Меню

Регулятор мощности для экономии электроэнергии

Экономят ли диммеры электричество?

Диммер – специальное устройство, которое используют для изменения или регулирования электрической мощности. С его помощью можно регулировать яркость света, который дают лампы накаливания или светодиодные лампы. Это важное устройство, которое срабатывает постепенно с нагрузками.

Содержание статьи

Основные функции оборудования для регулировки мощности:

  • Помогает экономить электрическую энергию.
  • Создавать нужное освещение.
  • Создавать необычные спецэффекты для каких-либо праздников.

Принцип работы

Основной функцией диммера есть экономия электричества – так утверждают компании, которые занимаются продажей этого оборудования. Самым удобным и экономичным в использовании считают электронный диммер.

Существует множество мнений специалистов о том, способна ли эта установка экономить электроэнергию. Фирмы, которые занимаются продажей такого оборудования, утверждают, что диммер способен сэкономить большое количество электроэнергии. Также есть мнения других пользователей о том, что независимо от уровня освещения электричество потребляется одинаково.

Диммер помогает экономить электроэнергию, только экономия эта незначительная. Существенной экономии на коммунальных платежах вы, скорее всего не увидите. Такая система больше предназначена для регуляции освещения в комнате.

Подключение диммера к сети

Диммеры — есть ли экономия?

Для того, чтобы понять есть ли экономия от диммера, нужно ознакомиться с его основными характеристиками:

  • Раскрытый диммерДиммер применяют для любой газоразрядной лампы.
  • Плавная система включения электроламп. Такая система продлевает срок службы лампы.
  • Возможность регулирования освещения в помещении.
  • При минимальном освещении его можно использовать как ночник.
  • Контролировать процесс освещения дистанционно или задавать с помощью специального таймера время выключения (включения) света.
  • Процесс электронной регулировки световых потоков контролируют микропроцессоры.
  • Каждая фаза регулируется независимо от каких-либо факторов.
  • Напряжение на всех уровнях регулируется равномерно.
  • Выходное напряжение поддерживается с точностью 1 процент.
  • Некоторые модели диммеров имеют специальные функции памяти, которым можно задать все необходимые параметры.
  • Экономия более 40 процентов.
  • Полная окупаемость 6-24 месяца.
  • Простата в установке.
  • Легкость в использовании.
  • Абсолютная безопасность в использовании.

Это основные преимущества диммеров в сравнение со стандартным выключателем. Самым главным качеством этой системы является – экономия электроэнергии, в результате и денег потребителей на коммунальные платежи. Производители диммеров дают разные характеристики на счет экономических способностей 25-75 процентов экономии электроэнергии.

В ходе различных испытаний диммеров можно сделать выводы, что компании, которые занимаются их реализацией, значительно завышают их процент экономии. Подсчеты независимых экспертов утверждают, что уровень экономии электрической энергии составляет не больше чем 20 процентов. Но во многих случаях этот факт про экономию остается мифом. Потому как существенная экономия денег на коммунальных платежах не происходит. Всего лишь 3-4 процента, а не как обещанные некоторыми компаниями 75 процента.

На самом деле экономии от использования диммеров практически нет. Потому как его можно установить на один только выключатель. Вместо него легко можно использовать экономные лампы. Цена на диммеры достаточно высокая. Поэтому их стоимость можно окупить только как минимум через 2 года. Также диммер невозможно установить на бытовую технику (холодильник, пылесос, стиральную машину), где затраты электроэнергии куда больше.

Источник



Частотный преобразователь экономия электроэнергии. Пример расчета.

Содержание

Неоптимальные режимы работы электропривода

Потребление электроэнергии в России составляет более 1000 миллиардов киловатт-часов в год. Порядка 70% расходуется на электропривод. Из них до 60% расходуется на вентиляторы и насосы. Большая часть вентиляторов и насосов работает в неоптимальных с точки зрения расходования ресурсов режимах. В среднем потребление энергии в этом случае можно сократить на треть. Таким образом, потенциал для экономии может составить более 60 миллиардов киловатт-часов в год. Учитывая, что стоимость электроэнергии составляет от 1 до 6 рублей в зависимости от ценовой категории, уровня напряжения и максимальной мощности, можно оценить экономию на электроэнергии только на насосах и вентиляторах на уровне 100 – 200 млрд. рублей в год в масштабах России.

