превосходит номи­нальную частоту вращения двигателя nном и является недопусти­мой по условиям механической прочности двигателя, т. е. может привести к его «разносу». Учитывая это, при выборе реостата rрег необходимо следить за тем, чтобы при полностью введенном его сопротивлении частота вращения двигателя не превысила допус­тимого значения.

Например, для двигателей серии 2П допускается превышение частоты вращения над номинальной не более чем в 2—3 раза. Необходимо также следить за надежностью электриче­ских соединений в цепи обмотки возбуждения двигателя, так как при разрыве этой цепи магнитный поток уменьшается до значения потока остаточного магнетизма Фост, при котором частота враще­ния может достигнуть опасного значения.

clip_image038

Вид регулировочных характеристик n = f(Ф) зависит от значе­ния нагрузочного момента M2 на валу двигателя: с ростом M2 мак­симальная частота вращения nmax уменьшается (рис. 29.5, б).

Рис. 29.5. Регулировочные характеристики двигателя независимого возбуждения

Недостаток рассмотренного способа регулирования частоты вращения состоит в том, что при изменении магнитного потока Ф меняется угол наклона механической характеристики двигателя.

Рассмотренный способ регулирования частоты вращения прост и экономичен, так как в двигателях независимого возбуж­дения ток IВ = (0,01 — 0,07)I а , а поэтому потери в регулировочном реостате невелики.

Однако диапазон регулирования обычно составляет nMAX/nMIN = 2 — 5. Объясняется это тем, что нижний предел частоты вращения обусловлен насыщением машины, ограничивающим значение магнитного потока Ф, а верхний предел частоты опасностью «разноса» двигателя и усилением влияния реакции якоря, иска­жающее действие которого при ослаблении основною магнитного потока Ф усиливается и ведет к искрению на коллекторе или же к появлению кругового огня.

Регулирование частоты вращения ДПТ НВ изменение напряжения в цепи якоря

Регулирование часто­ты вращения двигателя изменением питающего напряжения при­меняется лишь при IB = const, т. е. при раздельном питании цепей обмотки якоря и обмотки возбуждения при независимом возбуж­дении.

Частота вращения в режиме х.х. n пропорциональна напря­жению, а от напряжения не зависит, поэтому ме­ханические характеристики двигателя при изменении напряжения не меняют угла наклона к оси абсцисс, а смещаются по высоте, оставаясь параллельными друг другу (см. рис. 29.4, в). Для осуще­ствления этого способа регулирования необходимо цепь якоря двигателя подключить к источнику питания с регулируемым на­пряжением. Для управления двигателями малой и средней мощно­сти в качестве такого источника можно применить регулируемый выпрямитель, в котором напряжение постоянного тока меняется регулировочным автотрансформатором (АТ), включенным на вхо­де выпрямителя (рис. 29.6,а).

Для управления двигателями большой мощности целесооб­разно применять генератор постоянного тока независимого возбу­ждения; привод осуществляется посредством приводного двигате­ля (ПД), в качестве которого обычно используют трехфазный двигатель переменного тока. Для питания постоянным током це­пей возбуждения генератора Г и двигателя Д используется возбу­дитель В — генератор постоянного тока, напряжение на выходе которого поддерживается неизменным. Описанная схема управле­ния двигателем постоянного тока (рис. 29.6, б) известна под на­званием системы «генератор — двигатель» (Г—Д).

clip_image010

Рис. 29.6. Схемы включения двигателей постоянного тока при регули­ровании частоты вращения изменением напряжения в цепи якоря

Изменение напряжения в цепи якоря позволяет регулировать частоту вращения двигателя вниз от номинальной, так как напря­жение свыше номинального недопустимо. При необходимости регулировать частоту вращения вверх от номинальной можно вос­пользоваться изменением тока возбуждения двигателя.

Изменение направления вращения (реверс) двигателя, рабо­тающего по системе ГД, осуществляется изменением направле­ния тока в цепи возбуждения генератора Г переключателем П, т. е. переменой полярности напряжения на его зажимах. Если двигатель постоянного тока работает в условиях резко переменной на­грузки, то для смягчения колебаний мощности, потребляемой ПД из трехфазной сети, на вал ПД помещают маховик М, который за­пасает энергию в период уменьшения нагрузки на двигатель Д и отдает ее в период интенсивной нагрузки двигателя.

