Меню

Регулятор цикла сварки рцс 503

Регулятор контактной сварки РКМ-511

Регуляторы контактной сварки микропроцессорные РКМ-511 предназначены для управления циклом сварки, контроля и стабилизации значения сварочного тока точечных и шовных машин контактной сварки переменного тока. Регуляторы контактной сварки РКМ-511 заменяют аппаратуру управления следующих серий:

  • РЦС-301, РЦС-403, РЦС-503
  • РВИ-501, РВИ-503, РВИ-504
  • РКС-501, РКС-502, РКС-601
  • РКС-14, РКС-15

Технические характеристики регуляторов серии РКМ-511

  1. Регуляторы обеспечивают управление силовой коммутирующей аппаратурой – тиристорным контактором, одним электропневматическим клапаном, приводом вращения роликов и муфтой привода вращения.
  2. Регуляторы обеспечивают следующие режимы работы:
    • шовный режим (сварка с прерывистым пропусканием сварочного тока);
    • шовный режим (сварка с непрерывным пропусканием сварочного тока);
    • точечный режим;
  3. Регулятор обеспечивает:
    • плавное нарастание переднего фронта первого импульса (модуляцию);
    • дискретный отсчет позиций сварочного цикла в периодах сетевого напряжения;
    • измерение и индикацию действующего значения напряжения питающей сети;
    • параметрическую стабилизацию среднего значения напряжения на сварочном контуре по напряжению сети;
  4. Регуляторы (в точечном режиме) обеспечивают работу машин одиночными циклами и в автоматическом режиме (пока замкнута цепь запуска), при этом выдержка времени «Предварительное сжатие» из последующих циклов исключается. При работе в шовных режимах цепь запуска должна быть замкнута дважды: один раз для запуска, второй для остановки.

Изменение действующего значения сварочного тока при колебаниях напряжения питающей сети от 0,9 до 1,05 от номинального значения (параметрическая стабилизация), %

Источник



Аппаратура для управления циклом сварки контактных машин.

Последовательность действия механизмов машины, особенно для точечной и рельефной сварки, обеспечивается различными регуля­торами времени (РВ) или цикла сварки (РЦС).

Обычно применяют регуляторы, выполняющие жесткую про­грамму, при которой число регулируемых интервалов (до 6) и их последовательность не меняют. Они обеспечивают один и тот же по­рядок включения механизмов машины, позволяя независимо регули­ровать лишь время отдельных выдержек.

Выполнение различных элементов сварочных циклов в заданной последовательности обеспечивается путем отсчета времени, для чего используют различные регуляторы времени: механические, пневматические, электронные и др.

Простейшим является механический регулятор, обычно исполь­зуемый для машин с электроприводом. Он представляет собой валик с несколькими насаженными па него кулачками. При вращении кулачок / (рис. 48) выступающей частью нажимает на рычаг 2, который, отклоняясь, замыкает электрические контакты 3. На этом принципе построены многокулачковые реле, которые управляют работой многоэлектродных точечных машин или машин для стыковой сварки. Эти реле просты по конструкции, надежны в эксплуатации, но для отсчета коротких импульсов сварки непригодны.

Пневматические регуляторы времени основаны на пропускании сжатого воздуха через калиброванные отверстия. Ранее их применяли на точечных машинах, сейчас они встречаются редко.

На современных машинах в основном используют электронные регуляторы времени непрерывного или дискретного (прерывистого) действия. В первом случае подготовительные процессы, отрабаты­вающие команду на включение каждой последующей позиции, проте­кают монотонно и зависят от накопления электрической энергии в конденсаторах и разряда ее через сопротивление (система RC). В системах дискретного действия время выдержки определяется сче­том поступающих тактовых импульсов, связанных, например, с частотой напряжения питающей цепи или с другой величиной, зада­ваемой специальными генераторами импульсов.

В качестве элементов реле в регуляторах времени используют реостатно-емкостные зарядно-разрядные цепи, транзисторные (типа «Логика») и тиристорные элементы, а в последнее время начинают при­менять элементы интегральных схем.

В электронных реле типа РВЭ-7 для отсчета времени широко ис­пользуют систему RC с реостатно-емкостными зарядно-разрядными цепями и радиолампами.