Неоптимальность режима работы заключается в том, что мощность вентиляторов и насосов превышает необходимую. Иногда насосы не отключаются даже тогда, когда они по сути дела не нужны. Например, давление и производительность насоса при проектировании были рассчитаны с запасом. Запас может находиться в пределах от 20 до 200 и более процентов. Часто при изменении расхода рабочего тела двигатель работает на максимальной мощности, а для поддержания нормального давления используют заслонки и т.п. Для некоторых видов насосов, особенно мощностью более мегаватта, запуск и останов прямым пуском значительно снижает их ресурс, поэтому их просто не отключают. Возможны другие ситуации неоптимального режима работы приводов.

Оптимизация режимов работы

Одним из способов оптимизации режима работы насосов и вентиляторов является изменение скорости вращения рабочего колеса. Существует много способов изменения скорости вращения: использование редукторов с переменным передаточным отношением, использование гидромуфт, изменение частоты вращения с помощью частотного преобразователя. При проектировании установки с учётом всех её особенностей может быть обоснован любой из этих вариантов. Однако при модернизации существующих установок, наиболее актуальным является изменение частоты вращения привода. В этом случае механическая часть не затрагивается.

Наиболее распространённым видом электроприводов является двигатели переменного тока. В большинстве случаев, это трёхфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.

Основные преимущества двигателя переменного тока:

  • Простота изготовления;
  • Дешевизна;
  • Высокая надёжность;
  • Низкие эксплуатационные затраты;
  • Возможность прямого включения в электрическую сеть.

Плата за достоинства – недостатки:

  • Небольшой пусковой момент;
  • Значительный пусковой ток;
  • Низкий коэффициент мощности (для маломощных двигателей);
  • Фиксированная скорость вращения (в номинальном режиме);
  • Сильная (квадратичная) зависимость момента от напряжения сети.

Для преодоления недостатков были разработаны различные модификации двигателей переменного тока:

  • Двигатели с фазным ротором;
  • Двигатели с изменяемым количеством полюсов; и т.п.

Однако все улучшения приводят к усложнению конструкции двигателя, снижению КПД и удорожанию.

Регулировка скорости вращения двигателя

Скорость вращения ротора двигателя переменного тока можно менять с помощью:

  • Изменения частоты питающего напряжения;
  • Переключения полюсов в двигателях соответствующей конструкции;
  • Изменения силы питающего тока (в очень узких пределах);
  • Используя специфически двигатели, например Штаге-Рихтера.

В широких пределах регулируется скорость двигателей постоянного тока, но они редко используются из-за дороговизны изготовления и обслуживания. На сегодня, развитие электронных преобразователей сделало наиболее экономически эффективным способом регулирования частоты вращения ротора двигателя использование преобразователей частоты питающего напряжения (ПЧ). Особенно когда речь идёт о регулировании частоты вращения в уже существующей установке.

Основные преимущества ПЧ:

  • Регулирование частоты вращения в широких пределах — от нуля до предела механической стойкости установки;
  • Возможность плавного старта и останова двигателя;
  • Уменьшение ударных токовых нагрузок во время старта и останова двигателя;
  • Простое включение в контур автоматического регулирования;
  • Высокий коэффициент мощности.

Основные недостатки ПЧ:

  • Высокая стоимость;
  • Потери энергии 2-10%;
  • Наличие большого количества гармонических составляющих как в токе двигателя, так и в потребляемом от сети токе;
  • Излучение электромагнитных помех;
  • Необходимость поддержания температурного режима;
  • Необходимость проведения периодического обслуживания ПЧ.

Исходя из наличия недостатков, само по себе использование ПЧ не гарантирует положительного экономического эффекта. Мало того, бездумное использование ПЧ может принести убытки.

