Меню

Регулятор нагрузки для трансформатора

Регулятор нагрузки для трансформатора

Итог с позволения сказать оказался печальным, была припалена первичная обмотка.

Пришлось перемотать полностью весь транс. Первичка 200 витков проводом диаметром 1.8 в стеклоткани, вторичка 6 витков диаметр провода 2.3мм в два провода.

А вот печаль, постигла меня буквально сразу, симистор стрельнул \на фото восстановленный прибор \.

Но мы не ищем легких путей, у меня в резерве имелся фазовый регулятор на микросхеме КР1182ПМ1, после подключения второй регулятор отправился к праотцам вслед за первым.
Хочу заметить, что симисторные регуляторы, которые могут управлять коллекторными двигателями, не в состоянии управлять трансформаторами.
«Я достаю из широких штанин» \В.Маяковский\. Регулятор на мощных MOSFET транзисторах вот схема. Этот девайс я использую для регулировки паяльника уже года 4-5.
Фото этого девайса, мосфеты стоят другие, мощнее чем IRF840, а так схема

Далее была найдена схема на сайте уважаемого радиолюбителя, схема представлялась автором как собственная разработка. Ну что ж засучив рукава, собираю и эту схему.

После сборки схемы, сказать, чтоб эта схема не заработала, я не могу, она заработала на 50% до выхода микросхемы 3. Обращение к автору схемы, не внесло дальнейшей ясности в работе схемы. Попытки поднять кпд схемы более 50% не возымели дальнейшего действа. Вердикт – схема не рабочая.

Следующим шагом было теоретическое понимание, как должен работать симистор на индуктивность.

Итак—Идеология управления симистором на индуктивную нагрузку.
При индуктивной нагрузке из-за фазового сдвига тока за период короткого запускающего импульса симистор, не успевает открыться.
Проявляется это как характерное рычание и подпрыгивание трансформатора. Иногда летят симисторы.

Есть только два способа стабильного регулирования индуктивной нагрузки.
1. Это посылать пакет импульсов — не откроется с первого, откроется от второго-третьего импульса.
2. или держать постоянно ток на открывание с момента включения до конца полупериода.

Вот схема которая была взята за основу .
Мощный симисторный регулятор мощности.
Схема найдена была на сайте Радиокот.
Спасибо автору этого девайса.
Она совпадала с идеологией написанной выше.
Описание работы схемы привожу частично, остальная часть статьи посвящена аналогу схемы на дискрете, мне это не нать….

Последний раз редактировалось Serge 19 июн 2013, 08:59, всего редактировалось 2 раз(а).

Могут возникнуть вопросы по поводу бестрансформаторного блока питания с конденсаторным делителем, не напрягайтесь, вот ссылка, там же и он-лайн калькулятор для расчета оного — http://radiohlam.ru/teory/wtsupp_cdiv.htm
Описание работы всего устройства в целом и его осциллограммы совпадают с описанием автора.

Теперь закидываю полученный результат в коробочку, ставлю симистор на фильдеперсовый радиатор через слюдяную прокладку и подключаю к трансу.
Троекратно крестимся и включаем в сеть \переменник предварительно ставим на минимальное положение\, транс гудит слегка больше чем ранее. Выводим регулятор постепенно на максимум.
Все работает, просто отлично. Фольга плавно нагревается.
Ура, товарищи, ура. Это победа.

Фотки внутренностей регулятора.

Последний раз редактировалось Serge 19 июн 2013, 13:37, всего редактировалось 2 раз(а).

Схема взята с пендосовского сайта и она явно рабочая.
Динистор вместе с кондером \который внутри диодного моста\ формирует пакеты импульсов. Т.е. принцип открывания симистора одинаков с вышеуказанной схемой.
Но схему эту делать не стал, что то мне показалась, что она будет сложна в настройке, а может я и перестраховался.

Вот собственно и вся эпопея по созданию симисторного регулятора работающего на индуктивную нагрузку.

