Меню

Регулятор напряжения для лодочных моторов схема

Выпрямитель-регулятор напряжения для скутера, мотоцикла и лодочного мотора своими руками.

Выпрямитель-регулятор напряжения для скутера, мотоцикла и лодочного мотора своими руками.

В статье приведена схема и пример изготовления выпрямителя-регулятора на мото технику.
Данный выпрямитель-регулятор можно использовать на всех моторах, где используется генератор на постоянных магнитах.
Регулятор рассчитан на ток 35 А.

Принципиальная схема регулятора
Схема состоит из трехфазного диодного моста 36MT120, трех симисторов BTA26, микросхемы ULN2003, стабилитрона 14В 0.5Вт, четырех резисторов 300 Ом 0.5Вт и конденсатора 1000пФ.
Для изготовления понадобится радиатор типа HS 145-100 100х100х26 мм, крепеж и термопаста.
Радиатор подобран таким образом, чтобы обеспечить хороший теплоотвод.
Диаметр проводов — 2.5 мм.
В радиаторе нужно высверлить отверстия и нарезать резьбу, для крепления диодного моста и симисторов.
На основе данной схемы можно изготовить 2-фазный выпрямитель- регулятор.
Для этого нужно удалить из схемы несколько элементов.

В этом случае, вместо 3-х фазного диодного моста нужно использовать однофазный диодный мост.
Для более мощного выпрямителя регулятора можно установить два однофазных моста.
Фото собранного 2-х фазного выпрямителя-регулятора с двумя однофазными диодными мостами.

После проверки остается только залить эпоксидной смолой.
Схема отличается надёжностью, простотой в изготовлении и низкой ценой.

Если нужна помощь в изготовлении данного регулятора пишите на E-mail

Вопросы и предложения оставляйте в комментариях.

Источник



Регулятор напряжения генератора лодочного мотора

Генератор — это электрическая машина, которая преобразует механическую энергию вращения в энергию переменного тока. Переменный ток, вырабатываемый катушками генератора, выпрямляется диодами и заряжает лодочные аккумуляторы. Регулятор напряжения поддерживает постоянным напряжение на выходе с генератора, а для трехступенчатой зарядки тяговых лодочных аккумуляторов устанавливают внешний или шунтирующий регулятор. Без него быстрая зарядка аккумуляторов глубокого разряда от генератора лодочного мотора невозможна.

Простейший генератор

Простейший генератор переменного тока

Простейший генератор – это металлический стержень с намотанной вокруг него проволокой. Если под стержнем перемещать постоянный магнит, то стержень будет намагничиваться в разном направлении, а возникающее в проводе переменное магнитное поле вызовет импульсы тока переменной полярности.

Ток, возникающий в проводнике, прямо пропорционален силе магнитного поля, скорости движения магнита и количеству витков проволоки вокруг стержня.

Простейший генератор переменного тока, с несколькими полюсами магнитов

Генератор обретет привычный вид, если поступательное движение магнита заменить на вращательное и разместить катушки, в которых возникает ток, по окружности. Однако регулировать ток в таком генераторе можно будет только оборотами двигателя, а это очень неудобно.

Как работает регулятор напряжения на лодочном моторе

Катушка возбуждения и ротор генератора

Реальным генератором управляют изменяя силу магнита. Для этого вместо постоянного используют электромагнит, в железном сердечнике которого сосредоточено магнитное поле, создаваемое протекающим через катушку током. Сила магнитного поля пропорциональна току в катушке возбуждения, поэтому изменяя ток в катушке повышают или понижают мощность генератора. Устройство, которое управляет током возбуждения и мощностью генератора называется регулятором напряжения.

Электромеханические регуляторы — первые устройства этого типа. Ток возбуждения протекает через рычаг реле, который вращается относительно точки F и замыкает точки «Зажигание» и «Масса». «Зажигание» подсоединяется к положительной клемме аккумулятора через ключ зажигания двигателя. Регулировочная пружина удерживает рычаг реле напротив контакта «Зажигание».

Если напряжение на аккумуляторе низкое, ток возбуждения максимальный и генератор выдает максимальный ток. Когда напряжение на аккумуляторе возрастает до установленного значения (между 13.8 и 14.2 вольта) ток, протекающий от зажигания на массу через катушку реле увеличивается, реле срабатывает, толкает рычаг вниз и размыкает контакт. Ток возбуждения падает до нуля, выход с генератора падает до нуля, напряжение на аккумуляторе падает и реле замыкает контакт зажигания. Процесс начинается сначала.

Читайте также:  Для чего нужно дежурное напряжение

Чем больше напряжение на аккумуляторе, тем больше времени, контакт остается в нижнем положении. Выход генератора переключается между максимальным и нулевым сотни раз в секунду, сохраняя среднее напряжение постоянным, при токе, стремящемся к нулю (плюс ток, потребляемый подключенной нагрузкой). Напряжение заряда аккумулятора в электромеханическом регуляторе устанавливается натяжением пружины.

Схемы электромеханического и транзисторного регулятора напряжения лодочного мотора

Принцип работы электронного регулятора напряжения аналогичен. Если напряжение на аккумуляторе низкое, значит низкое напряжение и на базе транзистора 1, и он выключен. В этом состоянии транзистор 1 работает как большое сопротивление между базой транзистора 2 и массой, поэтому напряжение на базе транзистора 2 высокое и он включен. Транзистор 3 усиливает ток коллектор-эмиттер транзистора 2 в двадцать раз и больше, вызывает высокий ток в катушке возбуждения и максимальный выходной ток генератора.

После того как напряжение на аккумуляторе увеличивается транзистор 1 включается. Сопротивление между базой транзистора 2 и массой уменьшается и транзисторы 2 и 3 выключаются, прерывая течение тока в катушке возбуждения. Без тока возбуждения генератор перестает выдавать ток.

Транзисторы включаются и выключаются сотни раз в секунду. Средний ток возбуждения и выходной ток генератора зависят от того как долго система находится во включенном и выключенном состоянии.

Зачем нужен шунтирующий регулятор напряжения

Стандартные регуляторы напряжения генераторов лодочных моторов – это регуляторы автомобильного типа, которые отлично работают в следующих условиях:

  • аккумулятор – это стартовый аккумулятор с тонкими пластинами
  • аккумулятор почти всегда полностью заряжен
  • разница температур между регулятором и аккумулятором невелика
  • падение напряжения между аккумулятором и генератором меньше 0,1 вольта

В автомобилях во время запуска двигателя аккумулятор разряжается на 5-10%, после этого даже на холостом ходу мощности генератора достаточно для питания всех потребителей и подзарядки аккумуляторной батареи. Поскольку стартовый аккумулятор сильно не разряжается, его зарядка не занимает много времени и вторая стадия зарядки, необходимая тяговым аккумуляторам, становится лишней.

Регуляторы напряжения лодочных моторов – это зарядные устройства с ограничением максимального тока и напряжением 13,8 – 14,2 вольта. Но напряжение 13.8 вольт выше рекомендуемого напряжения стадии поддерживающей зарядки для аккумуляторов глубокого разряда, а напряжение 14,2 ниже напряжения стадии насыщения.

Генератор со стандартным регулятором никогда полностью не зарядит аккумулятор глубокого разряда, но только перезарядит его и выведет из строя, если будет подключен к аккумулятору длительное время.

Что умеют внешние регуляторы напряжения

Регулятор напряжения лодочного мотора Sterling Power

Водонепроницаемый регулятор напряжения производства Sterling Power. Максимальный ток генератора 120 А. Регулятор напряжения подходит для любых лодочных моторов — Honda, Suzuki, Yamaha и других.

Умный регулятор напряжения лодочного мотора управляет зарядкой тяговых лодочных аккумуляторов. Он заряжает аккумуляторы глубокого разряда в три стадии, которые называют стадией насыщения, поглощения и поддерживающей зарядки.

Три стадии зарядки аккумулятора глубокого разряда

Графики напряжения и тока во время трех стадий зарядки аккумулятора глубокого разряда. Подзарядка происходит при падении напряжения на аккумуляторе ниже 12,8 Вольт

Во время стадии насыщения, при зарядке постоянным током, аккумулятор быстро набирает емкость 75-80% от номинальной, а напряжение на его клеммах повышается до 14,4-14,8 вольт (в зависимости от типа). В этот момент регулятор переключается в фазу поглощения. На этой стадии зарядка происходит медленнее, а ток зарядки постепенно снижается, чтобы соответствовать текущему состоянию батареи. После того как ток снизился до 1-2% емкости, зарядка завершается и регулятор переключается в режим поддерживающей зарядки во время которого контролирует напряжение на аккумуляторе и выполняет подзарядку, если напряжение опускается ниже 13 вольт.

  • Чтобы не повредить аккумулятор во время зарядки, внешние регуляторы напряжения оснащаются встроенными тепловыми сенсорами. Зарядка прекращается, если температура батареи повышается до 50 градусов.
  • Аккумуляторы различного типа и размера требуют разных кривых зарядки и разных значений напряжения и тока, поэтому в умных регуляторах зашиты предустановленные режимы для зарядки жидко-кислотных, AGM и гелевых батарей.
  • Внешний регулятор напряжения устанавливается на лодочный мотор параллельно стандартному, который включается в работу, если умный регулятор выходит из строя.
Читайте также:  Инструкция пробника напряжения ратон

Недостатки шунтирующих регуляторов

Хотя умные регуляторы подходят для всех типов лодочных генераторов и аккумуляторных батарей, их установка может показаться сложной для тех, кто не имел ранее навыков работы с электричеством. В некоторых случаях чтобы подключить регулятор потребуется определить тип используемого генератора и снять его с мотора. Кроме того, не рекомендуется устанавливать шунтирующие регуляторы напряжения на новые лодочные моторы, чтобы не нарушать их гарантию.

Зарядное устройство Sterling Power для работы с генератором до 120 А

Зарядное устройство Sterling Power для работы с генератором до 120 А (12 Вольт) позволяет в пять раз быстрее заряжать аккумуляторы глубокого разряда и подключать несколько батарей аккумуляторов

Сложностей установки и проблем с гарантией можно избежать, если использовать бортовые зарядные устройства, работающие от генератора лодочного мотора. Они так же заряжают аккумуляторы в три стадии, работают с генераторами до 400 А и выдают напряжение 12, 24 или 36 вольт. Мощные модели имеют встроенные сплит диоды для подключения нескольких батарей аккумуляторов.

Водонепроницаемое зарядное устройство Sterling Power BBW 1212.

Водонепроницаемое зарядное устройство Sterling Power BBW 1212. Ток зарядки до 25 ампер. Работает от генератора лодочного мотора. Подключается к стартовому аккумулятору и начинает работать только после его полной зарядки

Задайте вопрос,

и получите консультацию по лодочным электромоторам, аккумуляторам или зарядным устройствам для катера или яхты

Источник

Регулятор напряжения для лодочных моторов схема

ШИМ-регулятор для лодочного мотора

Автор: vdavid, dv1959@ukr.net
Опубликовано 21.04.2015
Создано при помощи КотоРед.

Электрические двигатели для лодочных моторов весьма популярны среди любителей рыбной ловли. Наиболее распространенными среди них, наверное, являются изделия MinnKota®.

К сожалению эти двигатели имеют весьма существенный недостаток. Для изменение скорости (числа оборотов двигателя) используются баластные резисторы, которые подключаются последовательно с двигателем. При этом заметная часть энергии аккумулятора расходуется на нагрев воды.

В сети есть немало схем регуляторов для таких двигателей, но все они, как по мне, слишком габаритные. Кроме того, в них обычно используются специализированние микросхемы ШИМ-контроллеров, такие, как MC33033. Конечно, такие микросхема отлично справляются со своей задачей, но хотелось бы не просто регулировать ток двигателя, но и получить более информативное устройство. Кроме всего прочего, MC33033 не оказалось в тумбочке ;-).

Предлагаемая конструкция умеет:

  • регулировать ток через двигатель
  • индицировать напряжение на аккумуляторе и ток через двигатель на экране дисплея
  • индицировать колличество израсходованных А*ч
  • отключить двигатель при уменьшении напряжения на аккумяляторе ниже 10В
  • ограничивать ток
Читайте также:  Что принимать при приступе ибс стенокардия напряжения

Состоит из двух плат. На одной из них смонтированы силовые элементы

На второй — схема управления

Разъемы силовой платы:

  • X1 — соединение с платой управления
  • X2 — питание от аккумулятора
  • X3 — подключение двигателя.

В качестве силовых использованы разъемы XT-60. При достаточно малых габаритах они имеют весьма малое переходное сопротивление.

Разъем X1 — аудиоразъем от CD-ROM.

Диод D1 можно заменить на MBR6045 или любой другой быстрый диод Шоттки с током 60А и напряжением не менее 45В.

Токоизмерительный резистор изготовлени из манганинового провода диаметром 1.7мм.

Конденсаторы C6..C9 на напряжение 35 В.

Разъемы платы управления:

  • X1 — соединение с силовой платой
  • X2 — разъем для внутрисхемного программирования
  • X3 — подключение переменного резистора сопротивлением 4.7 кОм

DA1 — стабилизатор напряжения 78L05 в корпусе SOT-89, Индикатор H1 от мобильного телефона Nokia 5110, заботливо закрепленный нашими китайскими братьями на печатную плату и снабженный светодиодами подсветки. В качестве DA2 можно использовать любой операционный усилитель, допускающий входное напряжение от 0В и Rail-to-Rail по выходу.

Конструкция собрана в корпусе Z-76. В качестве теплоотвода для диода D1 использована медная пластина толщиной 5 мм, Вполне допустимо использовать дюралюминий. Ниже приведены фотографии, иллюстрирующие конструкцию. Межде диодом и радиатором установлена изолирующая прокладка.

Из особенностей сборки. Провод, соединяющий контакты X1:D (общий провод) должен иметь сечение не менее 0.75 мм^2. Таким же проводом нужно продублировать печатный проводник на силовой плате, идущий к этому контакту (красный провод на фотографии силовой платы). Правильнее, конечно, было бы подвести землю питания платы управления и аналоговую землю двумя разными проводниками, но разъем попался под руки нв 4 контакта. Кроме того, на силовой плате напаяны медные проводники диаметром около 1.5 мм, дублирующие соединение стоков и истоков полевых транзисторов. Они хорошо видны на фотографиях.

После сборки регулятора нужно произвести его калибровку. Для этого необходимо перед включением замкнуть между собой контакты X2:D и X2:E. В качестве нагрузки нужно использовать резистор сопротивлением около 1 Ом мощностью около 100 Вт. Этот резистор подключается к разъему двигателя. Последовательно с ним подключается амперметр со шкалой не менее 20 А. После включения устройства на дисплее отображается измеренный ток в Амперах. Вращая переменный резистор нужно добиться совпадения показаний дисплея и амперметра. После чего нажимаем кнопку SB1. Далее на экране отображается измеренное напряжение аккумулятора. Подключив вольтметр к клеммам аккумулятора, добиваемся совпадение напряжения, отображаемого на дисплее с показаниями вольтметра. На этом калибровка закончена.

Управление устройством очень простое. Ток регулируется переменным резистором. Кнопка SB1 переключает индикацию Ампер или Ампер*часов, когда переменный резистор не в нулевом положении. В нулевом положении нажатие этой кнопки вызывает меню, которое состоит из трех пунктов:

  • Возврат (выход из меню)
  • Обнуление счетчика Ампер*часов
  • Яркость подсветки

Яркость подсветки устанавливается все тем же переменным резистором и подтверждается нажатием на кнопку SB1.

Ограничение тока установлено на уровне 35А. Срабатывание ограничения индицируется точкой в верхнем левом углу дисплея.

Еще пара фотографий.

сработала защита от переразряда батареи:

Колличество Ампер*часов сохраняется в EEPROM, поэтому не сбрасывается при отключении питания.

Источник