Факторы влияющие на экономический эффект

Наиболее очевидный экономический эффект при использовании преобразователей частоты может быть достигнут за счёт экономии электроэнергии. Но не стоит так же забывать о других факторах экономии:

  • Плавный старт позволяет снизить механические пусковые нагрузки. Это прямой выход на уменьшение износа и увеличение срока службы оборудования;
  • Плавный старт и останов насосов позволяет устранить гидроудары в системе;
  • Более низкая частота вращения двигателя приводит к увеличению ресурса установки. Снижается шумность;
  • Отсутствие 4-8 кратных пусковых токов при старте позволяет снизить установленную (максимальную) мощность, упростить систему защиты от перегрузок и короткого замыкания;
  • Включение насоса в контур автоматического регулирования позволяет поддерживать заданные параметры давления расхода и др. без участия оператора или дистанционно;
  • Точное поддержание давления в системе позволяет снизить максимальное давление в трубопроводах, а значит, и уменьшить вероятность их разрывов. Снижение давления даёт дополнительную экономию энергии и снижение потерь на утечки;
Читайте также:  Измеритель мощности ультразвука иму

Все эти факторы сильно зависят от конкретной насосной или вентиляторной установки. Экономический эффект должен рассчитываться индивидуально для каждой установки. Замена электрических двигателей на новые, с более высоким КПД, может принести положительный экономический эффект. Даже при изменении КПД на 1-2% замена может окупиться за несколько лет. Особенно актуально проводить расчёты энергосбережения при установке новых двигателей.

Приближенный расчёт экономии энергии можно выполнить зная параметры электрического двигателя, насоса и требуемые выходные параметры:

  • давление,
  • расход.

Расчёт экономического эффекта от других факторов затруднён, так как зависит от конкретной насосной или вентиляторной установки. Но эффект от прочих факторов в некоторых случаях может превысить эффект от экономии энергии. Иногда, в случае ошибок при проектировании, или внесении изменений в систему после проектирования, рабочая точка насоса может оказаться так далеко от оптимальной, что экономически целесообразной окажется полная замена насосной установки.

Способы расчета

Наиболее точные расчёты производительности насоса и давления на выходе и потребляемой мощности можно получить используя характеристические кривые насоса. Однако не всегда они приводятся для разных скоростей вращения ротора. Обычно данные есть для одного или двух значений частоты вращения, но даже имея графики для одной частоты вращения ротора можно пересчитать их для других скоростей вращения. Во-первых, нужно по необходимой производительности насоса и давлению на выходе определить по графикам насколько далека рабочая точка от точки максимального КПД. Если входные параметры меняются во времени, нужно сделать несколько оценок. Если рабочая точка всегда находится вблизи точки с максимальным КПД (снижение КПД менее 10%), частотное регулирование не даст экономии электроэнергии. В случае если и другие факторы экономии окажутся незначительными, применение ПЧ принесёт убыток от затрат на приобретение и эксплуатацию. Но чаще всего параметры производительности рассчитаны с запасом от максимального расхода в системе, а максимальный расход достигается в течение одного-двух часов в сутки.

Если посмотреть по характеристическим кривым, то КПД насоса может падать до 20-30% от максимального. Давление на выходе центробежного насоса или не регулируется вообще или поддерживается с помощью рециркуляции (часть жидкости сбрасывается обратно) или дросселированием (поток регулируется регулируемой заслонкой). В зависимости от способа регулирования рабочая точка насоса по-разному смещается по семейству характеристических кривых. Самые неудачные варианты это отсутствие регулирования и рециркуляция, они приводят к максимальному расходу энергии и повышенному давлению в системе. При дросселировании удаётся несколько снизить потребляемую мощность в случае снижения производительности. Графики потребления электроэнергии в зависимости от расхода жидкости для различных способов регулирования при постоянном давлении на выходе приведены на рисунке 1.

Потребление мощности при различных способах регулирования частоты вращения насосов

График потребления энергии при частотном регулировании имеет две особенности: во-первых при малых расходах он «отклоняется вверх» из-за неустойчивости режима работы насоса при малых расходах; во-вторых при максимальном расходе жидкости сказывается КПД частотного преобразователя, и потребление энергии становится больше, чем при прочих способах регулирования.

