Меню

Регулятор для электроплиты своими руками

Регулятор нагрева электроплиты

Регулятор нагрева электроплитыЗдесь мы рассмотрим принципиальную электрическую схему самодельного, тиристорного регулятора мощности электроплитки.

Добрый день, друзья. Разрешите представить Вашему вниманию регулятор нагрева бытовой электроплиты. В будущем планирую собрать ещё два регулятора по этой схеме: один для аэрогриля, второй — для электродуховки. В принципе, к нему можно подключить практически любую активную нагрузку, мощность которой ограничена параметрами регулирующего элемента — тиристоров КУ202Н. С указанными на схеме элементами она небольшая — несколько сотен ватт.

Регулятор нагрева электоплиты - схема электрическая

Работа схемы регулятора

Работает схема следующим образом. Переменное наряжение пройдя через гасящий резистор R4 выпрямляется диодным мостом VDS1, далее стабилизируется параметрическим стабилизатором на стабилитронах VD1 и VD2. За счёт такой схемы, напряжение, действующее на диодном мосте, будет всего лишь на пару вольт выше напряжения стабилизации стабилитронов, в связи с этим можно применить диодный мост на низкое напряжение. Для меня это очень даже хорошо, т.к. кц405Е есть куча и особо некуда их было применить.

Далее на элементах VT1,R2,R3,C1 выполнен генератор импульсов пилообразной формы, частота его увеличивается при уменьшении сопротивления R3. Затем идёт трансформатор связи (сигнальный трансформатор) Tr1, резистор R1 ограничивает ток (чтобы не спалить транзистор). ЭДС, наведённая на вторичных обмотках сигнального трансформатора прикладывается к управляющим электродам тиристоров в положительной полярности относительно катодов и открывает их после того, как синусоида перейдёт через ноль. Именно генератор пилообразных импульсов обеспечивает задержку открытия тиристоров.

После того, как тиристор откроется, он удерживается в открытом состоянии за счёт тока протекающего через него до следующего перехода через ноль (то есть во время перехода через ноль ток через тиристор не протекает и он закрывается).

Трасформатор на феритовом кольце из компьютерного блока питания АТ

Трасформатор связи я намотал на феритовом кольце из компьютерного блока питания АТ на 200вт — на нём был намотан сетевой фильтр, в качестве провода для намотки применил жилы от телефонного кабеля в полиэтиленовой изоляции. Мотал его до заполнения окна, косичкой из трёх проводов (чтобы были обмотки симметричны) — получилось 36 витков.

Мотал трансформатор до заполнения окна, косичкой из трёх проводов

Настройка тиристорного регулятора нагрева плиты

Настройку тиристорного регулятора мощности надо начинать на низком напряжении, собрав конструкцию, как на фотографии. Нужно убедится в правильной фазировке сигнального трансформатора или по осциллографу (на УЭ таристоров относительно их катодов должен быть импульс положительной полярности), или субъективно — по изменению яркости лампочки.

Регулятор нагрева электроплиты - настройка

Далее замыкаем R3 и если генератор остановился, увеличиваем сопротивление R2, если нет — то идём далее. Смотрим, в каких пределах регулируется срез фронта синусоиды, если не достаточно, то применяем переменный резистор R3 большего номинала. У меня мощность в нагрузке регулируется в пределах 55. 98 процентов от номинальной мощности нагревателя, чего собственно и добивался.

Источник



Регулятор мощности для электроплитки

Предположим, у вас есть электроплитка, а мощность ее не регулируется. Вот и горит спираль в полный накал тогда, когда достаточно и четверти номинальной мощности, бессмысленно расходуя драгоценные киловатт-часы. Выход есть — сделать к электроплитке регулятор мощности. Схема первого варианта регулятора представлена на рисунке. Он позволяет регулировать мощность в нагрузке, рассчитанной на включение в сеть напряжением 220 В, от 5. 10 до 97. 99% номинальной мощности. Коэффициент полезного действия регулятора не менее 98%.

Читайте также:  Регулятор яркости лампочки 220в

Регулирующие элементы устройства — тринисторы VS1 и VS2 -включены последовательно с нагрузкой. Изменение мощности, потребляемой нагрузкой, достигается изменением угла открывания тринисторов.