Регулирование частоты вращения изменением напряжения в цепи якоря обеспечивает плавное экономичное регулирование в широком диапазоне nMAX/nMIN ≥ 25 . Наибольшая частота вращения здесь ограничивается условиями коммутации, а наименьшая — условиями охлаждения двигателя.

Еще одним достоинством рассматриваемого способа регули­рования является то, что он допускает безреостатный пуск двига­теля при пониженном напряжении.

Импульсное регулирование частоты вращения ДПТ НВ

Сущность этого способа регулирования иллюстрируется схемой, изображен­ной на рис. 29.7, а. Цепь обмотки якоря двигателя параллельного (независимого) возбуждения периодически прерывается ключом К. Во время замыкания цепи якоря на время t к обмотке якоря подводится напряжение U = Uимпи ток в ней достигает значения Iamax. Затем ключом К цепь якоря размыкают и ток в ней убывает, достигая к моменту следующего замыкания цепи значения Iamin (при размыкании ключа К ток в обмотке якоря замыкается через диод VD). При следующем замыкании ключа К ток достигает зна­чения Iamax и т. д. Таким образом, к обмотке якоря подводится не­которое среднее напряжение

Читайте также:  Генератор тока из мотор колеса

где Т— отрезок времени между двумя следующими друг за другом импульсами напряжения (рис. 29.7, б); — коэффициент управления.

При этом в обмотке якоря проходит ток, среднее значение которого .

При импульсном регулировании частота вращения двигателя

Таким образом, импульсное регулирование частоты вращения аналогично регулированию изменением подводимого к цепи якоря напряжения. С целью уменьшения пульсаций тока в цепи якоря включена катушка индуктивности (дроссель) , а частота подачи импульсов равна 200—400 Гц.

clip_image040

На рис. 29.7, в представлена одна из возможных схем им­пульсного регулирования, где в качестве ключа применен управ­ляемый диод — тиристор VS. Открывается тиристор подачей крат­ковременного импульса от генератора импульсов (ГИ) на управляющий электрод (УЭ) тиристора. Цепь L1C, шунтирующая тиристор, служит для запирания последнего в период между двумя управляющими импульсами. Происходит это следующим образом: при открывании тиристора конденсатор С перезаряжается через контур L1C и создает на силовых электродах тиристора напряже­ние, обратное напряжению сети, которое прекращает протекание тока через тиристор. Параметрами цепи L1C определяется время (с) открытого состояния тиристора: . Здесь L1 выража­ется в генри (Гн); С — в фарадах (Ф).

Рис. 29.7. Импульсное регулирование частоты вращения двига­теля постоянного тока

Значение среднего напряжения Uср регулируется изменением частоты следования управляющих импульсов от генератора им­пульсов на тиристор VS.

Жесткие механические характеристики и возможность плав­ного регулирования частоты вращения в широком диапазоне оп­ределили области применения двигателей независимого возбуж­дения в станочных приводах, вентиляторах, а также во многих других случаях регулируемого электропривода, где требуется ус­тойчивая работа при колебаниях нагрузки.

Источник

Регулирование скорости двигателей постоянного тока

Регулирование скорости двигателей постоянного токаИз уравнения электромеханической характеристики двигателя постоянного тока независимого возбуждения следует, что возможны три способа регулирования его угловой скорости:

1) регулирование за счет изменения величины сопротивления реостата в цепи якоря,

2) регулирование за счет изменения потока возбуждения двигателя Ф,

3) регулирование за счет изменения подводимого к обмотке якоря двигателя напряжения U . Ток в цепи якоря I я и момент М, развиваемый двигателем, зависят только от величины нагрузки на его валу.

Рассмотрим первый способ регулирования скорости двигателя постоянного тока изменением сопротивления в цепи якоря . Схема включения двигателя для этого случая представлена на рис. 1 , а электромеханические и механические характеристики — на рис. 2 , а.

Схема включения двигателя постоянного тока независимого возбуждения

Рис. 1. Схема включения двигателя постоянного тока независимого возбуждения

Механические характеристики двигателя постоянного тока при различных сопротивлениях цепи якоря (а) и напряжениях (б)

Рис. 2. Механические характеристики двигателя постоянного тока при различных сопротивлениях цепи якоря (а) и напряжениях (б)

Изменяя сопротивление реостата в цепи якоря можно получить при номинальной нагрузке различные угловые скорости электродвигателя на искусственных характеристиках — ω1, ω2, ω3.