При расчётах центробежных насосов можно принять следующие зависимости:

  • Производительность (расход) прямо пропорциональна скорости вращения ротора;
  • Давление прямо пропорционально квадрату скорости вращения ротора;
  • Потребляемая мощность пропорциональна кубу скорости вращения ротора;

При дросселировании расход уменьшается, но давление на выходе насоса растёт, поэтому потребляемая мощность слабо уменьшается при уменьшении расхода. Изменение потребляемой мощности можно оценить по характеристическим кривым или используя эмпирическую формулу.

Где:
Pдр и Pном потребляемая мощность при дросселировании в оптимальной рабочей точке;

Qдр и Qном расход при дросселировании в оптимальной рабочей точке;

Помимо непосредственно экономии энергии нужно учесть и увеличение затрат:

  • КПД ПЧ с учётом затрат на охлаждение принять 90%;
  • Внедрение ПЧ потребует капитальных затрат, которые окупаются не сразу. Поэтому для оценки экономического эффекта необходимо учитывать ставку дисконтирования по принятой на предприятии методике, обычно речь идёт о 10-30% в год.

Подход к расчёту энергетической эффективности вентиляторов во многом соответствует расчёту центробежного насоса.

Пример расчёта экономии электроэнергии

В качестве примера рассмотрим реальную насосную состоящую из 4 насосов. В своё время станция проектировалась с перспективой роста, но до сих пор работает в режиме с одним работающим насосом. Для уравнивания наработки моточасов по агрегатам, раз в месяц происходит переключение на следующий насос. Регулирование давления на выходе станции обеспечивается заслонкой, то есть дросселированием.

  • Марка насоса 300Д90А;
  • Производительность насоса Qopt=1250, м3/час;
  • Напор Нopt=54, м (водяного столба);
  • Марка электродвигателя АИР355 C4У3;
  • Механическая мощность P=250, кВт;
  • Частота вращения n=1490, 1/мин;
  • Напряжение питания U=380, В;
  • Ток двигателя I=437, А;
  • Давление на выходе насосной станции pвых=2,3 кГс/см2;
  • Давление на входе насоса pвх=0,3 кГс/см2;
  • Расход воды в месяц Vмес=330000 м3;
  • Тип регулирования – дросселирование.

На рисунке 2 приведены характеристические кривые и положение оптимальной рабочей точки при различной скорости вращения ротора для близкого по параметрам насоса 300D70 [2].

Рисунок 2. Семейство характеристических кривых для насоса 300D70.

При регулировании рециркуляцией, насос работает в режиме близком к оптимальному при максимальной (оптимальной) производительности не зависимо от потока воды. Потребление механической энергии равно номинальной мощности двигателя, потребление электрической энергии будет таким же, но с учётом КПД двигателя и cos(ϕ). Потребление энергии можно рассчитать из паспортных данных.

При регулировании дросселированием, рабочая точка насоса сдвигается в область более высокого давления и меньшего расхода, потребление энергии снижается, но КПД насоса резко падает. Оценить снижение потребления энергии можно по графикам характеристических кривых насоса или по приближенной формуле:

Рассчитаем частоту вращения ротора насоса исходя из условий снижения производительности и напора:

Рабочая точка, обеспечивающая необходимую производительность, будет достигаться при частоте вращения насоса между nH и nQ. Примем за частоту вращения ротора большую.

Регулирование частоты вращения двигателя осуществляется с помощью Преобразователя частоты (ПЧ). КПД ПЧ мощностью свыше 100 кВт, обычно не хуже 95%. С учётом этого потребляемая мощность составит.

Рассчитаем стоимость электроэнергии для трёх вариантов регулирования. Примем цену электроэнергии 5 руб/кВт.ч. Примем количество часов в месяц 730 ч. Учитывая, что для мощных электродвигателей cos( ϕ)>0,9, примем активную мощность равной реактивной.

Цена электроустановки с ПЧ мощностью 250 кВт колеблется от 1 200 000 р. (минимальная конфигурация) до 3 200 000 р. (конфигурация с резервированием и «плавным» переключением нескольких насосов). Таким образом, срок окупаемости внедрения ПЧ составит от 3 до 7 месяцев. С учётом сроков ПНР и дисконтирования срок окупаемости вырастет, но составит не более 5-9 месяцев. Впоследствии можно рассчитывать на экономию 5,5 млн.р. в год. Дополнительную экономию можно будет получить за счёт уменьшения износа и повышения надёжности работы насосной станции и трубопроводной системы.