На первом подготовительном этапе работы этого реле (рис. 49) при разомкнутом контакте К происходит заряд конденсатора С/. Сеточный ток /с проходит через лампу Л (указано стрелками) и за три-четыре полупериода конденсатор заряжается до напряжения, близкого к амплитудному напряжению между точками А и Г. При замыкании контакта К включается анодная цепь лампы на вторичное напряжение трансформатора Тр (точки А и В) и одновременно начи­нается разряд конденсатора С1 на параллельно включенное сопро­тивление R1. Реле Р срабатывает при определенной силе анодного тока, отключая или включая соответствующие устройства.

Рис. 49. Схема электронного реле времени (а) и диаграммы (б) его зарядной цепи (tB — выдержка времени).

Отсчет времени осуществляется от включения кнопки К и до вклю­чения реле Р, регулирование времени производится потенциоме­тром R2. При перемещении движка потенциометра от точки В к точке Б уменьшается зарядное напряжение лампы. Последнее, налагаясь на напряжение разряжающего конденсатора с/д (рис. 49, б), уменьшает отрицательный потенциал сетки в те полу­периоды, когда лампа может быть проводящей, так как совпадает по фазе с анодным напряжением. Чем больше напряжение Unr, тем больше остаточное напряжение на конденсаторе, при котором сработает реле, или меньше время его разряда. Изменяя сопротив­ление R2, одновременно изменяют напряжение заряда и напряжение разряда конденсатора, обеспечивая широкие пределы регулирова­ния времени.

Выдержка времени от момента замыкания контакта К до момента срабатывания реле Р пропорциональна сопротивлению R1, емкости конденсатора С1 и напряжению его заряда.

На базе таких устройств для отсчета времени изготовляют многопозиционные регуляторы на нужное число регулируемых позиций с определенной последовательностью их включения. Для управле­ния работой контактной машины применяют регуляторы с числом позиций до шести.

Четырехпозициониый регулятор времени РВЭ-7-1А-2 в промыш­ленности применяют для управления работой точечных машин, он обеспечивает отсчет времени выполнения отдельных операций цикла в следующей последовательности: сжатие, сварка, проковка, пауза.

Регулятор относится к аппаратуре первого поколения. Большое количество электромагнитных реле снижает точность работы, осо­бенно на малых выдержках. Надежность регуляторов недостаточна. Их еще эксплуатируют в промышленности, по на новое оборудова­ние не устанавливают.

Наиболее распространенный регулятор времени типа РЦС-403 (второе поколение аппаратуры). Это бесконтактный аналог четырех-диапазонного регулятора типа РВЭ-7 с плавным регулированием Бремени в диапазоне «Сварка» в пределах 0,02—2,0 с и в остальных диапазонах в пределах 0,06—1,4 с. Регулятор обеспечивает синхрон­ное включение тока и плавное регулирование его силы в пределах 40—100 %. Регулятор собран на транзисторных элементах серии «Логика Т». Для включения электроиневматического клапана при­вода сжатия и вентилей контактора схема снабжена транзистор­ными усилителями.

Принцип действия регулятора основан на последовательном вклю­чении четырех (/—4) элементов отсчета времени Т-303 (рис. 50). Для синхронного включения сварочного тока и блокировок в про­цессе работы регулятора используют элементы Т-102 (триггеры Т1-Т4) и Т-107, М-111 (схема совпадения И1—ИЗ). Выходными устройствами служат два усилителя У/, У2 (типа Т-404). При включении регуля­тора в сеть триггеры 77—Т4 занимают исходное положение (показано штриховкой на схеме). При этом на усилители У1 и У2 напряжение не поступает.

Читайте также:  Комнатный регулятор для отопления

Рис. 50. Структурная схема регулятора никла сварки РЦС-403

При замыкании контактов К педали напряжение с выдержки 4 («Пауза») поступает на левое плечо триггера 77 и открывает его. При этом пропадает напряжение на входе и выходе выдержки 4 («Пауза») и появляется на входе усилителя У1 и выдержки / («Сжа­тие»). Электрод опускается и сжимает место сварки. Через установ­ленный промежуток времени на входе выдержки / («Сжатие») по­является напряжение и поступает на схему И1. На нее поступает также напряжение с триггеров Т4 и Т2, последний выдает напряже­ние с частотой 50 Гц, связанное по фазе с напряжением питания.

