Меню

Релейный регулятор громкости схема

Практическая аудиофилия — Регулятор Громкости (РГ)

При построении усилителя возник вопрос: Как реализовать Р егулятор Г ромкости (РГ)?

Аудиофилы не воспринимают никакой РГ кроме «регулятор громкости Никитина», который по своей сути является управляемым аттенюатором, где контакты реле замыкают/размыкают резисторы в делителях. Самые завёрнутые используют 7 и ли 8-разрядные, хотя на практике за глаза хватает и 6! Мне приходилось слышать усилитель с таким регулятором — при переключении громкости в дополнение к механическому треску переключающихся реле ещё и в колонках отчётливо слышны «щелчки» . да.. ослабление сигнала качественное, но уж очень некомфортное в работе! И это мне такой не нужен! Я пойду другим путём!

Происходит это потому, что при замыкании/размыкании контакта происходит «дребезг».. У плохих реле его много, у очень дорогих его мало, но он всё равно есть, ибо его не может не быть — Законы физики отменить нельзя.

Процесс дребезга при соударении контактов может быть представлен следующим образом . В момент t = 0 произошло соприкосновение контактов (точка А), в цепи появился ток, напряжение на контактах упало до нуля и началось смятие материала и торможение контакта. В точке В подвижный контакт остановился. Началось упругое восстановление материала контактов и обратное движение подвижного контакта. Если бы материал был абсолютно упругим, то контакт восстановился бы до первоначального, практически же будет наблюдаться некоторая остаточная деформация. В точке С упругое восстановление материала контактов прекратилось, но подвижный контакт по инерции продолжает отходить. Происходит разрыв контактов. Ток в цепи становится равным нулю, напряжение на контактах восстанавливается. Контакт отходит на расстояние xк и под действием контактной пружины снова замыкается (точка D). Происходит повторное смятие материала и его восстановление, и так — несколько раз с затухающей амплитудой. В цифровой технике это «лечится» подключением конденсаторов, но в звуковом тракте они будут работать как фильтр нижних частот, подавляя высокие частоты, а значит этот способ не допустим!
Вот так дребезг выглядит визуально на экране осциллографа
Смотреть позже Поделиться Посмотреть на //www.youtube.com/embed/fykq4xcgqiM?start=24&wmode=opaque

Инженеры уже давно решили эту проблему, и создали интегральный РГ Никитина, работающий абсолютно по такомуже принципу — цифровые потенциометры

Т.к. чувствительность человеческого уха к уровню звукового давления, или силе звука, изменяется в соответствии не с линейным, а с логарифмическим законом, то и регулятор громкости должен изменять уровень входного сигнала по логарифмическому закону ! Для цифрового потенциометра это можно реализовать программно! Для этого всего лишь надо «прыгать» по шкале кодов через 1дБ! А чтобы рассчитать эти коды я воспользуюсь расчетами для РГ Никитина att_calc.xls

В случае переменного резистора делитель будет выглядеть следующим образом, а ослабление А (дБ) при условии Rinput = Rload будет рассчитыватсья по следующей формуле:

Т.к. сумма R1+R2 всегда должно давать Rload , в формулу забиваем R2=Rload-R1 и задачу будем решать с помощью функции EXEL » подбор параметра «. Задаем установить в требуемое ослабление в ячейку » дБ » изменяя ячейку R1, а зная номиналы резисторов, можно высчитать коэффициент положения потенциометра и, соответственно, цифровой код ЦАП
Остаётся главный вопрос. а сколько бит достаточно для реализации цифрового логарифмического РГ? Какой выбрать?
В итоге для ЦАП 8. 16 бит получаются следующие ряды значений ослабления входного сигнала от 0 до -100дБ
Жёлтым цветом я выделил ячейки в которых происходит изменение кода без повторения
(по клику откроется полная таблица):

Читайте также:  Dab насосы что за регулятор

Для удобного визуального восприятия посмотрим на их в виде графика (по клику откроется подробный график):

разницы не заметно. Кривые лежат друг на друге. Рассмотрим крупнее диапазон ослабления (100%-70%)

разницы практически не заметно. Кривые снова лежат друг на друге! Рассмотрим крупнее диапазон ослабления (100%-90%)

до 94% разницы никакой вообще — рассмотрим крупнее диапазон ослабления (100%-94%)

до 99% разница практически не существенная! Углубляемся и рассмотрим крупнее диапазон ослабления (100%-99%)

до 99,60% (-48дБ) ослабления входного сигнала разница практически не существенная и 8битный ЦАП с лёгкостью справится с этой задачей!

так что получается? все эти биты нужны для того чтобы плавно с дискретностью 52 шага регулировать ослабление в пределах 0,4% от 100 до 99,6% ?

ПОКАЖИТЕ МНЕ ЭТУ ТВАРЬ, СПОСОБНУЮ ЭТО УСЛЫШАТЬ.

Что касается ЦАП с разрядностью 12-16бит то они до 99,90% идут практически «ноздря в ноздрю»!

с дискретностью ЦАП разобрались. а что с самым главным инструментом? Что способно услышать наше ухо?
А вот что: Как доказал Александр Щербин между порогом слышимости и болевым порогом человек различает всего

300 элементарных скачков ощущения громкости. Причём на разных частотах это количество разное. т.е. глубина дискретизации нашего уха всего 8бит.

Вот теперь, аудиофилы, Вам с этим жить! 🙂

Таким образом считаю что 8-битного ЦАП будет более чем достаточно и останавливаю свой выбор на 8-битном AD8403 !

В диапазоне от 0дБ (N=000) до -30дБ (N=247) коды будут изменяться через 1дБ (как ни странно это полностью закрыло РГ Никитина на 6 релюшках), а оставшиеся 6 как получится. Вот этот ряд чисел, пользуйтесь! 🙂

-100дБ (N=255)
-54дБ (N=254)
-44дБ (N=253)
-40дБ (N=252)
-37дБ (N=251)
-35дБ (N=250)
-33дБ (N=249)
-32дБ (N=248)
-30дБ (N=247)
-29дБ (N=246)
-28дБ (N=244)
-27дБ (N=243)
-26дБ (N=242)
-25дБ (N=240)
-24дБ (N=238)
-23дБ (N=236)
-22дБ (N=233)
-21дБ (N=230)
-20дБ (N=227)
-19дБ (N=223)
-18дБ (N=219)
-17дБ (N=214)
-16дБ (N=209)
-15дБ (N=202)
-14дБ (N=195)
-13дБ (N=187)
-12дБ (N=177)
-11дБ (N=167)
-10дБ (N=155)
-09дБ (N=142)
-08дБ (N=128)
-07дБ (N=113)
-06дБ (N=097)
-05дБ (N=081)
-04дБ (N=064)
-03дБ (N=047)
-02дБ (N=031)
-01дБ (N=015)
-00дБ (N=000)

Источник



Заметки радиолюбителя

[Усилитель Neptune] Релейный регулятор громкости и селектор. Макет

aitras

Запись опубликована aitras · 2 апреля 2017

Для моего нового усилителя мне потребовался электронный регулятор громкости (РГ). Один из популярных вариантов — лестничный релейный регулятор громкости, или, как его еще называют, регулятор Никитина. Несмотря на обилие готовых решений в сети, собрать его я решил своими руками под свои «хотелки». Кроме РГ нужен был селектор на 4 входа с возможностью запоминать последний выбранный вход.

Оба этих устройства я объединил в одном модуле. Схема основана на микроконтроллере AVR.

58dc0d0a3b902_.png.39d96191b9e86aa9a2c5500f3183f2e5.png

Кнопка переключает входы, потенциометр — меняет уровень громкости. Именно благодаря электронному регулированию можно не применять сдвоенный потенциометр. Кроме этого его можно располагать в любом удобном месте усилителя не беспокоясь о наводках на входные цепи.

В целях экономии выводов МК для управления реле были использованы 8-битные сдвиговые регистры. По факту я решил взять мощные регистры от TI TPIC6B595. Функционально они аналоги регистров типа 74HC595, но имеют выходы с открытым стоком и допустимым током до 150 мА на каждый выход (при условии соответствующей трассировки платы, о чем сказано в даташите). Это позволило не ставить транзисторные ключи или специальные драйверы типа ULN2003.

Читайте также:  Схема регулятора сварочного тока своими руками

58dc0eb2b3bcb_2017-03-2910-00-11.thumb.JPG.9e2e700468543290a092a80110886f0d.JPG 2017-03-29_23-44-48.png.f84e5b89040fc0b19b6377572571d7b9.png

Отладка работы устройства проводилась на МК ATtiny13, но в конечном устройстве планируется применить более мощный МК.

Из-за ограничений по габаритам конструкцию пришлось разделить на две платы.

78946.png.5ccb3b996cd6573d57aa3bfcf8666ce2.png

1.JPG.c111288c9759ec6f42640eece23a6ac6.JPG2.JPG.0967cc2bece5483d07d3ed9866a76741.JPG

Левая плата является основной — на ней расположены входные разъемы, реле селектора и микросхемы регистров. Правая плата устанавливается на нее этажеркой и на ней расположены реле и резисторы релейного РГ. Электрически они связаны разъемами типа PLD.

Также можно не устанавливать верхнюю плату РГ. В таком случае выходной сигнал берется с разъема OUT вверху платы.

Так как в усилителе будет применяться один МК для управления всеми сервисными функциями, то на данном модуле его нет. Имеется лишь разъем входа управления (CTRL), который будет соединен с платой МК. Но был также оттрассирован вариант нижней платы с МК ATtiny13. Это позволит применять модуль автономно.

3.JPG.6ee024c20f4071046ef2a1a2825df60f.JPG

Логика переключений реле РГ довольно проста. Для оцифровки сигнала с потенциометра применяется 10-битный АЦП, встроенный в МК. Реле управляются двоичным кодом. Поэтому достаточно просто взять 6 старших бит результата оцифровки (т.к. реле 6 штук) и вывести их в регистр, к которому подключены реле.

Платы первой ревизии:

58dc0ec5bc962_2017-03-2917-42-00.thumb.JPG.7d9c90922d7f264f3dfb65d3f175bdd6.JPG 58dc0ecfd6078_2017-03-2917-42-09.thumb.JPG.eca1077afa0021c81a6b16df6587a679.JPG
58dc0edca1254_2017-03-2917-42-46.thumb.JPG.85a75d12a5abebcd3d21eb7c3ff71815.JPG 58dc0ed61a733_2017-03-2917-42-39.thumb.JPG.9dc5555cd671a5f140119de670580fe0.JPG

Сборка и испытания макета показали работоспособность программы.

58e00753c395e_2017-04-0115-12-10.thumb.JPG.0f6090921f30f4d402e261cbb0f23c6d.JPG58e007575f29c_2017-04-0115-12-18.thumb.JPG.eaffaffbfcd4d75e86ab42bae7537773.JPG

58e00759c406d_2017-04-0123-49-31.thumb.JPG.200a707a562e682b5336338202358614.JPG 58e12391db3cf_2017-04-0220-06-57.thumb.JPG.35ac04f271b0150dd6ed065358fcc0ce.JPG

Естественно, не обошлось без ошибок:
1. Программные глюки.
2. Оказалось, что купленные реле имеют полярность включения. РГ работал (тут я «угадал» с полярностью), селектор — нет. Пришлось править дорожки.
3. Конструктивный недочет — реле верхней платы и разъем CTRL немного мешают друг другу. Поставил угловой разъем, частично помогло.

В процессе испытаний уяснил для себя несколько моментов:
1. Шаг регулировки нужен меньше. Сейчас 1,5 дБ. А то слишком большой диапазон получается.
2. Нужно как-то усреднять значения с АЦП. Бывают самопроизвольные пощелкивания.
3. Плавное увеличение громкости скорее всего нафиг не надо. Трескотня никакого шарма не добавляет. Пока убрал.
4. Щелчков при регулировке нет. Подключал ухоусь, поэтому слушал в наушниках. Придерживался «инверсной» схемы включения реле:

Чтобы устранить этот неприятный эффект при использовании обычных реле, достаточно поменять разомкнутые и замкнутые группы контактов местами, а сигналы управления реле проинвертировать.

Итого, функционал модуля следующий:

— управление громкостью потенциометром с линейной характеристикой регулировки;
— 64 ступени регулировки, при шаге 1,5 дБ дают ослабление от 0 до -94,5 дБ;
— четыре входа селектора;
— переключение одной кнопкой «по кругу»;
— запоминание последнего выбранного входа;
— задержка при включении (2 c);
— mute между переключениями каналов.