Проведем анализ данного способа регулирования угловой скорости двигателей постоянного тока с помощью основных технико-экономических показателей. Так как при данном способе регулирования изменяется жесткость характеристик в широких пределах, то при скоростях менее половины номинальной стабильность работы двигателя резко ухудшается. По этой причине диапазон регулирования скорости ограничен ( D = 2 — З).

Скорость при данном способе можно регулировать в сторону уменьшения от основной, о чем свидетельствуют электромеханические и механические характеристики. Высокую плавность регулирования трудно обеспечить, так как потребовалось бы значительное количество ступеней регулирования и соответственно большое число контакторов. Полное использование двигателя по току (нагреву) в этом случае достигается при регулировании с постоянным моментом нагрузки.

Недостатком рассматриваемого способа является наличие значительных потерь мощности при регулировании, которые пропорциональны относительному изменению угловой скорости. Достоинством рассмотренного способа регулирования угловой скорости являются простота и надежность схемы управления.

Учитывая большие потери в реостате при малых скоростях, данный способ регулирования скорости применяется для приводов с кратковременным и повторно-кратковременным режимами работы.

Регулирование скорости двигателей постоянного токаПри втором способе регулирование угловой скорости двигателей постоянного тока независимого возбуждения осуществляется изменением величины магнитного потока за счет введения в цепь обмотки возбуждения дополнительного реостата. При ослаблении потока угловая скорость двигателя как при нагрузке, так и при холостом ходе возрастает, а при усилении потока — уменьшается. Практически возможно изменение скорости только в сторону увеличения ввиду насыщения двигателя.

При увеличении скорости ослаблением потока допустимый момент двигателя постоянного тока изменяется по закону гиперболы, а мощность остается постоянной. Диапазон регулирования скорости для данного способа D = 2 — 4 .

Механические характеристики для различных значений потока двигателя приведены на рис. 2 , а и 2 , б, из которых видно, что характеристики в пределах номинального тока имеют высокую степень жесткости.

Обмотки возбуждения двигателей постоянного тока независимого возбуждения обладают значительной индуктивностью. Поэтому при ступенчатом изменении сопротивления реостата в цепи обмотки возбуждения ток, а следовательно, и поток будут изменяться по экспоненциальному закону. В связи с этим регулирование угловой скорости будет осуществляться плавно.

Существенными преимуществами данного способа регулирования скорости являются его простота и высокая экономичность.

Данный способ регулирования используют в приводах в качестве вспомогательного, обеспечивающего повышение скорости при холостом ходе механизма.

Третий способ регулирования скорости заключается в изменении напряжения, подводимого к обмотке якоря двигателя. Угловая скорость двигателя постоянного тока независимо от нагрузки изменяется прямо пропорционально напряжению, подводимому к якорю. Поскольку все регулировочные характеристики являются жесткими, а степень их жесткости остается для всех характеристик неизменной, работа двигателя является стабильной на всех угловых скоростях и, следовательно, обеспечивается широкий диапазон регулирования скорости независимо от нагрузки. Этот диапазон равен 10 и может быть расширен за счет специальных схем управления.

При данном способе угловую скорость можно уменьшать и увеличивать относительно основной. Повышение скорости ограничено возможностями источника энергии с регулируемым напряжением и U ном двигателя.

Если источник энергии обеспечивает возможность непрерывного изменения подводимого к двигателю напряжения, то регулирование скорости двигателя будет плавным.

Данный способ регулирования является экономичным, так-так регулирование угловой скорости двигателя постоянного тока независимого возбуждения осуществляется без дополнительных потерь мощности в силовой цепи якоря. По всем перечисленным выше показателям данный способ регулирования по сравнению с первым и вторым наилучший.

Источник

§36. Регулирование частоты вращения якоря электродвигателя

Из формулы (65) следует, что частота вращения якоря электродвигателя постоянного тока зависит от падения напряжения Iя?Rя в цепи обмотки якоря, питающего напряжения U и магнитного потока Ф. Поэтому ее можно регулировать тремя способами:

включением реостата с сопротивлением Rп в цепь обмотки якоря;

изменением питающего напряжения U;

изменением магнитного потока Ф.

