Резонанс в электрической цепи
Разберемся сначала с важными понятиями.
Колебания внешнего воздействия могут усиливать даже незначительные колебания системы. Наибольший резонанс достигается при совпадении частоты колебаний внешнего воздействия с колебаниями системы.
Одним из примеров явления резонанса, есть расшатывание моста ротой солдат. Это происходит, когда частота шагов солдат, которая являются внешним воздействием, совпадает с частотой колебаний моста. Если возникнет такой резонанс, это может разрушить мост. Именно поэтому солдаты не переходят мосты стройным шагом, а идут в вольном режиме.
Часто встречаемым явлением в физике есть электрический резонанс. Без него невозможно было бы провести телетрансляцию, многие медицинские обследования и прочие важные процессы.
Востребованными резонансами в электрической цепи есть:
- резонанс напряжений;
- резонанс токов.
Резонанс в электрической цепи
Схема \(RLC\) – это электрическая цепь с последовательными, параллельными или комбинированными соединениями компонентов (резисторами, индукционными катушками и конденсаторами). \(RLC\) – это сочетание сопротивления, индуктивности и емкости.
Векторная диаграмма в случае последовательного соединения \(RLC\) -цепи бывает емкостной, активной или индуктивной.
В индуктивной векторной диаграмме резонанс напряжений появляется лишь при нулевом сдвиге фаз и совпадении сопротивлений индукции и емкости.
Сложно разобраться самому?
Попробуй обратиться за помощью к преподавателям
Резонанс токов через реактивные элементы
Резонанс токов возникает при параллельном соединении реактивных сопротивлений с одинаковыми характеристиками в цепях с переменным током. Во время резонанса токов реактивная индуктивная проводимость приравнивается к реактивной емкостной проводимости, то есть \(BL=BC.\)
Колебания контура с определенной частотой совпадают с частотой колебаний источника.
Простейшим примером цепи, в которой может произойти резонанс токов, есть параллельное соединение катушки с конденсатором.
Поскольку реактивные сопротивления совпадают по модулю, то амплитуды токов конденсатора и катушки также будут совпадать и могут достичь наибольшего значения амплитуды. Согласно первому закону Кирхгофа \(IR\) равняется току источника. Иначе говоря, ток проходит лишь через резистор. Если рассмотреть параллельный контур \(LC,\) то при частоте резонанса его сопротивление будет огромным. В условиях режима гармонии при частоте резонанса в контуре будет расход тока лишь для восполнения потерь на активном сопротивлении.
Значит, в последовательной цепи \(RLC\) импеданс наименьший при частоте резонанса и равняется активному сопротивлению контура, при этом в параллельной цепи \(RLC\) импеданс наибольший при частоте резонанса и равняется сопротивлению утечки, что фактически есть активным сопротивлением контура. Это значит, что для обеспечения резонанса силы тока или напряжения в цепи необходима ее проверка с целью определения суммарного сопротивления и проводимости. Кроме того, ее мнимая часть должна равняться нулю.
Резонанс напряжений
Резонанс напряжений имеет место в цепи переменного тока в случае последовательного соединения активного \(R\) , емкостного \(C\) и индуктивного \(L\) компонентов. Резонанс напряжений состоит в совпадении внутренних колебаний источника и внешних колебаний контура. Резонанс напряжений применяется с пользой, но бывает и опасен. Например, данное явление применяют в радиотехнике, а опасность его состоит в том, что при резких скачках напряжения может произойти поломка оборудования и даже его возгорание.
Резонанс напряжения достигают несколькими путями:
- подбирая индуктивность катушки;
- подбирая емкость конденсатора;
- подбирая угловую частоту \(ω_0\) .
Эти величины подбирают с помощью таких формул:
Частота \(ω_0\) – это резонансная величина. При постоянных напряжении и активном сопротивлении в цепи сила тока в процессе резонанса напряжения наибольшая и равняется отношению напряжения к активному сопротивлению. То есть, сила тока полностью не зависима от реактивного сопротивления. Если реактивные сопротивления индукции и емкости одинаковы и по своей величине превышают активное сопротивление, тогда на зажимах катушки и конденсатора будет напряжение, сильно превышающее напряжение на зажимах контура.
Не нашли что искали?
Просто напиши и мы поможем
Кратность превышения напряжения на зажимах катушки и конденсатора в соотношении с напряжением контура рассчитывается так:
Величина \(Q\) является добротностью контура и описывает его резонансные характеристики.
Величина, обратная добротности контура, – это затухание контура \( <1 \over Q>\) .
Явление резонанса на практике
Электрический резонансный трансформатор, который был разработан Николой Теслой в конце XIX века, является ярким примером практического применения резонанса в электрических цепях. Тесла проводил массу экспериментов при разных конфигурациях резонансных цепей.
На сегодняшний день словосочетанием «катушка Теслы» называют высоковольтные резонансные трансформаторы. Такие приспособления применяют для генерации высокого напряжения и частоты переменного тока. Если простые трансформаторы используют для передачи энергии с первичной на вторичную катушку, то резонансные — для хранения электрической энергии во временном режиме.
При помощи данного приспособления, посредством управления воздушным сердечником резонансно настроенного трансформатора, при незначительной силе тока получают высокие напряжения. При этом у каждой катушки есть собственная емкость и она работает как резонансный контур. Для создания еще большего напряжения достигают резонанса двух контуров.
Источник
Резонанс напряжений в цепи переменного тока. Условия возникновения и практическое значение
Резонанс (от лат. Resono «отзыв, откликаюсь») — уникальное явление. Его можно наблюдать в разнообразных типах физических систем, которые находятся под воздействием переменных во времени внешних возмущений. Говоря простым языком, резонанс — это рост амплитуды вынужденного колебания в системе когда совпадают частоты колебаний воздействующей внешней силы с одной из собственных частот колебательной системы. Это явление впервые описал Галилео Галилей в 1638 году. Проявления резонанса имеют определенные специфические особенности в различных системах и поэтому более подробно остановимся на некоторых из них.
Резонанс токов при параллельном включении емкостной и индуктивной нагрузки
Рассмотрим на примере колебательной системы которая состоит из генераторной установки, с базовыми параметрами: емкость и индуктивность. Все эти элементы соединены в параллельную электрическую цепь. Очевидно то, что в таком колебательном контуре выходное будет равняться напряжению, подаваемому генератором.
Токи в ветвях этих цепей действуют в противофазе относительно друг друга. То есть, токи в ветвях таких колебательных систем имеют взаимное встречное направление, а суммарный ток цепи колебательного контура равен их разности.
Элементы резонансной цепи
Явление резонанса может возникнуть в так называемой RLC-цепи, содержащей следующие компоненты:
- R – резисторы. Эти устройства, относящиеся к так называемым активным элементам электрической цепи, преобразуют электрическую энергию в тепловую. Другими словами, они удаляют энергию из контура и преобразуют ее в тепло.
- L – индуктивность. Индуктивность в электрических цепях – аналог массы или инерции в механических системах. Этот компонент не очень заметен в электрической цепи, пока не попробуешь сделать в ней какие-либо изменения. В механике, например, таким изменением является изменение скорости. В электрической цепи – изменение тока. Если оно по какой-либо причине происходит, индуктивность противодействует такому изменению режима цепи.
- С – обозначение для конденсаторов, которые представляют собой устройства, хранящие электрическую энергию подобно тому, как пружины сохраняют механическую энергию. Индуктивность концентрирует и сохраняет магнитную энергию, в то время как конденсатор концентрирует заряд и тем самым хранит электрическую энергию.
Базовые принципы
Говоря другими словами, если в цепи большее индуктивное сопротивление AA больше AB, тогда ток в индуктивной нагрузке меньше тока в емкостной. И, наоборот, когда AB больше AA, ток в конденсаторной нагрузке меньше, чем ток в индуктивной нагрузке. И, как следствие, ток в не разветвленном участке цепи контура будет иметь индуктивный или емкостной характер.
При этом необходимо учитывать, что в первом и во втором случаях нагрузка будет носить реактивный характер, то есть подключенная цепь не будет являться потребителем энергии генераторной установки.
Какие последствия резонанса напряжений
Если в электрической системе с ёмкостью, индуктивностью и сопротивлением не учитывать воздействие этого явления, то работа устройств может быть нестабильной. Если этот эффект носит паразитический характер, то от него следует обязательно избавляться. Увеличение напряжения вследствие возникновения резонансного явления в цепи переменного напряжения может привести к выходу элементов из строя.
Важно! При возникновении этого явления могут быть разрушены конденсаторы из-за превышения реактивной мощности. При перегреве вследствие резонанса напряжений электротехника может не только выйти из строя, но и загореться
При перегреве вследствие резонанса напряжений электротехника может не только выйти из строя, но и загореться.
Возгорание электрической подстанции
На крупных производственных объектах такое явление может привести к аварии с человеческими жертвами. Если высоковольтные линии электропередач находятся слишком близко, то эффект электрического резонанса может возникать и в системах этого типа.
Шунтирующие генераторы ЛЭП
Чтобы защитить ЛЭП от негативного воздействия этого явления применяются шунтирующие генераторы, которые устанавливаются через каждые 300 – 400 км.
Признаки явления
Базовый показатель резонанса — когда реактивные сопротивления одинаковые, то есть AA = AB. Тогда ток не разветвленной части контура отсутствует, а в каждой отдельно взятой из ветвей будет протекать ток с максимальной амплитудой, и наступает обсуждаемое явление.
В ходе изысканий ученые пришли к выводу, который кажется очень странным. Действительно, генератор нагружают двумя реактивными нагрузками, а ток в не разветвленной его части отсутствует, более того, через каждую из них протекают ток равной силы и с максимальной амплитудой токи. Объяснить такое явление можно удивительными свойствами магнитных полей на индуктивных нагрузках и свойствами электрического поля емкости.
При явлении резонанса происходит обмен энергетическими колебаниями между этими полями в индуктивности и емкости. Генерирующая установка, передав энергию в контур, оказывается как бы «не у дел». Его даже можно совсем выключить, а ток в этой части контура будет поддерживаться без генератора, таким, как и был в самом начале. А напряжение останется точно таким, какое было подано с генератора.
Причины резонанса
Классический пример с приказом командира идти марширующим солдатам «не в ногу» перед мостом наглядно демонстрирует суть этого явления
Если не использовать такую предосторожность, колебания могут увеличиться до критичного значения, вплоть до разрушения конструкции. Для получения максимальной амплитуды раскачивают в определенном ритме качели
Приведенные примеры демонстрируют существенное увеличение результата при совпадении частот внешнего воздействия и непосредственно самой системы.
Электрический резонанс по своим принципам не отличается от механических аналогов. Он образуется при совпадении частот внешнего сигнала и контура. Функции накопителей энергии выполняют реактивные индукционные и емкостные элементы. Потери (постепенное уменьшение амплитуды) обеспечивает электрическое сопротивление цепи, что аналогично коэффициенту трения.
Прикладное применение явление резонанса токов
Практически все устройства силовой электротехники использует подобные колебательные контуры, например — силовые трансформаторы. Также, это явление можно использовать для настройки работы телевизионного и радио приемников, сварочных систем и во многих других устройствах где нужен резонанс токов. Его даже применяет в эстетической медицине (микроволновой терапии).
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта, буду рад если вы найдете на моем сайте еще что-нибудь полезное.
Добротность RLC-цепи
Резонансные цепи используют для того, чтобы выделить сигнал на нужной частоте, отфильтровав остальные сигналы на других частотах. Если отложить по вертикали действующее значение силы тока вынужденных колебаний в RLC-контуре, а по горизонтали — частоту генерируемой источником переменной ЭДС, то получится резонансная кривая данного RLC-контура, подобная той, что изображена на рисунке:
Если резонансная кривая имеет острый пик на резонансной частоте, говорят, что схема обладает высокой «селективностью». Параметр, характеризующий данное свойство, в физике называют добротностью . Добротность RLC-контура определяется как отношение его резонансной частоты к ширине резонансной полосы на полувысоте максимума :
Добротность RLC-цепи зависит от величины активного сопротивления. Чем меньше активное сопротивление , тем больше добротность при данных значениях индуктивности и электроемкости . Для RLC-контура добротность определяется по формуле:
Замечания
- Колебательный контур, работающий в режиме резонанса токов, не является усилителем мощности. Он является усилителем тока.
Большие токи, циркулирующие в контуре, возникают за счет мощного импульса тока от генератора в момент включения, когда заряжается конденсатор. При значительном отборе мощности от контура эти токи «расходуются», и генератору вновь приходится отдавать значительный ток подзарядки. Поэтому внутри контура сопротивление должно быть сведено к минимуму чтобы уменьшить потери.
- Если генератор слабый, большой ток подзарядки в момент его включения на колебательный контур может сжечь его. Выйти из положения можно, постепенно повышая напряжение на клеммах генератора (постепенно «раскачивая» контур).
- Колебательный контур с низкой добротностью и катушкой небольшой индуктивности слишком плохо «накачивается» энергией (запасает мало энергии), что понижает КПД системы. Также катушка с маленькой индуктивностью и на низких частотах обладает малым индуктивным сопротивлением, что может привести к «короткому замыканию» генератора по катушке, и вывести генератор из строя.
- Добротность колебательного контура пропорциональна L/C, колебательный контур с низкой добротностью плохо «запасает» энергию. Для повышения добротности колебательного контура используют несколько путей:
- Повышение рабочей частоты;
- По возможности увеличить L и уменьшить C. Если увеличить L с помощью увеличения витков катушки или увеличения длины провода не представляется возможным, используют ферромагнитные сердечники или ферромагнитные вставки в катушку; катушка обклеивается пластинками из ферромагнитного материала и т п.
- При расчёте колебательного контура с катушкой небольшой индуктивности, нужно учитывать индуктивность соединительных шин (от катушки к конденсатору), соединительные провода конденсаторной батареи. Индуктивность соединительных шин может быть намного больше индуктивности катушки и серьёзно понизить частоту колебательного контура.
- При реализации резонанса токов на трансформаторах, первичная и вторичная обмотки должны располагаться на разных кернах на магнитопроводе, иначе электромагнитные наводки от вторичной обмотки будут мешать резонансу. Поэтому годятся трансформаторы с П образным или Ш образным сердечником. В противном случае обмотки тщательно экранируют друг от друга фольгой.
См. также
Как ты считаеешь, будет ли теория про резонанс токов улучшена в обозримом будующем? Надеюсь, что теперь ты понял что такое резонанс токов, векторная диаграмма резонанса токов и для чего все это нужно, а если не понял, или есть замечания, то нестесняся пиши или спрашивай в комментариях, с удовольствием отвечу. Для того чтобы глубже понять настоятельно рекомендую изучить всю информацию из категории Электротехника, Схемотехника, Аналоговые устройства
Использование резонанса напряжений для передачи радиосигнала
Применение последовательного колебательного контура удобно изучать на конкретном примере. При конструировании передающих устройств, например, уменьшение импеданса на определенной частоте позволяет сделать настройку на определенный сигнал. Такую задачу решают с помощью колебательного контура.
Распределение спектра на экране измерительного прибора после обработки фильтром
Точно спроектированный фильтр будет «убирать» паразитные составляющие без дополнительных средств контроля и автоматизации. Такое решение, кроме простоты и минимальной стоимости, обеспечивает экономное потребление энергии генератором сигнала.
Как показано на практических примерах, резонанс может выполнять полезные и вредные функции. Точный расчет поможет создать качественную электрическую цепь с заданными техническими параметрами.
Источник
Резонанс тока это режим работы электрической цепи
Резонансом называется такой режим работы цепи, включающей в себя индуктивные и емкостные элементы, при котором ее входное сопротивление (входная проводимость) вещественно. Следствием этого является совпадение по фазе тока на входе цепи с входным напряжением.
Резонанс в цепи с последовательно соединенными элементами
(резонанс напряжений)
Для цепи на рис.1 имеет место
; | (1) |
. | (2) |
В зависимости от соотношения величин и возможны три различных случая.
1. В цепи преобладает индуктивность, т.е. , а следовательно,
. Этому режиму соответствует векторная диаграмма на рис. 2,а.
2.В цепи преобладает емкость, т.е. , а значит, . Этот случай отражает векторная диаграмма на рис. 2,б.
3. — случай резонанса напряжений (рис. 2,в).
Условие резонанса напряжений
При этом, как следует из (1) и (2), .
При резонансе напряжений или режимах, близких к нему, ток в цепи резко возрастает. В теоретическом случае при R=0 его величина стремится к бесконечности. Соответственно возрастанию тока увеличиваются напряжения на индуктивном и емкостном элементах, которые могут во много раз превысить величину напряжения источника питания.
Пусть, например, в цепи на рис. 1 . Тогда , и, соответственно, .
Явление резонанса находит полезное применение на практике, в частности в радиотехнике. Однако, если он возникает стихийно, то может привести к аварийным режимам вследствие появления больших перенапряжений и сверхтоков.
Физическая сущность резонанса заключается в периодическом обмене энергией между магнитным полем катушки индуктивности и электрическим полем конденсатора, причем сумма энергий полей остается постоянной.
Суть дела не меняется, если в цепи имеется несколько индуктивных и емкостных элементов. Действительно, в этом случае , и соотношение (3) выполняется для эквивалентных значений LЭ и CЭ .
Как показывает анализ уравнения (3), режима резонанса можно добиться путем изменения параметров L и C, а также частоты. На основании (3) для резонансной частоты можно записать
Резонансными кривыми называются зависимости тока и напряжения от частоты. В качестве их примера на рис. 3 приведены типовые кривые I(f); и для цепи на рис. 1 при U=const.
Важной характеристикой резонансного контура является добротность Q, определяемая отношением напряжения на индуктивном (емкостном) элементе к входному напряжению:
— и характеризующая “избирательные” свойства резонансного контура, в частности его полосу пропускания .
Другим параметром резонансного контура является характеристическое сопротивление, связанное с добротностью соотношением
или с учетом (4) и (5) для можно записать:
Резонанс в цепи с параллельно соединенными элементами
(резонанс токов)
Для цепи рис. 4 имеем
; | (8) |
. | (9) |
В зависимости от соотношения величин и , как и в рассмотренном выше случае последовательного соединения элементов, возможны три различных случая.
В цепи преобладает индуктивность, т.е. , а следовательно, . Этому режиму соответствует векторная диаграмма на рис. 5,а.
В цепи преобладает емкость, т.е. , а значит, . Этот случай иллюстрирует векторная диаграмма на рис. 5,б.
— случай резонанса токов (рис. 5,в).
Условие резонанса токов или
При этом, как следует из (8) и (9), . Таким образом, при резонансе токов входная проводимость цепи минимальна, а входное сопротивление, наоборот, максимально. В частности при отсутствии в цепи на рис. 4 резистора R ее входное сопротивление в режиме резонанса стремится к бесконечности, т.е. при резонансе токов ток на входе цепи минимален.
Идентичность соотношений (3) и (5) указывает, что в обоих случаях резонансная частота определяется соотношением (4). Однако не следует использовать выражение (4) для любой резонансной цепи. Оно справедливо только для простейших схем с последовательным или параллельным соединением индуктивного и емкостного элементов.
При определении резонансной частоты в цепи произвольной конфигурации или, в общем случае, соотношения параметров схемы в режиме резонанса следует исходить из условия вещественности входного сопротивления (входной проводимости) цепи.
Например, для цепи на рис. 6 имеем
Поскольку в режиме резонанса мнимая часть должна быть равна нулю, то условие резонанса имеет вид
откуда, в частности, находится резонансная частота.
Резонанс в сложной цепи
Условие резонанса для сложной цепи со смешанным соединением нескольких индуктивных и емкостных элементов, заключающееся в равенстве нулю мнимой части входного сопротивления или входной проводимости , определяет наличие у соответствующих этому условию уравнений относительно нескольких вещественных корней, т.е. таким цепям соответствует несколько резонансных частот.
При определении резонансных частот для реактивного двухполюсника аналитическое выражение его входного реактивного сопротивления или входной реактивной проводимости следует представить в виде отношения двух полиномов по степеням , т.е. или . Тогда корни уравнения дадут значения частот, которые соответствуют резонансам напряжений, а корни уравнения — значения частот, при которых возникают резонансы токов. Общее число резонансных частот в цепи на единицу меньше количества индуктивных и емкостных элементов в схеме, получаемой из исходной путем ее сведения к цепи (с помощью эквивалентных преобразований) с минимальным числом этих элементов. Характерным при этом является тот факт, что режимы резонансов напряжений и токов чередуются.
В качестве примера определим резонансные частоты для цепи рис. 7. Выражение входного сопротивления данной цепи имеет вид
Из решения уравнения получаем частоту , соответствующую резонансу напряжений, а из решения уравнения — частоту , соответствующую резонансу токов.
- Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.
- Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.
Контрольные вопросы и задачи
- Что такое резонанс напряжений, чем он характеризуется?
- Что такое резонанс токов, чем он характеризуется?
- В чем физическая сущность резонансных режимов?
- На основании каких условий в общем случае определяются резонансные частоты?
- В цепи на рис. 1 R=1 Ом; L=10 мГн; С=10 мкФ. Определить резонансную частоту и добротность контура.
Источник
Что такое резонанс напряжений?
Резонансные явления наблюдаются в колебательных системах, когда частота собственных колебаний элементов системы совпадает с частотой внешних (вынужденных) колебательных процессов. Данное утверждение справедливо и для цепей с циркулирующим переменным током. В таких электрических цепях при наличии определённых условий возникает резонанс напряжений, что влияет на параметры тока. Явление резонанса в электротехнике может быть полезным или вредным, в зависимости от ситуации, в которой происходит процесс.
Описание явления
Если в некой электрической цепи (см. рис. 1) имеются ёмкостные и индуктивные элементы, которые обладают собственными резонансными частотами, то при совпадении этих частот амплитуда колебаний резко возрастёт. То есть происходит резкий всплеск напряжений на этих элементах. Это может вызвать разрушение элементов электрической цепи.
Рис. 1. Резонанс в электрической цепи
Давайте рассмотрим на этом примере, какие явления будут происходить при подключении генератора переменного тока к контактам схемы. Заметим, что катушки и конденсаторы обладают свойствами, которые можно сравнить с аналогом реактивного резистора. В частности, дроссель в электрической цепи создаёт индуктивное сопротивление. Конденсатор является причиной ёмкостного сопротивления.
Индуктивный элемент вызывает сдвиг фаз, характеризующийся отставанием тока от напряжения на ¼ периода. Под действием конденсатора ток, наоборот, на ¼ периода опережает напряжение.
Другими словами, действие индуктивности противоположно действию на сдвиг фаз ёмкостного сопротивления. То есть катушки индуктивности и ёмкостные элементы по-разному воздействуют на генератор и по-своему корректируют фазовые соотношения между электрическим током и напряжением.
Формула
Общее реактивное сопротивление рассматриваемых нами элементов равно сумме сопротивлений каждого из них. С учётом противоположности действий можно записать: Xобщ = XL — Xc , где XL = ωL — индуктивное реактивное сопротивление, выражение Xc = 1/ωC — это ёмкостное реактивное сопротивление.
На рисунке 2 изображены графики зависимости полного сопротивления цепи и связанной с ним силы тока, от реактивного сопротивления индуктивного элемента. Обратите внимание на то, как падает полное сопротивление при уменьшении реактивной сопротивляемости RL (график б) и как при этом возрастает ток (график в).
Рис. 2. Графики зависимости параметров тока от падения реактивного сопротивления
Электрические цепи, состоящие из последовательно соединённых конденсаторов, пассивный резисторов и катушек индуктивности называют последовательными резонансными (колебательными) контурами (см. рис. 2). Существуют также параллельные контуры, в которых R, L, C элементы подключены параллельно (рис. 3).
Рис. 3. Последовательный колебательный контур
Рис. 4. Параллельный колебательный контур
В режиме резонанса мощность источника питания будет рассеиваться только на активных сопротивлениях (в том числе на активном сопротивлении катушки). Для резонансных контуров характерны потери только активной мощности, которая израсходуется на поддержание колебательного процесса. Реактивная мощность на L C — элементах при этом не расходуется. Ток в резонансном режиме принимает максимальное значение:
Величину Q принято называть термином «Добротность контура». Данный параметр показывает, во сколько раз напряжение, возникшее на контактах реактивных элементов, превышает входное напряжение U электрической сети. Для описания соотношения выходного и входного напряжений часто применяют коэффициент K. При резонансе:
Формулировка
Описанное явление довольно распространено в электротехнике. Иногда с ним борются, а иногда специально создают условия для образования резонанса. Основными характеристиками всякого резонансного контура являются параметры добротности и частоты [ 1 ].
В случае, если XL = Xc – справедливо равенство: ωL = 1/ωC , отсюда получаем:
Если ω = ω0 – возникает резонанс напряжений. Частоты совпадают в том случае, когда индуктивное сопротивление сравняется с ёмкостным сопротивлением конденсатора. В таких случаях в цепи будет действовать только активное сопротивление R. Наличие реактивных элементов в схеме приводит к увеличению полного сопротивления цепи (Z):
где R – общее активное сопротивление.
Учитывая, что по закону Ома U = I/Z, можно утверждать, что общее напряжение в цепи зависит, в том числе, и от слагаемых индуктивного и ёмкостного сопротивлений.
Если бы в рассматриваемой схеме (рис. 1) отсутствовало активное сопротивление R, то значение полного сопротивления Z стремилось бы к 0. Следовательно, напряжение на реактивных элементах при этом возрастает до критического уровня.
Поскольку XL и Xc зависят от частоты входного напряжения, то для возникновения резонанса следует подобрать соответствующую частоту сети, или изменять параметры катушки, либо конденсатора до тех пор, пока резонансные частоты не совпадут. Любое нарушение условий резонанса немедленно приводит к выходу системы из резонансного режима с последующим падением напряжения.
Условия наступления
Резонансные явления наступают только при наличии следующих условий:
- Наличие минимального активного сопротивления на участке электрической цепи.
- Равенство реактивных сопротивлений, возникших на цепочке LC.
- Совпадение входной частоты источника питания с резонансной частотой колебательного контура.
При резонансе в контуре напряжения на его элементах могут повышаться на порядок и больше.
Примеры применения на практике
Классическим примером применения резонанса колебательных контуров является настройка радиоприёмника на частоту соответствующей радиостанции. В качестве рабочего элемента настроечного узла используется конденсатор с регулируемой ёмкостью. Вращение ручки настройки изменяет ёмкость конденсатора, а значит и резонансную частоту контура.
В момент совпадения резонансной частоты с рабочей частотой какой-либо радиостанции возникает резонанс напряжений, в результате которого резко возрастает амплитуда колебаний принятой радиоприёмником частоты. Специальные фильтры отделяют эти колебания от несущих радиочастот, а усилители усиливают полученные сигналы. В динамике появляются звуки, генерируемые передатчиком радиостанции.
Колебательные контуры, построенные на принципе последовательного соединения LC-элементов, применяются в цепях питания высокоомных нагрузок, потребляющих токи повышенного напряжения. Такие же устройства применяют в полосовых фильтрах.
Последовательный резонанс применяют при пониженных напряжениях сети. В этом случае используют реактивную энергию обмоток трансформатора, соединённых последовательно.
Конденсаторы и различные катушки индуктивности (рис. 5) входят в конструкцию практически всех аналоговых устройств. Они используются для настройки фильтров или для управления токами в отдельных узлах.
Катушки индуктивности
Важно знать, что резонансные контуры не увеличивают количество электрической энергии в цепях. Они лишь могут повышать напряжения, иногда до опасных значений. Постоянный ток не причиной резонансных явлений.
Источник