Со схемы И1 напряжение поступает на вход триггера Пив мо­мент первого пропадания напряжения на входе И1 срабатывает триггер ТЗ. Напряжение левого плеча триггера ТЗ поступает через схему И2 на выдержку 2 («Сварка»). Одновременно напряжением на левом плече триггера ТЗ закрывается диод ДЗ и на вход усили­теля У2 с фазовращателя 5 начинают поступать импульсы. С выхода этого усилителя импульсы поступают в тиристоры контактора и выключают их. Через промежуток времени, установленный на вы­держке 2 («Сварка»), на выходе этого элемента появляется напря­жение, которое через диод Д5 поступает на базу правого плеча триг­гера Т4 и открывает его. При этом триггер перебрасывается в другое устойчивое состояние и с левого плеча поступает напряжение на схему ИЗ и выдержку 4 («Проковка»). На схему ИЗ поступает также напряжение с триггера Т2. Выходное напряжение схемы ИЗ перебра­сывает триггер ТЗ в первоначальное состояние, и диод ДЗ снова бу­дет шунтировать импульсы с фазовращателя и сварочный ток вы­ключится. Затем через промежуток времени выдержки 3 («Проковка») на выходе появляется напряжение, которое через диод Д2 поступает на правое плечо триггера 77 и переводит его в исходное состояние. При этом снимается напряжение с усилителя У1 и выдержки / («Сжатие»). Клапан выключается, электроды поднимаются. Одновре­менно появляется напряжение па входе выдержки 4 («Пауза») я левом плече триггера 77, который возвращается в исходное положе­ние. На выходе выдержки 3 («Пауза») через установленное время вновь появляется напряжение. Если контакты К замкнуты, то цикл повторяется. Технические характеристики наиболее известных’ ре­гуляторов приведены в табл. 2.

Регулятор РЦС-502 управляет циклом из пяти выдержек времени. К четырем обычным выдержкам добавлен интервал «Предваритель­ное сжатие». Фазосдвигающее устройство этого регулятора позво­ляет модулировать начало и конец сварочного тока и стабилизиро­вать установленную силу тока при колебаниях напряжения питаю­щей сети.

Регулятор БУ-5ИПС позволяет обеспечить пульсирующую сварку с регулируемым числом импульсов 1 —10 с интервалом между им­пульсными 0,02—0,2 с. Для выполнения этой программы требуются шесть регулируемых интервалов времени. Регулятор управляет двумя электропневматическими клапанами, обеспечивающими раз­личные циклы изменения усилия на электродах.

Регулятор БУС также обеспечивает различные варианты циклов работы машины по сварочному току и усилию на электродах: с одним или двумя импульсами тока разной силы и длительности, раз­дельным регулируемым интервалом; с одним сдвоенным импульсом тока, начальную и конечную части которого можно регулировать раздельно; с постоянным сварочным и ковочным усилием или с ко­вочным усилием, включаемым в заданный момент времени.

Рассмотренные регуляторы выполнены с широким использованием элементов системы «Логика-Т»,

Регуляторы РВТ-100М-1 и РВТУ-200М (разработаны ИЭС им. Е. О. Патона) построены на элементах тиристорной логики. Первый из них представляет собой четырехдиапазонное безконтактное реле с фазовым регулированием. Регулятор, управляющий элетрo-пневматическим клапаном переменного тока, содержит блок поджи­гания, способный включать как тиристорный, так и игнитронные контакторы.

Второй регулятор обеспечивает работу точечных контактных машин по сложному термомеханическому циклу. Цикл регулятора состоит из девяти операций: «Сжатие», «Подогрев», «Сварка», «Ох­лаждение», «Отжиг», «Пауза», «Задержка понижения давления», «Понижение давления» и «Пауза».