Рассмотрим более подробно эти способы на примере двигателей с последовательным и параллельным возбуждением.

Включение реостата в цепь обмотки якоря. При включении реостата с сопротивлением Rп в цепь обмотки якоря, кроме естественной механической характеристики 1, получают и ряд реостатных характеристик 2, 3 и 4 (рис. 133). При этом заданному нагрузочному моменту Мвн соответствуют различные значения частоты вращения n1, n2, n3 и n4; чем больше сопротивление Rп тем меньше частота вращения якоря двигателя. Такой способ регулирования весьма прост и позволяет осуществлять плавное регулирование частоты вращения в широком диапазоне. (Однако при этом возникают большие потери энергии в регулирующем реостате, вследствие чего его практически применяют только при кратковременных режимах работы двигателя (например, при пуске). Другим недостатком рассматриваемого способа регулирования является то, что частоту вращения п можно только уменьшать от n1 до нуля.

Читайте также:  Датчик перемещения по току

Изменение питающего напряжения. При изменении питающего напряжения частота вращения п изменяется пропорционально U. Следовательно, подавая на обмотку якоря различные напряжения U1, U2, U3, можно получить семейство механических характе-

Рис. 133. Механические характеристики электродвигателей с последовательным (а) и независимым или параллельным (б) возбуждением при регулировании частоты вращения включением реостата в цепь обмотки якоря

Рис. 133. Механические характеристики электродвигателей с последовательным (а) и независимым или параллельным (б) возбуждением при регулировании частоты вращения включением реостата в цепь обмотки якоря

Рис. 134. Механические характеристики электродвигателя с последовательным (а) и независимым (б) возбуждением при регулировании частоты вращения путем изменения питающего напряжения

Рис. 134. Механические характеристики электродвигателя с последовательным (а) и независимым (б) возбуждением при регулировании частоты вращения путем изменения питающего напряжения

Рис. 135. Схемы питания электродвигателя с последовательным возбуждением от генератора (а) и выпрямителя (б)

Рис. 135. Схемы питания электродвигателя с последовательным возбуждением от генератора (а) и выпрямителя (б)

ристик 1, 2 и 3, у которых при любой нагрузке n1:n2:n3 = U1:U2:U3 (рис. 134). При уменьшении питающего напряжения механические характеристики двигателя смещаются в область меньших частот вращения и располагаются параллельно. Для осуществления указанного способа регулирования частоты вращения двигатель должен быть подключен к источнику постоянного тока с регулируемым напряжением: к генератору Т с независимым возбуждением (рис. 135, а) или выпрямителю Вn (рис. 135,б). Питание тяговых двигателей от генератора осуществляется на тепловозах, а от выпрямителя — на электровозах и электропоездах переменного тока. На электровозах и электропоездах выпрямитель подключают к трансформатору, позволяющему изменять напряжение, подаваемое на вход выпрямителя, а следовательно, и его выходное напряжение U. На тепловозах в цепях управления имеется специальная электрическая аппаратура, позволяющая изменять ток возбуждения генератора, т. е. его выходное напряжение U, ручным способом или автоматически.

Несмотря на то, что рассмотренный способ требует довольно сложного оборудования, его широко применяют на современных локомотивах и электропоездах, так как он обеспечивает плавное и экономичное (без потерь энергии в реостатах) регулирование частоты вращения в очень широких пределах. Следует отметить, что для электродвигателей с параллельным возбуждением указанный способ регулирования применять нельзя, так как при уменьшении питающего напряжения соответственно уменьшался бы магнитный поток двигателя и увеличивался ток обмотки якоря. В этом случае двигатель должен быть переведен на независимое возбуждение.

На э. п. с. постоянного тока напряжение, подводимое от контактной сети к электровозу или моторному вагону, не может регулироваться, поэтому здесь для изменения подаваемого к двигателям напряжения применяют последовательно-параллельное переключение тяговых двигателей. При этом изменяется напряжение, приходящееся на каждый двигатель локомотива, и частота вращения.