Узел, обеспечивающий изменение угла открывания тринисторов, выполнен на однопереходном транзисторе VT1. Конденсатор С1, соединенный с эмиттером транзистора, заряжается через резисторы R2 и R3. Как только напряжение на обкладках конденсатора достигнет определенного значения, однопереходный транзистор откроется, через обмотку I трансформатора Т1 пройдет короткий импульс тока. Импульсы с обмотки II или III трансформатора откроют тринистор VS1 или VS2 — в зависимости от фазы сетевого напряжения, и с этого момента до конца полупериода через нагрузку будет протекать ток. Изменяя сопротивление резистора R3, можно регулировать скорость зарядки конденсатора С1 и, следовательно, угол открывания тринисторов и среднюю мощность в нагрузке.

Узел регулирования угла открывания тринисторов питается от двухполупериодного выпрямителя, выполненного по мостовой схеме (VD1). Напряжение на однопереходном транзисторе ограничено стабилитронами VD2, VD3. Конденсатор фильтра здесь отсутствует — в нем нет необходимости.

Однопереходный транзистор КТ117 можно применять с буквами А и Б. Можно использовать также аналог однопереходного транзистора, выполненный на двух биполярных транзисторах разной структуры (см. рис. 50). Мостовой выпрямитель VD1 может быть типов КЦ402, КЦ405 с любыми буквами. Можно также применить четыре диода типов Д226, Д310, Д311, Д7 с любыми буквами, включив их по схеме выпрямительного моста. При замене тринисторов VS1, VS2 на другие типы следует помнить, что они должны быть рассчитаны на подачу как прямого, так и обратного напряжения не менее 400 В. Трансформатор Т1 — типа МИТ-4 или МИТ-10. Самодельный трансформатор можно выполнить на ферритовом кольцевом магнитопроводе М2000НМ, типоразмер К20х10хб. Все обмотки выполнены проводом ПЭВ-1 0,31 и содержат по 40 витков. Намотка ведется одновременно в три провода, причем витки равномерно распределяются по телу кольца магнитопровода. Одноименные выводы обмоток на схеме обозначены точками.

Тринисторы VS1 и VS2 устанавливают на радиаторы с поверхностью охлаждения не менее 200 см^2 каждый. При этом максимальная мощность нагрузки может составлять 2 кВт.

Настройка регулятора мощности заключается в подборе сопротивления резистора R2 по максимальной мощности в нагрузке. Резистор R3 при этом временно замыкают проволочной перемычкой. Момент отдачи в нагрузку максимальной мощности лучше всего контролировать по осциллографу. В случае применения самодельного трансформатора Т1 следует подобрать нужную полярность подключения выводов обмоток, которая должна соответствовать обозначенной на схеме.

Читайте также:  Регулятор холостого хода взаимозаменяемость

Регулятор мощности можно использовать также совместно с маломощными электропечами, лампами накаливания и другими активными нагрузками. Описанному тринисторному регулятору мощности присущи недостатки. Во-первых, с изменением температуры в корпусе регулятора (а она будет в процессе работы увеличиваться из-за нагрева тиристоров) будет изменяться емкость конденсатора С1. Это приведет к изменению угла открывания тринисторов, а также к изменению мощности в нагрузке. Чтобы в какой-то степени устранить этот недостаток, необходимо применять конденсатор С1 с небольшими значениями ТКЕ (температурного коэффициента емкости), например К73-17, К73-24.

Во-вторых, тринисторный стабилизатор наводит высокий уровень помех в питающей сети. Эти помехи возникают в моменты скачкообразного включения тринистора. Коммутационные помехи не только распространяются через сеть, вызывая неустойчивую работу различных приборов (электронных часов, вычислительных машин и пр.), но и мешают нормальной работе некоторых устройств, гальванически не связанных с сетью (так, в радиоприемнике, находящемся недалеко от тринисторных регуляторов, слышен треск помех). Поэтому уменьшение коммутационных помех в тринисторных регуляторах мощности является важной задачей.:

Наиболее доступным способом снижения помех является такой способ регулирования, при котором переключение тринистора происходит в моменты перехода сетевого напряжения через нуль. При этом мощность в нагрузке можно регулировать числом полных полупериодов, в течение которых через нагрузку протекает ток. Недостатком такого способа регулирования по сравнению с традиционными являются большие колебания мгновенных значений мощности в нагрузке в течение периода регулирования, который значительно больше периода синусоидального напряжения и может достигать нескольких секунд. Однако для таких инерционных потребителей энергии, как электрическая печь, утюг, электроплитка, мощный электромотор, этот недостаток не является определяющим.