Вдруг кому понадобится регулировать сварочный транс, думаю, будет работать и весьма неплохо.

Не могу распаковать архив печатной платы. Помогите, пожалуйста. Заранее благодарю!

Serge, собираюсь повторять Ваше устройство.
Возник вопрос: На принципиальной схеме у оптопары TLP504 есть 8 выводов, а согласно даташита на TLP504G : http://www.alldatasheet.com/datasheet-p . P594G.html , у этого девайса 6 выводов.
Как получилось такое несоответствие?

Про стабилитрон на выходе диодного моста можно чуть подробнее?
Какое на нём обычно должно быть напряжение?

Часовой пояс: UTC + 3 часа [ Летнее время ]

Кто сейчас на конференции

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 2

Источник



Регулятор мощности нагрузки

Время на чтение:

Симисторы и тиристоры используются во многих электросхемах, в быту и на производстве. Ниже описано, что из себя представляет регулятор мощности, каковы его разновидности и где они применяются. Также будет дана инструкция, как собрать стабилизатор напряжения своими руками.

Читайте также:  Схема частотного регулятора своими руками

Что такое регулятор мощности

Самые первые прототипы устройств, позволяющих уменьшать проводимую к нагрузке мощность, были разработаны с учетом закона Ома. На этом принципе и основано функционирование реостата. Его можно подключать последовательно и параллельно нагрузке. При изменении сопротивления реостата можно регулировать его мощность.

Что собой представляет регулятор мощности

При подключении реостата к нагрузке ток распределяется между ними. В зависимости от способа подключения можно контролировать разные параметры: при параллельном — разницу потенциалов, а при последовательном — напряжение и силу тока. Реостаты различаются в зависимости от использованного в их конструкции материала: металла, керамики, угля или жидкости.

При использовании реостата поглощенная им энергия никуда не исчезает, а преобразуется в тепло. При большом количестве энергии целесообразно использовать системы охлаждения, чтобы температура устройства не была слишком высокой. Отводят тепло обычно с помощью обдува или погружая резистор в масло.

Такие простейшие реостаты широко применяются, но есть один значимый недостаток — невозможность использовать его в мощных электрических цепях. Поэтому резисторы применяются только в бытовых целях (к примеру, такие есть в конструкции радио).

Обратите внимание! Обычный реостат можно сделать и самому, для этого понадобится только проволока из нихрома или константана. Ее необходимо намотать на оправку, при этом изменение проходящей мощности происходит за счет регулировки длины проволоки.

Все полупроводниковые устройства сделаны на переходах или слоях (n-p, p-n). Простой диод — 1 переход и 2 слоя. Биполярный транзистор — 2 перехода и 3 слоя (трехфазный). А при добавлении четвертого слоя как раз и образуется стабилизатор мощности — тиристор. При соединении 2 тиристоров встречно-параллельно получается симистор.

Как работает регулятор мощности в трансформаторе

В трансформаторе обычно используется симисторный регулятор мощности для индуктивной нагрузки. Он работает как электронный ключ, раскрываясь и запираясь, причем частота задается схемой управления. Ток по симистору проводится в 2 направлениях, поэтому его часто используют для сетей переменного тока.

Схема регулятора напряжения на симисторе для трансформатора

При подключении к трансформатору на один из электродов стабилизатора подается переменный ток, на управляющий электрод — отрицательное управляющее напряжение (с диодного моста). Когда порог включения повысится, симистор раскроется и пустится ток. В момент смены полярности на входе симистор закроется.

Важно! Вся последовательность действий повторяется неоднократно.

Разновидности регуляторов мощности

Для разных целей используются различные регуляторы мощности.

Тиристорный прибор управления

Конструкция устройства довольно простая. Обычно тиристоры применяются в маломощных приборах. Тиристорный терморегулятор состоит из биполярных транзисторов, самого тиристора, конденсатора и нескольких резисторов.