При регулировании частоты вращения двигателей путем их последовательно-параллельного переключения число возможных схем соединений зависит от числа двигателей, установленных на данном локомотиве. Например, на четырехосных электровозах может быть использовано последовательное соединение тяговых двигателей (рис. 136, а); при этом напряжение, подводимое к двигателю, в 4 раза меньше напряжения U в контактной сети и двигатель имеет некоторую минимальную частоту вращения nmin при заданном моменте Мвн. При соединении двигателей в две параллельные группы (рис. 136, б), в каждую из которых включено по два последовательно соединенных двигателя, напряжение, подводимое к каждому двигателю, будет в 2 раза меньше напряжения U в контактной сети и частота его вращения будет составлять 2nmin. Характеристики двигателей при этом располагаются одна над другой (рис. 136, в).

Последовательно-параллельное переключение тяговых двигателей применяют также на тепловозах. Это позволяет ограничить диапазон регулирования напряжения генератора, от которого зависят его габаритные размеры и масса.

Изменение магнитного потока. Для того чтобы изменить магнитный поток Ф, регулируют ток возбуждения двигателя с помощью

Рис. 136. Схемы соединения тяговых двигателей на четырехосных электровозах или электропоездах (а и б) и механические характеристики двигателей при различных схемах соединения (в): 1 — последовательное соединение; 2— последовательно-параллельное соединение

Рис. 136. Схемы соединения тяговых двигателей на четырехосных электровозах или электропоездах (а и б) и механические характеристики двигателей при различных схемах соединения (в): 1 — последовательное соединение; 2— последовательно-параллельное соединение

Рис. 137. Схема включения регулировочного реостата параллельно обмотке возбуждения в двигателе с последовательным возбуждением (а) и механические характеристики (б) при различных сопротивлениях реостата

регулировочного реостата Rрв (рис. 137, а). В двигателях с после-довательньм возбуждением регулировочный реостат включают параллельно обмотке возбуждения, вследствие чего через обмотку возбуждения будет протекать только часть тока якоря (другая часть ответвляется в точке О в реостат Rрв). Обычно регулировочный реостат имеет несколько ступеней с сопротивлениями R1, R2, R3, которые позволяют получать несколько ступеней регулирования тока возбуждения двигателя.

Включение ступеней R1, R2, R3 осуществляется контакторами 1, 2 и 3; при этом механические характеристики двигателя 2 (при включении ступени R1), 3 (при включении R1 и R2 и 4 (при включении R1, R2 и R3) располагаются выше естественной характеристики 1 (рис. 137,б).

Степень регулирования тока возбуждения характеризуется коэффициентом регулирования возбуждения ?, который представляет собой отношение тока возбуждения Iв0 при ослабленном возбуждении (включен регулировочный реостат Rрв) к току возбуждения Iвн при нормальном возбуждении при одном и том же токе в обмотке якоря:

? = Iв0/Iвн = Rвн/(Rв+Rвн)

где Rв — сопротивление обмотки возбуждения.

Рассмотренный способ регулирования прост и экономичен, поэтому его широко применяют на локомотивах и электропоездах. Однако в этом случае регулирование частоты вращения можно осуществлять только в сравнительно небольшом диапазоне. Нижний предел nmin ограничивается насыщением магнитной цепи машины, которое не позволяет увеличивать в значительной степени магнитный поток, верхний предел nmax—условиями устойчивости (при сильном уменьшении Ф двигатель идет вразнос), а также тем, что при глубоком ослаблении возбуждения сильно увеличивается ток якоря Iя, что приводит к возрастанию реактивной э. д. с. и искажающего действия реакции якоря. При этом повышается опасность возникновения искрения на коллекторе и появления кругового огня. По этой причине двигатели, предназначенные для работы в режимах глубокого ослабления возбуждения, обязательно должны иметь компенсационную обмотку и пониженное значение реактивной э. д. с. при номинальном режиме. Обычно предельное значение коэффициента возбуждения ? для двигателей без компенсационной обмотки составляет 0,3—0,33, а при наличии компенсационной обмотки — 0,2.