Читайте также:  Таблица работа мощность провода

Включение ПЧ в АСУТП позволит оперативно отслеживать и управлять насосной станцией из центра диспетчеризации. Что в свою очередь позволит высвободить часть персонала.

Заключение

Внедрение частотных преобразователей в систему электропривода может принести заметный экономический эффект не только от экономии энергии, но и от автоматизации управления и увеличения срока службы системы в целом. Главное, на стадии выработки решения грамотно рассчитать ожидаемый результат, выбрав оптимальное техническое решение. Бездумное внедрение ПЧ может наоборот привести либо к увеличению сроков окупаемости, либо даже к убыточности решения.

Литература

  1. Черкасский В. М. Насосы, вентиляторы, компрессоры: учебник для теплоэнергетических специальностей вузов / В.М. Черкасский — 2-е изд., перераб. и доп. — М.: Энергоатомиздат, 1984. — 416 с.
  2. Технические параметры насоса 300D70A [Электронный ресурс]. – Режим доступа: http://www.vipom.ru/search_pump1450.shtml?q1=343. – дата обращения 03.03.2017;

Автор — Александр Викторович Кинсфатор, Технический директор ООО «Гекомс».

Источник

Компенсация реактивной мощности: прямая экономия без обмана счетчика

Компенсация реактивной мощности: прямая экономия без обмана счетчика

С пoмoщью малoзатратных уcтрoйcтв, дoбавленных в cеть переменнoгo тoка, прoмышленнoе предприятие мoжет ocтавить за coбoй, без преувеличения, дo трети «oбычных» затрат на электрoэнергию. И oбманывать cчетчик при этoм вoвcе не придетcя. Нужно вcего лишь укротить реактивную мощноcть, гуляющую по кабелям, как ей заблагораccудитcя. Здеcь мы раccкажем о воздейcтвии «незваной мощноcти» на энергозатраты производcтва, а также о cовременном оборудовании, способном не только сгладить последствия вредного явления, но и обратить зло на пользу.

К глубокому сожалению, сегодня многие из нас не владеют поднятой проблемой даже в общих чертах. А если и понимают ее, то чаще всего недооценивают, не усматривая в компенсации реактивной мощности сколь-нибудь ощутимого источника для экономии. Но ведь здесь даже не надо быть специалистом. Поскольку все мы, так или иначе, если не на производственном, так на бытовом уровне, являемся постоянными потребителями электроэнергии. Уже поэтому ее качество и стоимость нам должны быть столь же не безразличны, как качество и стоимость подаваемой в дом питьевой воды.

Не удивлюсь, если кто-то из читателей откровенно возмутится, заподозрив, что ему собрались элементарно морочить голову. Он знает, что ток в розетке либо есть, либо его по каким-то причинам нет. Последнее неприятно, нужно срочно звонить диспетчеру, чтобы тот принял меры. Но о каком качестве самой энергии здесь идет речь? Как его определять — на вкус, на цвет, на запах? Можете ерничать по этому благодатному поводу и дальше, но имейте в виду — тут ведь как в политике, если мы не займемся качеством энергии, оно само нами займется.

Цена миллисекундных отключений

Буквально под самый миллениум правительства в США и Канаде, оценив последствия от провалов напряжения (вспомните заголовки в наших изданиях — «Нью-Йорк во мраке», «Вашингтон окунулся во тьму»), организовали общенациональные энергетические обследования большинства промышленных предприятий. Целью такой профилактики (просто-таки тянет сказать «медицинской», уж очень похоже) ставилась выработка новой концепции защиты промышленного оборудования от нарушений электроснабжения. Вам интересна цена вопроса? Так вот стоимость ущерба от плохого качества электрической энергии в экономике двух крупнейших американских стран эксперты определили суммой, которая превышает 150 млрд. долл. в год.

