Меню

Сердечник для датчика тока

Датчики электрического тока

Глобальные тренды — спрос на снижение выбросов CO2, повышение интенсивности энергосбережения — приводят к необходимости сбалансированного потребления энергии, для чего большую помощь могут оказать электронные схемы управления процессами. Наиболее распространённые случаи — это оптимизация эксплуатационных характеристик аккумуляторов, контроль скорости вращения двигателей и переходных процессов в серверах, управление солнечными батареями. Для операторов таких систем важно, в частности, знать, какой ток протекает в цепи. Неоценимую помощь в этом могут оказать датчики тока.

практика применения датчиков тока

Почему необходимы датчики тока

Датчиками называют блоки, задача которых измерить некоторый параметр, а потом, сравнив его с эталонным для данной технической системы значением, подать соответствующий сигнал на исполнительный элемент схемы. Поскольку большинство систем используют электродвигатели, то наиболее распространёнными типами являются датчики тока и напряжения (общий вид последнего представлен на следующем рисунке).

Широкое внедрение таких устройств обусловлено развитием сенсорных методов управления, когда исходный сигнал — электрический или оптический — преобразуется в необходимые параметры управления.

По сравнению в другими управляющими технологиями (например, контакторного контроля) датчики обеспечивают следующие преимущества:

  1. Компактность.
  2. Безопасность в применении.
  3. Высокую точность.
  4. Экологичность.

датчик напряжения в сборе

Малые размеры и вес часто позволяют изготавливать многофункциональные датчики, например, такие, которые могут контролировать несколько параметров цепи. Таковыми являются современные датчики тока и напряжения.

В состав таких детекторов входят:

  • Контактные группы входа;
  • Контактные группы выхода;
  • Шунтирующий резистор;
  • Усилитель сигнала;
  • Несущая плата;
  • Блок питания.

Идея того, что устройства можно подключать к уже имеющейся сети, не выдерживает проверку временем, ибо часто в экстремальных ситуациях (пожар, взрыв, землетрясение) именно системы встроенного электроснабжения первыми выходят из строя.

Детекторы подразделяют на активные и пассивные. Первые не только передают конечный сигнал на управляющий элемент, но и управляют его действием.

Классификация и схемы подключения

Датчики тока предназначаются для оценки параметров постоянного и/или переменного тока. Сравнение выполняется двумя методами. В первом случае используется закон Ома. При установке шунтирующего резистора в соответствии с нагрузкой системы на нём создаётся напряжение, пропорциональное нагрузке системы. Напряжение на шунте может быть измерено дифференциальными усилителями, например, токовыми шунтирующими, операционными или разностными. Такие устройства используются для нагрузок, которые не превышают 100 А.

Измерение переменного тока выполняется в соответствии с законами Ампера и Фарадея. При установке петли вокруг проводника с током там индуцируется напряжение. Этот метод измерения используется для нагрузок от 100 А до 1000 А.

Схема описанных измерений представлена на рисунке:

слева – измерение малых токов; справа - измерение больших токов

Измерение обычно производится при низком входном значении синфазного напряжения. При помощи чувствительного резистора датчик тока соединяется между нагрузкой и землей. Это необходимо, поскольку синфазное напряжение всегда учитывает наличие операционных усилителей. Нагрузка обеспечивает питание прибора, а выходное сопротивление заземляется. Недостатками данного способа считаются наличие помех, связанных с потенциалом нагрузки системы на землю, а также невозможность обнаружения коротких замыканий.

Для слежения работой мощных систем детектор присоединяют к усилителю между источником питания и нагрузкой. В результате непосредственно контролируются значения параметров, подаваемых источником питания. Это позволяет идентифицировать возможные короткие замыкания. Особенность подключения заключается в том, что диапазон синфазного напряжения на входе усилителя должен соответствовать напряжению питания нагрузки. Перед измерением выходного сигнала контролируемого устройства нагрузка заземляется.

Как функционирует датчик тока

Работа данного элемента включает следующие этапы:

  1. Измерение нагрузки в контролируемой схеме.
  2. Сравнение полученного значения с эталонным, которое программируется в процессе настройки.
  3. Фиксация полученного результата (может быть выполнена в цифровом или аналогом виде).
  4. Передача данных на панель управления.