Тиристорный транзисторный регулятор

Транзисторы образуют импульсный сигнал, когда конденсаторное напряжение уравнивается с рабочим, они открываются. Электросигнал передается на вывод тиристора, после чего происходит разрядка конденсатора и запирание ключа. Вся последовательность действий повторяется циклически.

Обратите внимание! Величина задержки обратно пропорциональна мощности, которая поступает в нагрузку.

Симисторный преобразователь мощности

Симистор — подвид тиристора, в котором несколько больше переходов p-n, из-за чего его принцип работы несколько иной. Но часто симистор считают отдельным видом стабилизатора мощности. Конструкция представляет собой 2 тиристора, подключенных параллельно и имеющих общее управление.

К сведению! Отсюда и происходит название «симистор» — «симметричные тиристоры». Иногда он еще называется ТРИАК (TRIAC).

Схема 2 параллельно подключенных тиристоров (слева) и симистора (справа)

На схеме видно, что у симистора вместо анода и катода указаны обозначения Т1 и Т2. Все потому, что понятия «катод» и «анод» в данном случае не имеют смысла, так как электроток может выходить через оба вывода.

Симисторные универсальные регуляторы имеют ряд плюсов, в их числе небольшая цена, долгий срок службы и отсутствие подвижных контактов, которые могут быть источниками помех. Но есть и недостатки: подверженность помехам и шумам, отсутствие поддержки высоких частот переключения.

Важно! Их не применяют в мощных промышленных установках, вместо этого там используют тиристоры или IGBT транзисторы.

Фазовый способ трансформации

Фазовая трансформация происходит в так называемых диммерах. Используются такие приборы, к примеру, для изменения интенсивности освещения галогенных ламп или лампочек накаливания. Электросхема обычно воплощается на специальных микроконтроллерах, в которых используется своя интегрированная электросхема снижения напряжения. Благодаря своей конструкции диммеры могут плавно снижать мощность.

Читайте также:  Регулятор громкости для студии

Светодиодный диммер

Из минусов таких устройств высокая чувствительность к помехам, высокий коэффициент пульсаций и маленький коэффициент мощности сигнала на выходе. Чтобы стабилизировать диммер, используются сдвоенные тиристоры.

Как сделать регулятор мощности своими руками

Для сборки стабилизатора напряжения на симисторе для трансформатора понадобятся следующие компоненты:

  • сам симистор и электронные компоненты: динистор, потенциометр, диоды, конденсатор и сопротивления;
  • радиатор;
  • изолирующая теплопередающая прокладка;
  • пластиковый корпус;
  • печатная плата;
  • мультиметр;
  • паяльник.

Стабилизатор-самоделка

Пошаговая инструкция, как собрать самодельный регулятор мощности:

  1. Сперва необходимо определить некоторые характеристики устройства, для которого нужен регулятор: входное напряжение, силу тока, сколько фаз (3 или 1), а также, есть ли необходимость в точной настройке мощности на выходе.
  2. Нужно определиться с типом прибора — цифровое или аналоговое. Можно смоделировать электрическую цепь посредством скачиваемых утилит, таких как CircuitMaker или Workbench, чтобы проверить, насколько выбранный тип будет подходить конкретной электросети. Также это можно сделать и онлайн.
  3. После можно приступить к расчетам тепловыделения с использованием формулы: спад напряжения в регуляторе помножить на силу тока. Оба параметра должны быть указаны в спецификациях симистора. Ориентируясь на полученную с помощью формулы мощность, нужно выбрать радиатор.
  4. Купить радиатор, электронные компоненты и печатную плату.
  5. Осуществить разводку дорожек контактов и приготовить места, куда нужно устанавливать электронные компоненты, симистор и радиатор.
  6. Закрепить при помощи паяльника все компоненты на печатной плате. В качестве альтернативы плате можно воспользоваться навесным монтажом с короткими проводами. Нужно внимательно следить за полярностью подключаемых компонентов: симистора и диодов.
  7. Взять мультиметр и проверить сопротивление получившейся схемы. Полученное значение не должно отличаться от теоретического.
  8. Скрепить симистор и радиатор, проложив между ними прокладку и заизолировав винт, которым они соединяются.
  9. Полученную микросхему нужно поместить в корпус из пластика.
  10. Поставить потенциометр на минимальное значение и попробовать включить. С помощью мультиметра замерить напряжение на выходе. Медленно поворачивать регулируемую ручку потенциометра, наблюдая за переменой напряжения.
  11. Если схема будет работать так, как было задумано, то можно подсоединять нагрузку. В ином случае нужно отрегулировать мощность по-другому.

Схемы регуляторов мощности напряжения

В некоторых бытовых приборах, к примеру, используются тиристорные стабилизаторы напряжения — в паяльниках, электронагревателях и т. д.

Схема тиристорного регулятора напряжения в паяльнике

Для регулирования напряжения применяют и индукционные приборы.

Схема индукционного стабилизатора

Регуляторы мощности используются практически во всех бытовых электроприборах, а также на производстве. При желании такое устройство можно собрать и самому. Главное — найти подходящую схему из множества существующих и строго следовать инструкции.

Источник

Как сделать регулятор мощности на симисторе своими руками: варианты схем

Для управления некоторыми видами бытовых приборов (например, электроинструментом или пылесосом) применяют регулятор мощности на основе симистора. Подробно о принципе работы этого полупроводникового элемента можно узнать из материалов, размещенных на нашем сайте. В данной публикации мы рассмотрим ряд вопросов, связанных с симисторными схемами управления мощностью нагрузки. Как всегда, начнем с теории.

Принцип работы регулятора на симисторе

Напомним, что симистором принято называть модификацию тиристора, играющего роль полупроводникового ключа с нелинейной характеристикой. Его основное отличие от базового прибора заключается в двухсторонней проводимости при переходе в «открытый» режим работы, при подаче тока на управляющий электрод. Благодаря этому свойству симисторы не зависят от полярности напряжения, что позволяет их эффективно использовать в цепях с переменным напряжением.

Помимо приобретенной особенности, данные приборы обладают важным свойством базового элемента – возможностью сохранения проводимости при отключении управляющего электрода. При этом «закрытие» полупроводникового ключа происходит в момент отсутствия разности потенциалов между основными выводами прибора. То есть тогда, когда переменное напряжение переходит точку нуля.

Дополнительным бонусом от такого перехода в «закрытое» состояние является уменьшение числа помех на этой фазе работы. Обратим внимание, что не создающий помех регулятор может быть создан под управлением транзисторов.

Благодаря перечисленным выше свойствам, можно управлять мощностью нагрузки путем фазового управления. То есть, симистор открывается каждый полупериод и закрывается при переходе через ноль. Время задержки включения «открытого» режима как бы отрезает часть полупериода, в результате форма выходного сигнала будет пилообразной.

При этом амплитуда сигнала будет оставаться прежней, именно поэтому такие устройства неправильно называть регуляторами напряжения.

Читайте также:  Регулятор боя что это

Варианты схем регулятора

Приведем несколько примеров схем, позволяющих управлять мощностью нагрузки при помощи симистора, начнем с самой простой.

  • Резисторы: R1- 470 кОм , R2 – 10 кОм,
  • Конденсатор С1 – 0,1 мкФ х 400 В.
  • Диоды: D1 – 1N4007, D2 – любой индикаторный светодиод 2,10-2,40 V 20 мА.
  • Динистор DN1 – DB3.
  • Симистор DN2 – КУ208Г, можно установить более мощный аналог BTA16 600.

При помощи динистора DN1 происходит замыкание цепи D1-C1-DN1, что переводит DN2 в «открытое» положение, в котором он остается до точки нуля (завершение полупериода). Момент открытия определяется временем накопления на конденсаторе порогового заряда, необходимого для переключения DN1 и DN2. Управляет скоростью заряда С1 цепочка R1-R2, от суммарного сопротивления которой зависит момент «открытия» симистора. Соответственно, управление мощностью нагрузки происходит посредством переменного резистора R1.

Несмотря на простоту схемы, она довольно эффективна и может быть использована в качестве диммера для осветительных приборов с нитью накала или регулятора мощности паяльника.

К сожалению, приведенная схема не имеет обратной связи, следовательно, она не подходит в качестве стабилизированного регулятора оборотов коллекторного электродвигателя.

Схема регулятора с обратной связью

Обратная связь необходима для стабилизации оборотов электродвигателя, которые могут изменяться под воздействием нагрузки. Сделать это можно двумя способами:

  1. Установить таходатчик, измеряющий число оборотов. Такой вариант позволяет производить точную регулировку, но при этом увеличивается стоимость реализации решения.
  2. Отслеживать изменения напряжения на электромоторе и, в зависимости от этого, увеличивать или уменьшать «открытый» режим полупроводникового ключа.

Последний вариант значительно проще в реализации, но требует небольшой настройки под мощность используемой электромашины. Ниже приведена схема такого устройства.

  • Резисторы: R1 – 18 кОм (2 Вт); R2 — 330 кОм; R3 – 180 Ом; R4 и R5– 3,3 кОм; R6 – необходимо подбирать, как это делается будет описано ниже; R7 – 7,5 кОм; R8 – 220 кОм; R9 – 47 кОм; R10 — 100 кОм; R11 – 180 кОм; R12 – 100 кОм; R13 – 22 кОм.
  • Конденсаторы: С1 — 22 мкФ х 50 В; С2 — 15 нФ; С3 – 4,7 мкФ х 50 В; С4 – 150 нФ; С5 — 100 нФ; С6 – 1 мкФ х 50 В..
  • Диоды D1 – 1N4007; D2 – любой индикаторный светодиод на 20 мА.
  • Симистор Т1 – BTA24-800.
  • Микросхема – U2010B.

Данная схема обеспечивает плавный запуск электрической установки и обеспечивает ее защиту от перегрузки. Допускается три режима работы (выставляются переключателем S1):

  • А – При перегрузке включается светодиод D2, сигнализирующий о перегрузке, после чего двигатель снижает обороты до минимальных. Для выхода из режима необходимо отключить и включить прибор.
  • В — При перегрузке включается светодиод D2, мотор переводится на работу с минимальными оборотами. Для выхода из режима необходимо снять нагрузку с электродвигателя.
  • С – Режим индикации перегрузки.

Настройка схемы сводится к подбору сопротивления R6, оно вычисляется, в зависимости от мощности, электромотора по следующей формуле: . Например, если нам необходимо управлять двигателем мощностью 1500 Вт, то расчет будет следующим: 0,25/ (1500 / 240) = 0,04 Ом.

Для изготовления данного сопротивления лучше всего использовать нихромовую проволоку диаметром 0,80 или1,0 мм. Ниже представлена таблица, позволяющая подобрать сопротивление R6 и R11, в зависимости от мощности двигателя.

Приведенное устройство может эксплуатироваться в качестве регулятора оборотов двигателей электроинструментов, пылесосов и другого бытового оборудования.

Регулятор для индуктивной нагрузки

Тех, кто попытается управлять индуктивной нагрузкой (например, трансформатором сварочного аппарата) при помощи выше указанных схем, ждет разочарование. Устройства не будут работать, при этом вполне возможен выход из строя симисторов. Это связано с фазовым сдвигом, из-за чего за время короткого импульса полупроводниковый ключ не успевает перейти в «открытый» режим.

Существует два варианта решения проблемы:

  1. Подача на управляющий электрод серии однотипных импульсов.
  2. Подавать на управляющий электрод постоянный сигнал, пока не будет проход через ноль.

Первый вариант наиболее оптимален. Приведем схему, где используется такое решение.

Как видно из следующего рисунка, где продемонстрированы осциллограммы основных сигналов регулятора мощности, для открытия симистора используется пакет импульсов.

Источник