В планах — исправить все косяки и добавить возможность управления энкодером с кнопкой.

UPD: Видео работы РРГ:

Источник

Релейный регулятор громкости схема

Релейный регулятор громкости

Автор: Серый_
Опубликовано 19.09.2020
Создано при помощи КотоРед.
Участник Конкурса «Поздравь Кота по-человечески 2020!»

Поздравляем кота с 15-ти летием, в эпичный период коронавируса! Схема представляет из себя дискретный, 32-х ступенчатый регулятор громкости, где 5 бит управляют 5-ю реле, переключающими определённый набор резисторов. Шестое реле – селектор входов. Т. к. реле двухблочные, это затрагивает оба стереоканала. Ввиду минимального количества реле и упрощённого переключения (не способом делителя/ имитации потенциометра), данная схема физически не может быть линейной, но это и своего рода плюс, ибо около нормальной громкости, регулирование нужно более плавное. Подробнее о резистивном делителе такого типа, можно прочитать в «Радиохобби» 2002 №2 за авторством А. Никитина. Небольшим минусом такой схемы является то, что в регулирующую линейку сопротивлений, требуются резисторы не из стандартного ряда, для точного регулирования каждым ключом: -4dB, -8dB, -16dB, -32dB, -64dB. При большом желании, каждый резистор можно «уровнять» добавочным резистором, последовательно или параллельно, но в данной схеме, мы мутных путей не ищем, и количество компонентов сводим к минимуму. Схема:

Читайте также:  Регулятор громкости для ланзар

Энкодер (работающий по прерыванию INT1) управляет громкостью, при этом светодиоды LD3, LD4 помимо основных функций (указанных на схеме), служат индикаторами начала и конца «шкалы» регулирования. Кнопка SB4 «запись» — записывает установки в EEPROM. При включении аппарата — установки считываются из EEPROM, реле и индикация приводятся в соответствие с запомненным. Общее сопротивление линейки резисторов R26…R35 составляет 10k1. При любых переключениях, нагрузка для источника сигнала остаётся постоянной. Резисторы R36 не обязательны и могут служить для корректировки общего сопротивления и баланса (что вряд ли понадобится). «Дополнительный торг по схеме здесь неуместен», ибо и так всё очевидно. Вкратце можно рассмотреть, как работает ДУ:

Основным подходящим пультом является ПДУ от Philips TV (и эквивалентные, изготовленные сторонними производителями), с протоколом передачи данных RC-5. Он в свою очередь основан на «Манчестерском коде», где с чередованием 0 и 1 «модулирующая частота» упадёт не более, чем в два раза. На выходе ИК приёмника линя находится в состоянии «Idle», высокий уровень. С первым прерыванием INT0 по спаду, активируется таймер с задержкой до первого бита данных, а INT0 в это время будет просто считать количество прерываний. Если оных набралось не менее 4-х, значит это не какая-то левая вспышка и приёмку можно продолжать. Первая часть посылки с адресом игнорируется, что увеличивает шансы использовать ПДУ не только от телевизора. Далее с побитным временным интервалом, считываются оставшиеся биты данных. Процесс останавливается, а код уходит на «фильтр действий». На рисунке показано соответствие кнопок ПДУ и кодов. Произвольное переназначение кнопок не предусмотрено, т. к. исходник прилагается и можно вписать «нравящиеся». Далее монтаж:

Монтаж выполнен на двух печатных платах (односторонках), светодиоды и приёмник ИК, расположены на основной плате и выведены на переднюю панель. Кнопки и энкодер — на другой плате, которая с основной, соединена пайкой проводов и закрепляется вертикально на передней панели. Относительно низкоомное реле, сопротивлением катушки 125R, кушает ток вместе с транзисторным ключом 41mA. А шесть таких = 246mA. Соответственно радиатор для DA2 должен быть раза в 2…3 больше, чем на фото. Рекомендуется в таких схемах применять поляризованные «залипающие» реле, но это потребовало бы больше «электродов» микроконтроллера для управления ими. Установка красного стекла перед ИК приёмником так же приветствуется. Так на скорую руку это выглядит на панели усилка:

В архиве прилагается ассемблерный исходник для AVR Studio и печ. платы. При прошивке – конф. биты МК по умолчанию.

Источник