Для выполнения указанных функций (в частности, реализации высокой точности измерений) к элементам детектора предъявляются следующие требования:

  • Допустимое падение напряжения на шунтирующем резисторе должно быть не более 120…130 мВ;
  • Температурная погрешность не может быть выше 0.05 %/°С и не изменяться во времени работы;
  • В функциональном диапазоне значений характеристики сопротивления резисторов должны быть линейными;
  • Способ пайки токочувствительных резисторов на плату не может увеличивать общее сопротивление схемы подключения.

Монтажные схемы устройств, которые предназначены для контроля цепей постоянного и переменного тока представлены соответственно на рисунках.

Подключение датчика постоянного тока

подключение датчика переменного тока

Практика применения

Чаще всего данные изделия используются как измерители в схемах токовых реле, которые управляют режимами работы различного электроприводного оборудования и предохраняют его от экстремальных ситуаций.

Токовые реле способны защитить любое механическое устройство от заклинивания или других условий перегрузки, которые приводят к ощутимому увеличению нагрузки на двигатель. Функционально они определяют уровни тока и выдают выходной сигнал при достижении указанного значения. Такие реле используются для:

  • Сигнала сильноточных условий, например, забитая зёрнами доверху кофемолка;
  • Некоторых слаботочных условий, например, работающий насос при низком уровне воды.

Чтобы удовлетворить требования разнообразного набора приложений, в настоящее время используется блочный принцип компоновки датчиков, включая применение USB-разъёмов, монтаж на DIN-рейку и кольцевые исполнения устройств. Это обеспечивает выполнение следующих функций:

  • Надёжную работу на любых режимах эксплуатации;
  • Возможность применения трансформаторов;
  • Регулировка текущих параметров, которые могут быть фиксированными или регулируемыми;
  • Аналоговый или цифровой выход, включая и вариант с коротким замыканием;
  • Различные исполнения блоков питания.

В качестве примера рассмотрим схему датчика тока для управления работой водяного насоса, обеспечивающего подачу воды в дом.

отключение питающего насоса датчиком тока при низком уроне воды в резервуаре

Кавитация — это разрушительное состояние, вызванное присутствием пузырьков, которые образуются, когда центробежный насос или вертикальный турбинный насос работает с низким уровнем жидкости. Образующиеся пузырьки затем лопаются, что приводит к точечной коррозии и разрушению исполнительного узла насоса. Подобную ситуацию предотвращает токовое реле.

Читайте также:  Источником электромагнитных волн является постоянный ток в проводнике

Когда насос работает в нормальном режиме, и жидкость полностью перекрывает его впускное отверстие, двигатель насоса потребляет номинальный рабочий ток. В случае снижения уровня воды потребляемый ток уменьшается. Если кнопка запуска нажата, одновременно включаются стартёр M и таймер TD. Реле CD настроено на максимальный ток, поэтому его контакт при первоначальном запуске двигателя не будет замкнут. При падении силы тока ниже установленного минимума реле включается, а, после истечения времени ожидания TD, включается в его нормально замкнутый контакт. Соответственно контакты CR размыкаются и обесточивают двигатель насоса.

Применение такого детектора исключает автоматический перезапуск насоса, поскольку оператору необходимо убедиться в том, что уровень жидкости перед впускным отверстием достаточен.

Датчик тока своими руками

Если приобрести стандартный датчик (наиболее известны конструкции от торговой марки Arduino) по каким-то соображениям невозможно, устройство можно изготовить и самостоятельно.

датчик тока фирмы Arduino. Стрелкой указан USB-разъём

  1. Операционный усилитель LM741, или любой другой, который мог бы действовать как компаратор напряжения.
  2. Резистор 1 кОм.
  3. Резистор 470 Ом.
  4. Светодиод.

Общий вид устройства в сборе, сделанного своими руками, представлен на следующем рисунке. В данной схеме используется эффект Холла, когда разность управляющих потенциалов может изменяться при изменении месторасположения проводника в электромагнитном поле.

самодельный датчик тока

Видео по теме

Источник

Малогабаритный датчик переменного тока

Для обустройства электроснабжения гаража очень удобно знать ток, который потребляется тем или иным устройством, включаемым в эту сеть. Спектр этих устройств достаточно широк и увеличивается постоянно.: дрель, точило, болгарка, нагреватели, сварочные аппараты , ЗУ, промышленный фен, да и много ещё чего….