У нас в России, как водится, официальной статистики по сему поводу не существует. Хотя, если основательно пошарить по информационным сусекам, можно обнаружить некоторые измерения местного масштаба, тоже дающие почву для размышления. Например, в Северо-Западном федеральном округе один крупный поставщик электроэнергии, которому почему-то не спалось на лаврах постоянного дохода, взял да и подсчитал, сколько перепадов напряжения случилось конкретно на 12 участках мощностью от 5 до 30 МВА и каковы оказались последствия.

Измеряли ровно 10 месяцев, на большее по каким-то причинам не хватило. За это время отметили 858 перепадов, 42 из которых повлекли ощутимые сбои в сети и финансовые потери. Что примечательно, на всех этих 12 участках основными потребителями энергии были предприятия с несложной технологией. Тем не менее, финансовые потери были оценены в сумму 600 тыс. евро, а максимальный убыток, пришедшийся на отдельно взятый участок, составил 165 тыс. евро. Особо подчеркнем, что штрафных санкций никто никому предъявлять не собирался, замеряли так, для общего интереса, а потому о «подтасовке» речи быть не может. Тогда откуда взялись те самые перепады количеством в сотни и многотысячные потери в инвалюте?

Столь пристальное внимание северо-западной статистике мы уделили не только потому, что другой нет. Тем исследователям спасибо сказать надо уже за то, что они подчеркнули назревшую, как опухоль, проблему. К сожалению, регламентируемая сегодня система защиты предприятия основана на старой, как детекторный приемник, норме проектирования, которая допускает от 2 до 3 аварийных отключений электроэнергии в год, хотя в разных регионах в настоящее время они происходят с частотой до 40 раз в год.

За последние годы характер потребления электроэнергии претерпел существенные изменения. В технологических процессах большинства предприятий, будь то завод или современная медицинская клиника, становится все больше низковольтных приводных электродвигателей, микропроцессорной техники, систем телекоммуникации. И разве вы сами не замечали, как тот же любимый всеми Интернет часто буквально обрывается короткими по продолжительности (несколько мСек) провалами и перегрузками питающего напряжения. Но если для пользователя сети такое прерывание досадно, но не страшно, то сложному автоматизированному производству провал напряжения в десятые доли секунды может грозить частичной или полной остановкой. Прямой и косвенный ущерб тогда надоест считать.

Напрашивается сакраментальный вывод, что нужно просто как следует прижать тех же энергетиков, чтобы они тщательнее следили за качеством электроэнергии в своих сетях (думается, теперь и несведущий понял, о чем мы говорим). Но дело в том, что энергосистемы, не располагая порой полной информацией о режимах работы потребительских электроустановок, никак не могут влиять на них и не имеют возможности добиться полного контроля над процессом управления, поскольку виной всему реактивная мощность.

«Незваная мощность»

Теория точна, но суха. Согласно ей, реактивная мощность (РМ) — это величина, характеризующая нагрузки, создаваемые в электротехнических устройствах колебаниями энергии электромагнитного поля в цепи синусоидального переменного тока. А синусоидальность потому и возникает, что потребляющие электроэнергию устройства, в которых создается магнитное поле (моторы, дроссели, трансформаторы, индукционные нагреватели, сварочные генераторы), вызывают отставание тока от напряжения (сдвиг фаз), обусловленное наличием индуктивности.

Основу любого электродвигателя или трансформатора составляют витки медного провода, намотанного на магнитную основу. Поэтому в процессе работы они уже в силу законов физики за счет высокой магнитной проницаемости и самоиндукции генерируют реактивную мощность. А та, совершая колебательные движения от нагрузки к источнику (генератору) и обратно, распространяется по сети.

Казалось бы, «незваной мощности» надо только радоваться, поскольку она ниоткуда взялась. Да вот незадача: согласно теории, РМ характеризуется задержкой (ток отстает) между синусоидами фаз напряжения и тока сети. В моменты, когда синусоиды напряжения и тока имеют противоположные знаки, мощность не потребляется нагрузкой, а подается обратно по сети в сторону генератора. И мотается эта «добавочка» на вашем же счетчике, причем не в обратную сторону.