В двигателях с независимым и параллельным возбуждением регулировочный реостат, посредством которого изменяют ток возбуждения Iв и магнитный поток Ф, включают последовательно с обмоткой возбуждения (см. рис. 125). В этом случае при изменении тока возбуждения частота вращения n при холостом ходе будет изменяться, т. е. механическая характеристика 2 при ослабленном возбуждении будет располагаться выше характеристики 1 при нормальном возбуждении (рис. 138). Однако характеристики 1 и 2 при различных значениях Ф не будут параллельны, так как согласно формуле (65) изменяется снижение частоты вращения, обусловленное падением напряжения Iя?Rя в цепи обмотки якоря.

Работа электродвигателя с ослабленным возбуждением при переходных процессах. При включении регулировочного реостата параллельно обмотке возбуждения (см. рис. 137, а) приходится применять специальные меры для сохранения требуемого распределения тока между нею и реостатом при переходных процессах, возникающих в случаях резкого изменения режима работы двигателя, изменения напряжения в контактной сети и пр.

При переходных процессах, когда токи Iя, Iв и Iрв изменяются, в обмотке возбуждения возникает значительная э. д. с. самоиндукции еL. В результате ее действия ток Iв уменьшается по сравнению с его значением при стационарном режиме, а ток Iрв возрастает, т. е. происходит значительно большее ослабление возбуждения. Наиболее опасным переходным процессом для тяговых двигателей, работающих с ослабленным возбуждением, является включение их на полное напряжение после кратковременного отключения от

Читайте также:  Вольт амперная характеристика электрической дуги в области средних токов

Рис. 138. Механические характеристики электродвигателя с независимым и параллельным возбуждением при регулировании частоты вращения путем изменения магнитного потока

Рис. 139. Направление электромагнитного момента М при различном направлении тока в обмотке якоря и различной полярности полюсов

Рис. 140. Схемы переключений обмотки электродвигателя с последовательным возбуждением при изменении направления вращения

сети (при отрыве токоприемника от контактного провода). В этом случае из-за большой э. д. с. самоиндукции еL в первый момент после включения почти весь ток Iя пойдет по регулировочному реостату Rрв, а ток Iв в обмотке возбуждения будет мал. Это приведет к значительному возрастанию тока Iя в обмотке якоря из-за уменьшения э. д. с. Е, индуцированной в ней. Практически при этих условиях возникает резкий бросок тока Iя, сопровождающийся нарушением нормальной коммутации (искрением под щетками) и образованием кругового огня. Кроме того, из-за большой скорости изменения тока создаются большие коммутационные перенапряжения, которые могут вызвать пробой изоляции обмоток якоря и возбуждения.

Бросок тока Iя при включении двигателя под напряжение и скорость его изменения зависят от распределения токов Iв и Iрв между обмоткой возбуждения и регулировочным реостатом Rрв. Чтобы обеспечить при переходных процессах такое же распределение токов Iв и Iрв, как и при стационарном режиме, последовательно с реостатом Rрв включают индуктивный шунт ИШ, представляющий собой катушку с ферромагнитным сердечником. Индуктивность этой катушки подбирают так, чтобы отношение индуктивностей обмотки возбуждения и цепи реостата Rрв было приблизительно равно отношению их сопротивлений. При этом условии возникающие при переходных процессах э. д. с. самоиндукции eL в обмотке возбуждения и eL1 в индуктивном шунте не будут влиять на распределение токов Iв и Iрв и возрастание тока Iя будет небольшим.

Изменение направления вращения. Чтобы изменить направление вращения двигателя, необходимо изменить направление электромагнитного момента М, действующего на якорь. Направление момента М определяется правилом левой руки (см. рис. 68,б). Изменить направление М можно двумя способами (рис. 139, а — в): 1) изменением направления тока Iя в обмотке якоря; 2) изменением полярности полюсов, т. е. направления магнитного потока Ф, путем изменения направления тока возбуждения Iв. Для этого переключают провода, подводящие ток к обмотке якоря или к обмотке возбуждения. Например, если при вращении электродвигателя в направлении Вперед ток Iя проходил от щетки А к щетке Б (рис. 140, а), а ток возбуждения Iв — от зажима В1 к зажиму В2, то для перевода двигателя в направление Назад необходимо переключить цепь обмотки якоря так, чтобы ток Iя проходил от щетки Б к щетке А, оставив неизменным направление тока Iв (рис. 140,б), или, оставив неизменным направление тока Iя от А к Б, переключить цепь возбуждения так, чтобы ток Iв проходил от зажима В2 к зажиму В1 (рис. 140, в).