Для измерения переменного тока, как известно, в качестве собственно токового датчика, как правило, применяют трансформатор тока. Этот трансформатор, в общем похож на обычный понижающий, включенный как бы «наоборот», т.е. его первичная обмотка –это один или несколько витков (или шина) пропущенные через сердечник — магнитопровод, а вторичная представляет собой катушку с большим количеством витков тонкого провода, располагаемую на этом же магнитопроводе (рис1).

Однако, промышленные трансформаторы тока достаточно дороги, громоздки и зачастую рассчитаны на измерение сотен ампер. Трансформатор тока, рассчитанный на диапазон бытовой сети, встретишь в продаже нечасто. Именно по этой причине родилась идея использовать для этой цели электромагнитное реле постоянного/переменного тока, без какого либо использования контактной группы такого реле. В самом деле, любое реле уже содержит катушку с большим количеством витков тонкого провода и единственное, что необходимо для превращения его в трансформатор – это обеспечить вокруг катушки наличие магнитопровода с минимумом воздушных зазоров. Кроме этого, конечно, для такой конструкции необходимо достаточно места , чтобы пропустить первичную обмотку, представляющую вводную сеть.На снимке показан такой датчик, изготовленный из реле типа РЭС22 на 24 В постоянного тока . Это реле содержит обмотку сопротивлением примерно 650 ом. Скорее всего, подобное применение могут найти и многие реле других типов и в том числе остатки неисправных магнитных пускателей и т.п. Для обеспечения магнитопровода якорь реле механически блокируется при максимальном сближении с сердечником. Реле, как бы постоянно находится в сработке. Далее, вокруг катушки делается виток первичной обмотки ( на снимке это тройной провод синего цвета ).

Собственно, на этом датчик тока готов, без лишней суеты с наматыванием провода на катушку. Конечно, данное устройство трудно считать полноправным трансформатором и ввиду незначительной площади поперечного сечения вновь полученного магнитопровода и, возможно, ввиду отличия характеристики его намагничивания от идеальной. Однако все это оказывается менее важно ввиду того, что мощность такого «трансформатора» нам нужна минимальна и необходима лишь для того, чтобы обеспечить пропорциональное (желательно линейное ) отклонение стрелочного индикатора магнитоэлектрической системы в зависимости от тока в первичной обмотке.

Возможная схема сопряжения датчика тока с таким индикатором изображена на схеме (рис.2). Она довольно проста и напоминает схему детекторного приемника. Выпрямительный диод (Д9Б) – германиевый и выбран ввиду малости падения на нем напряжения (около 0,3 В). От этого параметра диода будет зависеть порог минимального значения тока, который способен определить данный датчик. В этой связи, для этого лучше использовать так называемые детекторные диоды с малым падением напряжения, например ГД507 и подобные. Пара кремниевых диодов кд521в установлена в целях защиты стрелочного прибора от перегрузки, которая возможна при значительных бросках тока, вызванных, например, коротким замыканием внутри сети, включением мощных трансформаторов или сварочника. Это весьма обычный в таких случаях прием. Следует заметить, ч то такая простейшая схема имеет тот недостаток что абсолютно может не «увидеть» нагрузку в виде тока одной полярности, как например, нагреватель или ТЭН, подключенный через выпрямительный диод . В этих случаях применяют несколько «усложненную» схему, например, в виде выпрямителя с удвоением напряжения (рис.3).

dkg10 Опубликована: 29.12.2014 0
Вознаградить Я собрал 0 0

Источник

Измерение токов до 1 кА с датчиком Холла MLX91208CAV

Melexis MLX91208

Датчики тока MLX91208 от компании Melexis созданы с использованием технологии IMC-Hall ® . Они представляют собой универсальное решение для самых разных приложений. Универсальность заключается в том, что MLX91208 можно применять для измерения токов в печатных проводниках, кабелях и в массивных шинах. При этом, для MLX91208CAV максимальный ток достигает 1000 А! Еще одним ключевым достоинством MLX91208 является соответствие автомобильному стандарту AEC-Q100, что позволяет использовать эти микросхемы в электрооборудовании современных автомобилей и электромобилей.

Датчики тока с технологией IMC-Hall от Melexis
Рис. 1. Датчики тока с технологией IMC-Hall от Melexis.