Читайте также:  Индукционная печь мощность потребления

Впрочем, генерация РМ порождает и другие отрицательные явлениями. Среди них:

  • повышение активных потерь (т. к. увеличивается полная мощность);
  • снижение нагрузочной способности (т. к. возрастает токовая нагрузка на питающий кабель и распределительный трансформатор);
  • большее падение напряжения (из-за увеличения реактивной составляющей тока питающей сети).

Таким образом, отрицательное воздействие РМ на электрическую сеть несоизмеримо больше, чем положительное. Недаром в конце 80-х годов, т.е. во времена заката СССР, на всех промышленных предприятиях были директивно смонтированы конденсаторные батареи. К сожалению, в дальнейшие 90-е годы многие предприятия-потребители электроэнергии отключали имевшиеся у них компенсирующие устройства, не беспокоясь о поддержании их работоспособности по причине недостаточного финансирования, а некоторые — и вовсе демонтировали КРМ.

Желанный косинус

Уровень РМ двигателей, генераторов и сети предприятия в целом характеризуется коэффициентом мощности cosw — это численное отношение активной мощности к полной мощности. Например, cosw асинхронных двигателей составляет примерно 0,7; сварочных трансформаторов — примерно 0,4; cosw станков — не превышает 0,5 и т. д. Поэтому полное использование мощности сети возможно только при компенсации ее реактивной составляющей.

Компенсация реактивной мощности может быть индивидуальной (местной) и централизованной (общей). В первом случае параллельно нагрузке подключают один или несколько (батарею) косинусных конденсаторов, во втором – некоторое количество конденсаторов (батарей) подключается к главному распределительному щиту.

Индивидуальная компенсация — самый простой и наиболее дешевый способ компенсации реактивной мощности. Число конденсаторов (конденсаторных батарей) соответствует числу нагрузок, и каждый конденсатор расположен непосредственно у соответствующей нагрузки (рядом с двигателем и т. п.). Такая компенсация хороша только для постоянных нагрузок (например, один или несколько асинхронных двигателей с постоянной скоростью вращения вала), то есть там, где реактивная мощность каждой из нагрузок (во включенном состоянии нагрузок) с течением времени меняется незначительно и для ее компенсации не требуется изменения номиналов подключенных конденсаторных батарей. Поэтому индивидуальная компенсация ввиду неизменного уровня реактивной мощности нагрузки и соответствующей реактивной мощности компенсаторов называется также нерегулируемой.

Централизованная компенсация — компенсация реактивной мощности с помощью одной регулируемой установки КРМ, подключенной к главному распределительному щиту. Применяется в системах с большим количеством потребителей (нагрузок), имеющих большой разброс коэффициента мощности в течение суток, то есть для переменной нагрузки (например, несколько двигателей, размещенных на одном предприятии и подключаемых попеременно). В таких системах индивидуальная компенсация неприемлема, так как, во-первых, становится слишком дорогостоящей (при большом количестве оборудования устанавливается большое количество конденсаторов), и, во-вторых, возникает вероятность перекомпенсации (появление в сети перенапряжения).

В случае централизованной компенсации конденсаторная установка оснащается специализированным контроллером (автоматическим регулятором реактивной мощности) и коммутационно-защитной аппаратурой (контакторами и предохранителями). При отклонении значения cosw от заданного значения контроллер подключает или отключает определенные конденсаторные батареи (компенсация осуществляется ступенчато). Таким образом, контроль осуществляется автоматически, а мощность подключенных конденсаторов соответствует потребляемой в данный конкретный момент времени реактивной мощности, что исключает генерацию реактивной мощности в сеть и появление в сети перенапряжения.

Конкретное предложение

Оборудование для борьбы с РМ выпускают сейчас многие компании и у нас, и за рубежом. Для наглядности рассмотрим предлагаемое ими разнообразие на примере отечественной «Матик-электро». Оборудование для компенсации реактивной мощности с помощью низковольтных КРМ-0,4 кВ (аналог УКМ 58, АКУ, УККРМ), производимое этой компанией и оснащенное автоматическими регуляторами европейского уровня, способно почти на треть сократить расходы любого производства на электроэнергию. Конденсаторные установки существенным образом снижают нагрузку на трансформаторы и кабели и тем самым повышают надежность сетей.

Компенсация реактивной мощности осуществляется на базе высоковольтных конденсаторных установок, применяется в электросетях 6,3 / 10,5 / 35 кВ с высоковольтной нагрузкой. Конденсаторные установки компенсации реактивной мощности высоковольтные КРМ (аналог УКЛ 56, УКЛ 57) — 6,3 / 10,5 / 35 кВ производятся на реактивные мощности от 150 до 50 000 кВАр. Компенсация реактивной мощности происходит в ручном режиме, путем подключения необходимого числа батарей косинусных конденсаторов. Высоковольтные установки компенсации реактивной мощности производятся на базе компенсационных конденсаторов ведущих мировых производителей, в корпусах порошковой окраски, имеют срок службы 150 тыс. часов.

Регулируемая установка компенсации реактивной мощности в автоматическом режиме, под управлением микропроцессорного регулятора улучшает cosw путем подключения/отключения необходимого числа батарей конденсаторов. Они выпускаются с шагом от 20 до 450 кВАр и суммарной мощностью до 100 МВАр. Производятся также установки, в которых компенсация реактивной мощности осуществляется одновременно с фильтрацией гармоник в сети.

Тиристорные КУ

Такие конденсаторные установки — лучшее, а иногда и единственное решение, когда необходимо осуществлять компенсацию реактивной мощности нагрузки в короткий период времени. Конденсаторные установки с тиристорными ключами применяются в цехах с резкопеременной нагрузкой. К таким относятся цеха с большим количеством подъемно-транспортных механизмов, штамповочных установок и прессов, сварочных аппаратов.

В отличие от установок с контакторами, тиристорные КУ обладают быстродействием на 2 порядка выше, т.к. не требуется задержка срабатывания на время разряда конденсатора. В тиристорных установках после подачи сигнала на коммутацию тиристор «сам выбирает» время подключения в момент, когда напряжение в сети и на конденсаторе равны. Задержка включения составляет не более 20 мс.

При этом следует отметить, что конденсаторы подключаются без пусковых токов. Это продлевает срок службы конденсаторов. В связи с отсутствием движущихся механических контактов тиристорные конденсаторные установки имеют больший ресурс. Для защиты тиристоров применяются специальные быстродействующие предохранители.

Другие решения

Косинусные, фазовые конденсаторы для компенсации реактивной мощности используются для местной компенсации (подключение параллельно двигателям и т.п.). Большой гарантированный срок их эксплуатации (более 100 000 часов) обеспечивается передовыми разработками в области пленочных технологий для конденсаторов, в том числе — вакуумной обработкой диэлектрика. Конденсаторы для компенсации реактивной мощности производятся на напряжения от 0,4 до 10,5 кВ и мощности до 700 кВАр.

Контакторы для компенсации реактивной мощности — новое поколение электрических аппаратов на токи от 10 до 130 А с широкими функциональными возможностями и современным дизайном. Все аппараты имеют европейский и российский сертификаты и применяются в установках компенсации реактивной мощности на напряжения 0,4 — 0,69 кВ. Контакторы для установок компенсации реактивной мощности производятся на номиналы 5 — 75 кВАр и имеют контакты предвключения для ограничения тока через компенсирующий конденсатор в момент включения. Данные контакторы сглаживают пусковой ток и продлевают срок службы конденсаторов в установках компенсации реактивной мощности.

Выключатели нагрузки для установок компенсации реактивной мощности Federal и ВНК производятся с предохранителями или без них (исполнение — выключатель нагрузки) в соответствии со стандартами IEC/EN 60947-3 и ГОСТ. Они были разработаны для обеспечения мгновенного выключения цепей установок компенсации реактивной мощности с различными токами. Выключатели нагрузки незаменимы в установках компенсации реактивной мощности на большие токи — мощность свыше 200 кВАр.

Трансформаторы тока разборные TA.R (аналог Т-0.66, ТНШЛ, ТШ), на ток от 250 до 5000 А, для быстрого монтажа, предназначены для облегчения установки их на шину (от 20х30 мм до 160х80 мм) и кабель (диаметр от 20 до 80 мм). Данные трансформаторы удобны как внешний датчик тока для установок компенсации реактивной мощности.

Источник