Регулятор позволяет программировать величину и длительность трех независимых импульсов сварочного тока, а также изменять по программе усилия сжатия электродов. Он обеспечивает плавное регулирование сварочного тока, модуляцию переднего фронта сва­рочных импульсов и стабилизацию тока при колебаниях напряже­ния сети. Сварочный ток может быть непрерывным или пульсирую­щим.

Синхронные прерыватели. Прерыватели такого типа объединяют устройства дли включения п выключения тока (контакторы) и ап­паратуру для точного регулирования режима сварки (сварочного тока и его продолжительности). Эту аппаратуру применяют для то­чечной и шовной сварки деталей, когда к поддержанию режима предъявляются повышенные требования.

Длительное время электротехнической промышленностью вы­пускалось семейство прерывателей ПИТ и ПИШ. Прерыватели типа ПИТ использовали только для точечной сварки. Модификация этой аппаратуры (ПИТМ) позволяла получать модулированный им­пульс. Прерыватели типа ПИШ использовали только для шовной сварки. Аппаратуру выпускали со значительной унификацией узлов. Элементная база аппаратуры — электронные лампы и маломощные тиратроны, а вентильный контактор на игнитронах. Плавное регули­рование сварочного тока возможно в пределах 50—100 %. Имеется стабилизация тока в зависимости от колебания напряжения сети.

Вместо этой серии в настоящее время выпускают прерыватели типа ПК и ПКТ, которые могут работать в режимах точечной и шов­ной сварки. В точечном режиме работы прерыватель при замыкании цепи пуска пропускает один импульс тока. Для следующего импульса необходимо разомкнуть и снова замкнуть цепь пуска. Точечные прерыватели

обычно работают совместно с регуляторами цикла сварки. В режиме шовной сварки прерыватель пропускает периодически повторяющиеся импульсы тока, разделенные паузой. Прерыватели выпускают нескольких модификаций в зависимости от тока коммута­ции и типов установленных силовых вентилей (табл. 3). Струк­турная схема прерывателя этого типа показана на рис. 51. Блок регулирования БР во всех прерывателях одинаковый, а аппаратура включения тока меняется в зависимости от типа применяемого вентильного контактора. БР является наиболее сложным узлом. Его схема обеспечивает раздельное регулирование интервалов «Импульсы» и «Паузы», синхронное включение сварочного тока, плавное его регулирование, модуляцию переднего фронта импульса до 0,3 с. Схема блока выполнена на транзисторах и логических эле­ментах.

Читайте также:  Регулятор печки хонда црв

Технические характеристики прерывателей тока

Блок аппаратуры БА предназначен для подготовки цепей под­жигания игнитронов и цепей включения тиристоров. В этом же блоке смонтирована аппаратура для выключения сварочного тока при пере­греве. Блок поджигания БП предназначен для управления игни­тронами, в качестве управляющих элементов применяют тиристоры.

Источник

Регулятор цикла сварки рцс 503

Регулятор цикла сварки рцс 503 thumbnail

Последовательность действия механизмов машины для точечной контактной Сварки определяется регулятором времени или регулятором цикла сварки (РЦС), которые являются либо самостоятельными устройствами, либо входят в виде от­дельного функционального блока в состав схемы шкафов управления сварочными машинами. Все РЦС работают по определенной, заранее установленной программе. Существуют регуляторы, в которых число регулируемых интервалов и их после­довательность не меняется; это однопрограммные регуляторы. Они обеспечивают один и тот же порядок включения механизмов машины, позволяя лишь неза­висимо регулировать время отдельных выдержек.

В более сложных регуляторах порядок следования интервалов и их число может изменяться в зависимости от выбора программы. Такие многопрограммные РЦС позволяют осуществлять сварочные циклы с различными вариантами изме­нения усилия на электродах или формы сварочного тока.

Все современные регуляторы отличаются высокой точностью как отсчета ин­тервала «Сварка», так и других регулируемых интервалов времени. Такие регу­ляторы построены по принципу счета периодов питающего напряжения или исполь­зуют RC-цепочки с устройствами синхронизации. Благодаря синхронизации обеспечивается основное симметрирование тока. Последний включается всегда с полуволны одной полярности, а заканчивается противоположной полуволной.