Источник



Введением добавочных сопротивлений в цепь якоря

Регулирование угловой скорости ДПТ НВ

Схема подключения двигателя для этого способа регулирования приведена на рис. 2.9, 2.10. На якорь и обмотку возбуждения двигателя подается номинальное напряжение:

Электромеханическая и механическая характеристики двигателя описываются уравнениями (2.21), (2.22), в которых принято ,

Очевидно, что первое слагаемое в этих уравнениях остается неизменным, а второй член – падение угловой скорости от нагрузки тем больше, чем больше добавочное сопротивление. Иными словами, с увеличением жесткость характеристик снижается (см. рис. 2.12).

Если, например, механизм имеет характеристику с моментом , не зависящим от скорости, то на естественной характеристике угловая скорость электропривода определяется т.1 (см. рис. 2.12), а при введении добавочных сопротивлений и снижается (т.2, т.3). Получаемые при введении добавочных сопротивлений характеристики называются искусственными – реостатными.

Рассматриваемый способ регулирования имеет ряд существенных недостатков. Во-первых, он не экономичен – часть энергии подводимой от преобразователя теряется в добавочном сопротивлении. Во-вторых, регулируется ступенчато, что не всегда удобно. В-третьих, при изменении момента статического сопротивления угловая скорость изменяется. Так, например, если момент сопротивления механизма уменьшится до , (см. рис. 2.12), то угловая скорость электропривода будет определиться т.т. 4, 5, 6.

Этот способ регулирования используется в основном для механизмов, не предъявляющих жестких требований и стабильности скорости. К ним относятся, в частности, грузоподъемные механизмы, устанавливаемые в цехах промышленных предприятий. Дополнительным обстоятельством, диктующим применение этого способа регулирования, является наличие сети постоянного тока, например, в автомобилях.

Кроме того, при использовании нерегулируемого источника или сети постоянного тока включение добавочных сопротивлений необходимо для обеспечения нормального пуска двигателя.

Рассмотрим особенности пускового режима. В начальный момент пуска угловая скорость и, соответственно, ЭДС двигателя равна нулю. Ток якоря при этом, как следует из уравнения (2.12), будет

Если не вводить добавочных сопротивлений, то ток ограничивается только сопротивлением якоря. Для двигателей мощностью больше 0,5. 1,0 кВт бросок пускового тока, как правило, значительно превышает допустимое значение (обычно максимально допустимый ток ДПТ составляет 2,5. 4 от номинального значения). Т.е. прямой пуск (подачей на якорь номинального напряжения) допустим только для двигателей небольшой мощности, с большим сопротивлением якоря.

Для более мощных двигателей с целью ограничения пускового тока в цепь якоря включаю добавочные сопротивления. Коммутацию добавочных сопротивлений обычно осуществляют с помощью контакторов (см. рис. 2.13). В начальный момент пуска на якорь двигателя контактом КМ1 подается напряжение, при этом величина добавочного сопротивления максимальна

Значение максимального добавочного сопротивления выбирают так, чтобы ток якоря не превысил допустимого (см. рис. 2.14). Далее идет разгон по характеристике с максимальным значением .

Ток якоря постепенно снижается за счет возрастания ЭДС. Обратите внимание, что напряжение на обмотку возбуждения подается до подключения якоря к сети. Пуск двигателя без подачи возбуждения недопустим – в этом случае момент двигателя и ЭДС будут равны нулю (см. выражения (2.13), (2.15)).

По мере разгона двигателя и снижения тока до некоторого значения контактом КМ2 шунтируется резистор и машина переходит на характеристику с , и т.д. до выхода на естественную характеристику (процесс разгона на рис 2.14 условно показан стрелками). Добавочные сопротивления подбирают так,

чтобы переключения происходили при одних и тех же значениях тока ( и ).

Процесс разгона заканчивается установившимся режимом в т. а, где момент двигателя уравновешивается моментом сопротивления механизма .

При автоматическом пуске переключение контакторов осуществляется схемой управления, обычно в функции времени. Схема управления может предусматривать длительную работу двигателя на любой из характеристик, т.е. обеспечивать ступенчатое регулирование угловой скорости (т.т. 1, 2, 3, а на рис. 2.14).

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник