Регулятор оборотов кулера 12в своими руками просто и практично
Схема очень проста в использовании. Как известно в технике существует охлаждение оно бывает нескольких типов:
1. Пассивное охлаждение — работает на основе естественной конвекции
2. Активное охлаждение- хорошо известный большинству владельцев компьютеров. Включает в себя вентилятор, который заставляет воздух охлаждать радиатор.
3. Водяное охлаждение — это тип охлаждения, который сочетает в себе преимущества пассивных и активных методов.
Все с типами охлаждениями ознакомились я буду ставить: Активное охлаждение — мне больше интересно постольку оно не сильно громоздкое и простата в использовании, а так же из-за достатка компонентов я его буду собирать.
Речь пойдет о Активном охлаждении, для сборки потребуется кулер и радиатор, а так же регулировщик охлаждения.
Регулировщик охлаждения следует собрать по схеме:
К компонентам для регулировщика оборотов следует рассмотреть схему и так на схеме мы видим транзистор NPN структуры, два резистора один переменный, другой постоянный и завершающий элемент кулер на 12 вольт.
Детали для сборки:
1. Транзистор NPN подойдет любой начаная от слабеньких кт 315 можно заменить по мощней.
2. Переменный резистор 10 к
3. Постоянный резистор 1 к
4. Кулер на 12 вольт
Переменный резистор на 10 к служит регулятором оборотов то есть для увеличения или уменьшение оборотов нужно регулировать его выставить нужное значение.
При сборке данной схемы важно не перепутать полярность как со стороны питания для схемы так и со стороны кулера.
Источник
Простой регулятор скорости вентилятора (12В)
Основной проблемой вентиляторов, которые охлаждают ту или иную часть компьютера, является повышенный уровень шума. Основы электроники и имеющиеся материалы помогут нам решить эту проблему своими силами. В этой статье предоставлена схема подключения для регулировки оборотов вентилятора и фотографии как выглядит самодельный регулятор скорости вращения.
Нужно отметить, что количество оборотов в первую очередь зависит от уровня подаваемого на него напряжения. Уменьшая уровень подаваемого напряжения, уменьшается как шум, так и число оборотов.
Схема подключения:
Вот какие детали нам пригодятся: один транзистор и два резистора.
Что касается транзистора, то берите КТ815 или КТ817, также можно использовать мощнее КТ819.
Выбор транзистора зависит от мощности вентилятора. В основном используются простые вентиляторы постоянного тока с напряжением 12 Вольт.
Резисторы нужно брать с такими параметрами: первый постоянный (1кОм), а второй переменный (от 1кОм до 5кОм) для регулировки скорости оборотов вентилятора.
Имея входное напряжение (12 Вольт), выходное напряжение можно регулировать, вращая движковую часть резистора R2. Как правило, при напряжении 5 Вольт или ниже, вентилятор перестает шуметь.
При использовании регулятора с мощным вентилятором советую установить транзистор на небольшой теплоотвод.
Вот и все, теперь вы можете собрать регулятор скорости вентилятора своими руками, без шумной вам работы.
Источник
Регулятор скорости вращения вентиляторов 12В
Силовые элементы источников питания или усилителей мощности, нуждающиеся в охлаждении, далеко не всегда работают на полную мощность, и если для охлаждения используется вентилятор на 12В, он будет создавать лишний шум, впустую обдувая радиатор. Предлагаемое устройство позволит минимизировать шум, изменяя скорость вращения лопастей пропорционально температуре нагрева радиатора.
Схема регулятора представлена ниже.
В качестве температурного датчика используется переход база-эмиттер транзистора VT1. При прохождении стабильного тока через переход транзистора изменение температуры на 1 градус приводит к изменению прямого падения напряжения на величину около 2,1 мВ. Источник стабильного тока на 1,25 мА собран на стабилизаторе DA3, источник опорного напряжения 2,5 В на DA1. Оба стабилизатора способствуют получению стабильных характеристик регулятора при изменении температуры окружающей среды и питающего напряжения.
При нагреве транзистора VT1 прямое падение напряжения на нём начинает уменьшаться. ОУ DA2.1 вычитает это напряжение из опорного напряжения, устанавливаемого подстроечным резистором R2, и умножает на 5. Таким образом, нагрев транзистора VT1 приводит к линейному росту напряжения на выходе DA2.1 — 10,5 мВ на каждый градус Цельсия. Далее, сигнал поступает на выходной усилитель, собранный на элементах DA2.2, VT2, VT4. Элементы VT3, VD1, R16, R17 образуют ограничитель, который не позволяет выходному напряжению превысить уровень в 12,75 В. Этот уровень определяется суммой падения напряжения на стабилитроне VD1 и напряжением база – эмиттер транзистора VT3, при котором последний, открываясь, начинает ограничивать ток базы VT2, и, следовательно, выходное напряжение. Это позволяет запитывать регулятор от источника питания с напряжением до 18В без риска для вентилятора и использовать его в уже собранных конструкциях, не имеющих источника +12В. Резистор R9 обеспечивает начальное смещение выходного напряжения усилителя, поскольку вращение лопастей 12-ти вольтовых вентиляторов, в зависимости от их мощности, прекращается при напряжении менее 5…4 В. Резисторы ООС R11, R12 определяют коэффициент усиления, или, другими словами, значение температуры, при которой скорость вращения достигает максимума. При указанных на схеме номиналах она равна около 65 градусам.
Чертежи расположения элементов, печатная плата и фото собранного устройства показаны ниже.
Настройка регулятора начинается с подбора номинала резистора R9 – установке минимальной скорости вращения. Для этого на плату подаётся питание 12…18В, подключается вентилятор, регулировочный винт R2 выкручивается в нижнее по схеме положение. Напряжение, подаваемое на вентилятор, должно быть в диапазоне 4,5…4,9В. Придерживая и отпуская лопасти, убедитесь, что установленного напряжения достаточно для их запуска и последующего вращения. Если это окажется не так – уменьшите номинал R9, если выходного напряжения мало для уверенного запуска лопастей, или увеличьте, если начальная скорость велика.
Следующим этапом регулировочный винт R2 плавно выкручивается в верхнее по схеме положение, при этом вольтметром контролируется напряжение на выв.1 ОУ DA2.1. Контролируемое напряжение с начального значения в 37…47 мВ доводят до 50…60 мВ. После этого этапа настройка завершается, регулятор готов к работе.
Если требуется более интенсивное охлаждение, необходимо увеличить сопротивление резистора R12. При этом температура радиатора будет ниже, но шум от вентилятора станет более заметен.
В качестве термодатчика можно использовать любой транзистор или диод. Транзисторы структуры p-n-p необходимо включать обратной полярностью – эмиттер на вход 1, базу – на вход 2 платы регулятора. Для лучшей точности усиления пары резисторов R5, R6 и R7, R10 желательно подобрать с минимальным разбросом сопротивления соответственно. Регулятор сохраняет работоспособность при питающем напряжении до 22 В. Однако не стоит забывать о том, что излишек напряжения остаётся на транзисторе VT4, что приводит к его интенсивному нагреву и необходимости в более эффективном радиаторе, чем на фотографии.
Ниже приведено видео работы устройства. Мультиметр слева измеряет температуру датчика, прикреплённого к алюминиевой пластине, а мультиметр справа – напряжение, подаваемое на вентилятор. На видео заметен уровень ограничения выходного напряжения, а также температура, при которой скорость вращения оборотов начинает понижаться.
Источник