Требования высокой производительности не позволяют использовать в регу­ляторах электромагнитные реле в качестве связующих и исполнительных эле­ментов. Передача информации внутри регулятора осуществляется с помощью бесконтактных элементов. Исполнителями команд также являются бесконтактные устройства. В частности, включением пневмоэлектрических клапанов управ­ляют транзисторные или тиристорные усилители; игнитронные контакторы вклю­чаются через тиристорные узлы поджигания, а тиристорные контакторы — через выходные усилители регуляторов. Применение бесконтактных исполнительных элементов позволило расширить функциональные возможности регуляторов. Большинство выпускаемых РЦС позволяют регулировать сварочный ток. Все регу­ляторы обеспечивают отработку полного цикла сварки независимо от момента отключения педали и допускают возможность работы в автоматически повторяю­щемся режиме. Техническая характеристика наиболее известных регуляторов времени, в том числе и выпускавшихся реле, приведена в табл. 22.

Регулятор РЦС-403 является бесконтактным аналогом широко известного регулятора РВЭ-7. Он имеет четыре независимо регулируемые выдержки вре­мени: «Сжатие», «Сварка», «Проковка» и «Пауза» и снабжен транзисторными уси­лителями для включения электропневматического клапана привода усилия и фазо­импульсного управления тиристорным контактором или тиристорным блоком поджигания игнитронов.

Схема регулятора (рис. 44) полностью выполнена на транзисторных элемен­тах серии Логика-Т. Для понимания ее работы необходимо знать некоторые осо­бенности работы логических элементов.

1. Уровню сигнала минус 4—8 В соответствует логическая 1. Логический О означает практическое отсутствие сигнала.

2. Элементы D3, D5, D7,D10 — маломощные триггеры. Возможны два устой­чивых состояния. Если 1 на выходе 7, то на выходе 8—0 и наоборот. Подача I на потенциальные входы 9 или 10 вызывает появление 1 соответственно на выхо­дах 8 или 7. Положительный сигнал на входе 9 приводит к появлению І на вы-

мых интервалов, ед. Допустимые колеба-

ния яаяряжения сети,%

22. Техническая характеристика регуляторов времени

Транзисторные логические элементы «Логик

0,02—2,0 дискретно 0,02—2,0 *1 дискретно

ходе 7. Если на импульсный вход 1 или 2 подать 1, а затем снять ее, т. е. за­менить на 0, то на соответствующих выходах 7 или 8 установится 1.

3. Элементы D4, D8, D9, Dll, DI2 — транзисторная задержка. Если на лю­бой из входов 1 или 5 подать 1, то через заданное внешней цепочкой RC время на выходе 9 0 сменится 1. Ноли на всех входах всегда вызывают 0 на выходе.

4. Элемент D6 — три схемы И. Только наличие 1 на всех входах 2, 4, 6, 8 или 5, 7 или 1, 3 отдельных схем И вызывает появление 1 на соответствующих вы­ходах 10, 11, 9. Если на любом из входов будет 0, то на выходе схемы также бу­дет 0. Свободный вход работе схемы И не мешает. Выходы групп и элементов мо­гут объединяться, образуя единую схему И на много входов.

5. Элементы D13, D14 — 30-ваттный усилитель. Для работы усилителя не­обходимо подать 1 на любой из входов 1, 3.

Включение напряжения питания приводит к появлению 1 на 7D3, 8D7 и 8D10. Триггер D3 переводится в исходное положение по входу 10, а триггеры D7

Бесконтактное фазоимпульсное устройство

Бесконтактный транзисторно-тиристорный ключ’

и D10 — по входам 9 от 1 с 7D3. Этот же сигнал поступает на 5D12 выдержки вре­мени «Пауза» и через время, определяемое величиной R13 и положением выклю­чателя S4, появится на его выходе 9. Однако 1 с 9D12 из-за разомкнутой педаль­ной кнопки на 9D3 не попадает. Сохраняется 0 на 8D3 и соответственно на 3D 14. Электропневматический клапан не включен. В качестве фазосдвигающего устрой­ства используется элемент D9. На его вход 1 подается двухполупериодное отри­цательное напряжение с пульсациями 100 Гц. Каждая полуволна вызывает на выходе 9D9 прямоугольный импульс, передний фронт которого задержан отно­сительно начала полуволны на промежуток, определяемый параметрами R14C17. Таким образом, на 9D9 формируются прямоугольные импульсы с частотой 100 Гц, фазовое положение которых определяется величиной резистора R14 «Нагрев». Однако фактически эти импульсы отсутствуют, так как выход 9D9 шунтирован 0 (нулем) на 7D7. Таково исходное положение элементов ре­гулятора.