Существует три основных инструмента для измерения тока: шунтовые датчики, трансформаторы тока и датчики Холла. Каждый из них имеет как достоинства, так и недостатки. Причем последние два варианта являются бесконтактными решениями, что очень часто становится ключевым фактором при их выборе.

Читайте также:  Расчет тока через эдс

Если сравнивать трансформаторы тока и датчики Холла, то датчики Холла имеют несколько преимуществ. К ним стоит отнести компактные габариты, бюджетную стоимость, простоту интеграции в измерительные системы и высокую точность.

Важно отметить, что даже если используются датчики Холла, то система измерения может иметь значительные габариты (Рис. 2). В ее состав обязательно входит дополнительный магнитный сердечник. Он выступает как концентратор магнитного поля и как экран одновременно. Стандартный датчик Холла располагается в зазоре сердечника перпендикулярно к линиям поля.

Принцип измерения тока в проводнике
Рис. 2. Принцип измерения тока в проводнике.

Компания Melexis, потратив более десяти лет на научные исследования, предложила совершенно новую технологию IMC-Hall® для создания датчиков Холла (Рис. 3). В отличие от стандартного решения, они не требуют дополнительного внешнего магнитного сердечника. Вместо этого используется встроенный концентратор магнитного поля в виде двух плоских сердечников с очень высокой магнитной проницаемостью.

Принцип работы датчика тока с технологией IMC-Hall
Рис. 3. Принцип работы датчика тока с технологией IMC-Hall.

Принцип работы таких датчиков идентичен функционированию обычных датчиков Холла. Однако при этом используется не перпендикулярное, а параллельное магнитное поле. Это значит, что проводник с током должен находиться параллельно корпусу сенсора.

Технология IMC-Hall не требует обязательного наличия магнитного сердечника. Если требуется высокая точность измерений в условиях значительных внешних магнитных полей, возможно применение дополнительного экрана. Следует особо подчеркнуть, что это именно экран, поэтому он оказывается гораздо более компактным, чем магнитный сердечник.

Датчики MLX91208 построены по технологии IMC-Hall и отличаются целым рядом преимуществ:

  • простота реализации (требуется всего несколько внешних компонентов);
  • простота и универсальность монтажа: измерение токов печатных проводников, кабелей, шин;
  • не требуется массивного магнитного внешнего сердечника;
  • возможность создания сверхкомпактных многодиапазонных решений;
  • возможность программирования чувствительности и других характеристик;
  • соответствие требованиям AEC-Q100.

Семейство датчиков MLX91208 объединяет нескольких представителей с различными уровнями чувствительности.

MLX91208CAV – интегральный датчик, используемый для измерения токов до 1000 А. Он имеет номинальную чувствительность 60 мВ/мТл, но может быть перепрограммирован для значений 30/ 40/ 60/ 200 мВ/мТл. Датчик способен работать на частотах до 200 кГц включительно с минимальной задержкой сигнала всего 3 мкс.

В состав MLX91208CAV уже входят все необходимые функциональные блоки: усилители, схема питания, память, генератор, планировщик (Рис. 4). В результате схема включения требует всего четырех внешних пассивных компонентов.

Структурная схема датчиков тока MLX91208
Рис. 4. Структурная схема датчиков тока MLX91208.

MLX91208CAV станет идеальным решением для измерения токов в печатных проводниках, например, в автомобильных силовых модулях. Важно отметить, что даже если MLX91208CAV будет использоваться вместе с дополнительным экраном, измерительная система сохранит малые габариты (Рис. 5).

Пример измерения тока печатного проводника с помощью MLX91208
Рис. 5. Пример измерения тока печатного проводника с помощью
MLX91208.

С помощью MLX91208CAV также легко создавать решения для измерения токов в кабелях (Рис. 6) и массивных шинах (Рис. 7). При этом для обеспечения точности в широком диапазоне токов разрешено размещать несколько датчиков с различной чувствительностью на одном и том же проводе или шине.

Пример измерения тока провода с помощью MLX91208
Рис. 6. Пример измерения тока провода с помощью MLX91208.
Пример измерения тока массивной шины с помощью MLX91208
Рис. 7. Пример измерения тока массивной шины с помощью MLX91208.