Источник

Регулятор мощности до трёх киловатт

Такое очень простое, и в то же время очень полезное устройство, можно применить для управления оборотами электродвигателей с фазным ротором. Например, электродрель старого производства, у которой нет встроенного регулятора оборотов, и ещё большого количества подобных инструментов и механизмов, которым не помешает регулировка оборотов, для расширения возможностей данного устройства.
Так же, такой регулятор отлично и бесступенчато регулирует мощность электрических нагревателей любого типа. Например, конфорки электроплиты, калориферы и тому подобное.

Регулятор может плавно менять освещённость ламп накаливания и диммируемых светодиодных в широких пределах от ноля до 100%.
Для начала монтажа устройства соберём детали.

Нам понадобится:
R1 – 20 Килоом, R3 — 3.3 Килоом, R4 – 300 Ом,
R2 – потенциометр — от 470 Килоом до 1 Мегаом,
C1 и C2 -0.05 МкФ, C3 – 0.1 МкФ,
T1 -динистор или ещё его называют диак DB3,
T2 – симистор или по другому — триак.
Симистор можно взять Советского производства из серии КУ208.
Или BT138-800, BT139-600 или им подобные, эти симисторы в Китае около 10 рублей за штуку, так же как и макетные платы, на которой мы и будем собирать данное устройство.

Читайте также:  Регулятор давления mcv116c1401 sauer danfoss

Макетная плата здорово облегчает и убыстряет монтаж электронных приспособлений. Не нужно заморачиваться с изготовлением и сверлением печатных плат. Просто вставляешь радиодетали в готовые отверстия, припаиваешь, соединяешь по схеме перемычками и готово.

Все конденсаторы и динистор можно выпаять из старых энергосберегающих ламп. Конденсаторы с нужными номиналами и динисторы есть не во всех лампах, так что нужно поискать. Динисторы в разных корпусах внизу второй фотографии (чтобы вы имели представление об их внешнем виде), а на корпусах у них написано DB3 (с лупой можно прочитать).

Потенциометр я взял от старого, ещё Советского телевизора, но подойдёт и любой другой с указанными номиналами.

Радиатор от компьютерного блока, но его нужно подбирать, в зависимости от планируемой нагрузки, которой вы собираетесь управлять. До 300 ватт – радиатор совсем не нужен, а чем выше нагрузка, тем массивнее радиатор. Размеры радиатора зависят и от характера нагрузки, так что подбор дело индивидуальное, но чем больше радиатор, тем лучше режим работы симистора и он будет работать дольше без аварий. Так что не скупитесь и поставьте побольше.

Резисторы везде есть, в любой аппаратуре, так что подобрать не составит большой проблемы. В Китае, тоже можно купить. 600 резисторов разных номиналов «набор», стоит около 150 рублей, вместе с доставкой, так что проще купить, чем заморачиваться с поиском и выпаиванием из блоков.

Клеммы для подключения питания и нагрузки можно взять любые, какие найдёте, но можно и вовсе обойтись без них, вопрос в удобстве использования данного устройства в эксплуатации.

Схема устройства выглядит так.

Цепочка R4 – C3 является защитой от радиопомех и её можете убрать, но соседи за это могут побить, если поймают.

Теперь приступаем к сборке.

Детали размещаем на макетной плате, так быстрее, на мой взгляд, удобнее и выглядит хорошо. Пайку выполнять нужно как можно более качественно и желательно не спеша.

Олово из Китая качественное не встречал, так что воспользуйтесь любым другим.

Перемычки (на схеме обозначенные красным цветом) выполняем медным проводом повышенного сечения, в зависимости от мощности нагрузки. На 3 киловатта — 2,5 квадратных миллиметра будет, с запасом, в самый раз. Я планирую управлять оборотами дрели на 800 ватт, и провод взял 1,5 мм, конечно тоже с запасом, но как говорится запас…. . И лучше будет работать.

Подключаем лампочку в качестве наглядной нагрузки и кусок провода с вилкой для подключения к сети.

Когда устройство подключаете к питанию, действуйте предельно осторожно! Все элементы схемы находятся под полным напряжением сети 220 вольт! Опасно для жизни!

Смотрите видео и убеждайтесь, что всё работает, как и планировалось.

Источник