электрическая схема регулятора времени типа РЦС-403

і После замыкания педальной кнопки сразу же по входу 9 переключится триг­гер D3; соответственно на 5D12 и 9D12 установится 0. Одновременно 1 с 8D3 поступает на 3D 14 и на 5D4 выдержки времени «Сжатие». Срабатывает клапан уси­лия, электроды сжимаются, идет счет времени «Сжатие», определяемый поло­жением S3 и величиной R9. Педаль может быть отпущена, так как триггер D3 взял на себя функцию элемента «помнящего» о том, что цикл сварки начался и не иожет быть прерван до конца. Выходной сигнал с 9D4 подается на 2D6 первой схемы И. На другом входе 4D6 той же схемы также пока имеется 1 с 8D10, а тре­тий вход 6D6 соединен с 8D5 триггера синхронизации, формирующего прямоуголь­ные импульсы с частотой 50 Гц. Появление и снятие первого импульса на вы­ходе 10D6 приведет к срабатыванию триггера D7 по импульсному входу 1. С этого момента на 7D7 появляется 1, которая открывает выход 9D9 и через 9D6 запу­скает задержку D8 интервала времени «Сварка». Прямоугольные импульсы с 9D9 дифференцируются цепочкой C13RBiiD13 и усиливаются элементом D13. Нагруз­кой элемента D13 является импульсный трансформатор, расположенный вне ре­гулятора цикла. Первый импульс управления появляется всегда синхронно С одной и той же полуволной напряжения сети, так как триггер D7 перебрасы­вается не в произвольный момент окончания выдержки «Сжатие», а задерживается до прихода положительной полуволны напряжения, вызывающей появление О на 8D5.

Читайте также:  Реле регулятор уаз ремонт

Сварочный ток продолжается до тех пор, пока D8 отрабатывает выдержку «Сварка», регулируемую набором резисторов R24—R43 и выключателем S5. После окончания этой выдержки срабатывает триггер D10 по входу 10 и на 8D10 установится 0; тем самым первая схема И будет заблокирована и триггер D7 не сможет управляться по входу /. От 7D10 запустится выдержка «Проковка* (элемент D11), и по входу 7D6 подготовится вторая схема И. Другой вход схемы И соединен с 8D5 триггера синхронизации, и поэтому переключение триггера D7 по импульсному входу 2 произойдет в той же точке сети, что и при включении сварочного тока. Таким образом, триггер D7 всегда переключается через целое число периодов, а так как переброс триггера D7 в исходное положение приводит к отключению импульсов управления, то обеспечивается симметричность числа полуволн сварочного тока. Цикл заканчивается после появления 1 на 9D11 и срабатывания триггера D3 по входу 10. Усилитель D14 отключается. Все эле­менты занимают исходное положение. Отсчитывается время «Пауза». Если по ее окончании педаль будет замкнута, то цикл работы регулятора пов­торится.

Более совершенным является высокопроизводительный регулятор типа РЦС-502. Цикл регулятора состоит из пяти выдержек времени. К четырем стан­дартным выдержкам добавлен интервал «Предварительное сжатие». Этот интервал отрабатывается в автоматическом режиме только для первого цикла, а при оди­ночном режиме — для каждого цикла. При высоком темпе работы интервалы «Сжатие», «Проковка» и «Пауза» устанавливаются как можно меньшими, и по­этому необходимо первую выдержку «Сжатие», когда электрод совершает свой полный рабочий ход, удлинить в автоматическом режиме дополнительным вре­менем «Предварительное сжатие». За время «Пауза» электрод успевает только ча­стично оторваться от точки и поэтому для его последующего опускания доста­точно малого интервала «Сжатие». Фазосдвигающее устройство регулятора РЦС-502 кроме регулирования тока позволяет модулировать начало и конец сварочного Тока и стабилизировать установленное значение тока при колебаниях напряже­ния питающей сети.

Регулятор РЦС-301 предназначен для управления работой машин малой мощности с пневматическим или педальным приводом усилия. Выдержка вре­мени «Сжатие» не регулируется и равна 0,5 с. Выдержка «Проковка» обеспечи­вается инерционностью подвижных элементов машины. При работе с педальным приводом в цикле участвует только выдержка «Сварка», которая начинается по команде от бесконтактного путевого выключателя после создания усилия на электродах.

Регулятор БУ-5ИПС представляет собой многопрограммный регулятор с шестью регулируемыми выдержками времени: «Предварительное сжатие», «Сжатие», «Импульс», «Интервал», «Проковка» и «Пауза». Регулятор позволяет осуществлять пульсирующую сварку с регулируемым числом импульсов тока от 1 до 10 и интервалом между импульсами от 0,02 до 0,2 с. Выдержка «Предваритель­ное сжатие» плавно регулируется от 0,02 до 0,5 с. Остальные выдержки времени могут дискретно изменяться от 0,02 до 2,0 с. Отсчет времени позиций основан на ступенчатом заряде конденсатора до определенного уровня зарядного напря­жения импульсами, поступающими синхронно с напряжением сети.

Регулятор управляет двумя электропневматическими клапанами, обеспе­чивающими следующие режимы изменения усилия на электродах: с постоянным сварочным усилием; с постоянным ковочным усилием; с постоянным сварочным усилием и включением ковочного усилия на время проковки; с постоянным ко­вочным усилием, с выключением ковочного усилия после заданного импульса сварочного тока и с повторным включением ковочного усилия на время проковки.

Регулятор БУС также обеспечивает различные варианты циклов работы ма­шины по сварочному току и усилию на электродах: с одним импульсом тока; с двумя импульсами тока разной величины и длительности, разделенными регу — лируемьш интервалом; с одним сдвоенным импульсом тока, начальную и конечную части которого можно регулировать раздельно; с постоянным сварочным уси­лием; с постоянным ковочным усилием; с постоянным сварочным усилием и вклю­чением ковочного усилия в заданный момент времени.

Все интервалы времени, кроме «Предварительного сжатия», регулируются дискретно в пределах 0,02—2,0 с. Для этого в регуляторе имеется общий двоично — десятичный счетчик, переключаемый по циклу на отсчет интервалов, ранее уста­новленных переключателями.

Регулятор РВТ-100М-1 (разработчик ИЭС им. Е. О. Пагона) — пятипози- ционный; схема регулятора построена на элементах тиристорной логики. В от­личие от регуляторов серии РЦС и БУ регулятор РВТ управляет электропнев — матическим клапаном переменного тока и содержит в своем составе блок поджи­гания, способный включать как тиристорный, так и игнитронный контакторы.

В ИЭС им. Е. О. Патона разработан и выпускается малыми сериями универ­сальный регулятор типа РВТУ-200М, обеспечивающий работу точечных контакт­ных машин по сложному термомеханическому циклу. Регулятор выполнен также на основе тиристорной логики. Цикл регулятора состоит из девяти операций: «Сжатие», «Подогрев», «Сварка», «Охлаждение», «Отжиг», «Ковка», «Пауза», «Задержка понижения давления», «Понижение давления». Регулятор позволяет программировать величину и длительность трех независимых импульсов свароч­ного тока (Подогрев, Сварка, Отжиг), а также изменять по программе усилие сжатия электродов. Включение двух пневмоэлектрических клапанов и игнитро­нов (тиристоров) вентильного контактора осуществляется бесконтактными клю­чами. Регулятор обеспечивает регулирование сварочного тока, модуляцию перед­него фронта сварочных импульсов и безынерционную стабилизацию тока при колебаниях напряжения сети. Сварочный ток во время импульса может быть непрерывным или пульсирующим. Длительность пульсаций и пауз между ними ре­гулируется в пределах 1—10 периодов дискретно через один период.

Источник