Чтобы не было сомнений в надежности представленной технологии, стоит подчеркнуть, что датчики MLX91208 прошли сертификацию AEC-Q100 и идеально подходят для работы в составе автотракторного электрооборудования. Впрочем, MLX91208 могут применяться и в других приложениях: сварочные аппараты, генераторы, зарядные устройства, инверторы, промышленные привода электродвигателей, защитные расцепители и т. д.

Для ознакомления с возможностями семейства микросхем MLX91208 компания Melexis предлагает использовать отладочный набор DVK91208 (Рис. 8). Он включает в себя по три микросхемы MLX91208-CAL и MLX91208-CAH, три печатных платы (PCB_EC01/02/03), на которые можно распаять датчики. В комплект входят также два П-образных и три С-образных экрана.

Печатные платы PCB_EC0x отличаются максимальными допустимыми токами, размерами и типом используемых сердечников. Например, PCB_EC01 позволяет пропускать токи до 30 А и использовать сердечники обоих типов.

Отладочный набор DVK91208
Рис. 8. Отладочный набор DVK91208.

Начиная с семейства MLX91206, все датчики тока от Melexis имеют возможность программирования. Для этого используется фирменный программатор PTC-04 и специальное ПО.

Характеристики микросхемы датчика Холла MLX91208LDC-CAV:

  • Номинальная чувствительность: 60 мВ/мТл;
  • Программируемые значения чувствительности: 30/ 40/ 60/ 200 мВ/мТл;
  • Диапазон частот: 0…200 кГц;
  • Задержка сигнала: 3 мкс;
  • Типовой ток потребления: 12 мА;
  • Напряжение питания: 5 В (4.5…5.5 В);
  • Диапазон рабочих температур: -40…+150 °C;
  • Корпусное исполнение: SOIC-8.

Состав отладочного набора DVK91208:

  • Три микросхемы MLX91208-CAH;
  • Три микросхемы MLX91208-CAL;
  • Плата PCB_EC01 (36.8 × 30.5 × 1.6 мм) для токов до 30 А (ср.кв.) и сердечников типа C и U;
  • Плата PCB_EC02 (36.8 × 30.5 × 2.0 мм) для токов до 30 А (ср.кв.) и сердечников типа U;
  • Плата PCB_EC02 (42.0 × 35.0 × 1.5 мм) для токов до 7 А (ср.кв.) и сердечников типа U;
  • Три сердечника типа U;
  • Три сердечника типа C.

О компании:

Melexis – компания, специализирующаяся на разработке и производстве микросхем для автомобильной электроники. Номенклатура производителя включает широкий перечень компонентов: датчики (тока, давления, температуры, положения, скорости), контроллеры двигателей (бесколлекторных и постоянного тока), микросхемы интерфейсов (LIN), оптические компоненты, беспроводные микросхемы (радиотрансиверы, NFCи т.д.), микроконтроллеры и многие другие.

Источник

Читайте также:  Почему человека не бьет током от земли



Как работают датчики и токовые клещи для измерения постоянного и переменного тока

Для расширения функционала мультиметров, осциллографов и других электроизмерительных инструментов, применяются токовые датчики в форме клещей — токовые клещи. Для проведения измерений клещами, их смыкают в обхват проводника с током, и таким образом, без разрыва цепи и без необходимости врезания в проводник какого бы то ни было шунта, осуществляют замер.

Как работают датчики и токовые клещи для измерения постоянного и переменного тока

Это просто и удобно. Результат измерения прибор отображает на своей шкале в виде напряжения или тока пропорциональной измеренному току величины. Достоинство метода заключается еще и в том, что прибор может и не иметь достаточно широкого входного диапазона, тогда как датчик — клещи вполне в состоянии свободно принять проводник даже с очень большим током.

Проводник с измеряемым током не только остается целым, но и всегда гальванически изолирован от цепей измерительного прибора. Сам же прибор может иметь входную цепь с очень высоким импедансом и даже быть заземлен. Здесь нет необходимости как-то регулировать или включать и выключать питание цепи, параметры которой измеряются клещами, а значит в работе питаемого оборудования не будет простоев.

Среднеквадратичное значение тока в диапазоне частотных характеристик датчика можно измерить при совместном использовании токового датчика с мультиметром, способным измерять среднеквадратичные значения. В данном случае диапазон будет ограничен возможностями (шкалой) мультиметра. Лучшие результаты достигаются с датчиками обладающими широкой частотной характеристикой, минимальным фазовым сдвигом и высокой точностью.

Токоизмерительные клещи в разобранном виде

Для измерения параметров переменного тока используются датчики, работающие по принципу обычного измерительного токового трансформатора. Любой трансформатор имеет первичную и вторичную обмотки, установленные на общем магнитопроводе. Первичное напряжение подается на первичную обмотку, в сердечнике создается переменный магнитный поток, наводящий во вторичной обмотке соответствующую коэффициенту трансформации ЭДС. Токи первичной и вторичной обмоток соотносятся как количества витков во вторичной и первичной обмотках.

Так и работает токовый датчик для измерения переменного тока. Магнитопровод в форме клещей замыкается вокруг проводника. Проводник — это первичная обмотка, состоящая из одного единственного витка, значение тока в котором необходимо узнать.

Ток во вторичной обмотке будет пропорционален току в проводнике и отличаться от него в число раз, равное коэффициенту трансформации, то есть во столько раз, сколько витков во вторичной обмотке. Количество витков во вторичной обмотке датчика обычно 1000, 500 или 100.

Если датчик имеет 1000 витков, то клещи имеют обозначение 1000:1 или 1мА/А — это значит что 1 мА в показаниях прибора тождественен 1А в исследуемом проводнике. Или 1А на приборе — 1000 А в проводнике.

Соотношение может быть в принципе и другим: 3000:5 или 2000:2, в зависимости от назначения прибора. Однако в большинстве случаев клещи работают в паре с обычным мультиметром и соотношение, как правило, 1000:1.

При соотношении 1000:1 или 1мА/А показания прибора будут такими. При входном токе в 700А выходные показания окажутся 700мА, при 300А — 300мА и т. д. Так происходит потому, что выход датчика присоединяется к цифровому мультиметру в режиме измерения переменного тока с выбранным диапазоном значений.

Для определения действующей величины тока в проводнике, показания мультиметра умножаются на коэффициент датчика. Главное — чтобы измерительный прибор имел требуемое входное сопротивление.

Если измерительный прибор имеет вход только по напряжению (вольтметр или осциллограф), то он также может использоваться с токовым датчиком — клещами. Для этого токовый выход датчика необходимо согласовать с входом прибора, применив принцип измерительного трансформатора тока. Тогда показания переменного напряжения будут пропорциональны измеряемому переменному току.

Клещи для измерения постоянного и переменного тока

Существуют токовые клещи, способные измерять не только переменный, но и постоянный ток. В таких клещах принцип их работы основан на эффекте Холла, когда параметры тока выводятся из параметров порождаемого им магнитного поля, воздействующего на полупроводник и инициирующего в нем эффект Холла.

Тонкая пластинка полупроводника устанавливается перпендикулярно магнитному полю тока, который требуется измерить. На пластинку в определенном направлении (допустим вдоль нее) подается ток возбуждения, который отклоняется во внешнем магнитном поле под действием силы Лоренца в поперечном направлении, и тогда в этом направлении на краях пластинки можно измерить ЭДС (напряжение Холла).

При постоянном токе возбуждения через пластинку, ЭДС Холла, как и индукция магнитного поля измеряемого тока, будут пропорциональны измеряемому току. То есть напряжение Холла соответствует току в проводнике, который проходит внутри магнитопровода датчика. Такая схема имеет большие преимущества перед устройствами на базе трансформатора тока.

Принцип работы датчика Холла

Поскольку генерация ЭДС Холла не зависит от направления вектора магнитной индукции, а зависит только от его величины, датчик на основе эффекта Холла измеряет как переменный, так и постоянный ток. К тому же датчик абсолютно точно фиксирует фазу изменения (направления) магнитного поля, а значит пригоден для наблюдения формы тока.

Клещи с датчиком Холла бывают с одним либо с двумя встроенными датчиками. Различные модели клещей обладают широким динамическим диапазоном и частотной характеристикой, линейностью сигнала и высокой точностью.

Область применения таких клещей охватывает всё оборудование с постоянным током до 1500 А без необходимости встраивания дорогих шунтов. Переменный ток частотой в десятки килогерц также измерим при помощи клещей на базе эффекта Холла, причем форма тока может быть самой разной, среднеквадратичное значение будет найдено.

Выходной сигнал в милливольтах, пропорциональный измеренному току, может быть легко воспринят большинством мультиметров, осциллографов и самописцев.

Источник