Меню

Сеть постоянного тока с источником постоянного напряжения

Чем отличаются и где используются постоянный и переменный ток

В современном мире каждый человек с детства сталкивается с электричеством. Первые упоминания об этом природном явлении относятся к временам философов Аристотеля и Фалеса, которые были заинтригованы удивительными и загадочными свойствами электрического тока. Но лишь в 17 веке великие ученые умы начали череду открытий, касающихся электрической энергии, продолжающихся по сей день.

Открытие электрического тока и создание Майклом Фарадеем в 1831 г. первого в мире генератора кардинально изменило жизнь человека. Мы привыкли, что нашу жизнь облегчают приборы, работающие с использованием электрической энергии, но до сих пор у большинства людей нет понимания этого важного явления. Для начала, чтобы понять основные принципы электричества, необходимо изучить два основных определения: электрический ток и напряжение.

Чем отличаются и где используются постоянный и переменный ток

Что такое электрический ток и напряжение

Электрический ток – это упорядоченное движение заряженных частиц (носителей электрического заряда). Носителями электрического тока являются электроны (в металлах и газах), катионы и анионы (в электролитах), дырки при электронно-дырочной проводимости. Данное явление проявляется созданием магнитного поля, изменением химического состава или нагреванием проводников. Основными характеристиками тока являются:

  • сила тока, определяемая по закону Ома и измеряемая в Амперах (А), в формулах обозначается буквой I;
  • мощность, согласно закону Джоуля-Ленца, измеряемая в ваттах (Вт), обозначается буквой P;
  • частота, измеряемая в герцах (Гц).

Электрический ток, как носитель энергии используют для получения механической энергии с помощью электродвигателей, для получения тепловой энергии в отопительных приборах, электросварке и нагревателях, возбуждения электромагнитных волн различной частоты, создания магнитного поля в электромагнитах и для получения световой энергии в осветительных приборах и различного рода лампах.

Напряжение – это работа, совершаемая электрическим полем для перемещения заряда в 1 кулон (Кл) из одной точки проводника в другую. Исходя из данного определения, все-таки сложно осознать, что же такое напряжение.

Чтобы заряженные частицы перемещались от одного полюса к другому, необходимо создать между этими полюсами разность потенциалов (именно она и именуется напряжением). Единицей измерения напряжения является вольт (В).

Чем отличаются и где используются постоянный и переменный ток

Для окончательного понимания определения электрического тока и напряжения, можно привести интересную аналогию: представьте, что электрический заряд — это вода, тогда давление воды в столбе – это и есть напряжение, а скорость потока воды в трубе – это сила электрического тока. Чем выше напряжение, тем больше сила электрического тока.

Что такое переменный ток

Если менять полярность потенциалов, то направление протекания электрического тока меняется. Именно такой ток и называется переменным. Количество изменений направления за определенный промежуток времени называется частотой и измеряется, как уже было сказано выше, в герцах (Гц). Например, в стандартной электрической сети в нашей стране частота равна 50 Гц, то есть направление движения тока за секунду меняется 50 раз.

Что такое постоянный ток

Когда упорядоченное движение заряженных частиц имеет всегда только одно направление, то такой ток именуется постоянным. Постоянный ток возникает в сети постоянного напряжения, когда полярность зарядов с одной и другой стороны постоянна во времени. Его очень часто используют в различных электронных устройствах и технике, когда не требуется передача энергии на большое расстояние.

Источники электрического тока

Источником электрического тока обычно называется прибор или устройство, с помощью которого в цепи можно создать электрический ток. Такие устройства могут создавать как переменный ток, так и постоянный. По способу создания электрического тока они подразделяются на механические, световые, тепловые и химические.

Механические источники электрического тока преобразуют механическую энергию в электрическую. Таким оборудованием являются различного рода генераторы, которые за счет вращения электромагнита вокруг катушки асинхронных двигателей вырабатывают переменный электрический ток.

Световые источники преобразуют энергию фотонов (энергию света) в электрическую энергию. В них используется свойство полупроводников при воздействии на них светового потока выдавать напряжение. К такому оборудованию можно отнести солнечные батареи.

Тепловые – преобразуют энергию тепла в электричество за счет разности температур двух пар контактирующих полупроводников – термопар. Величина тока в таких устройствах напрямую связана с разностью температур: чем больше разница – тем больше сила тока. Такие источники применяются, например, в геотермальных электростанциях.

Химический источник тока производит электричество в результате химических реакций. Например, к таким устройствам можно отнести различного рода гальванические батареи и аккумуляторы. Источники тока на основе гальванических элементов обычно применяются в автономных устройствах, автомобилях, технике и являются источниками постоянного тока.

Преобразование переменного тока в постоянный

Электрические устройства в мире используют постоянный и переменный ток. Поэтому возникает потребность в том, чтобы преобразовывать один ток в другой или наоборот.

Чем отличаются и где используются постоянный и переменный ток

Из переменного тока можно получить постоянный ток с помощью диодного моста или, как его еще называют, «выпрямителя». Основной частью выпрямителя является полупроводниковый диод, который проводит электрический ток только в одном направлении. После этого диода ток не изменяет своего направления, но появляются пульсации, которые устраняют при помощи конденсаторов и других фильтров. Выпрямители бывают в механическом, электровакуумном или полупроводниковом исполнении.

В зависимости от качества изготовления такого устройства, пульсации тока на выходе будут иметь разное значение, как правило, чем дороже и качественнее сделан прибор – тем меньше пульсаций и чище ток. Примером таких устройств являются блоки питания различных приборов и зарядные устройства, выпрямители электросиловых установок в различных видах транспорта, сварочные аппараты постоянного тока и другие.

Для того, чтобы преобразовать постоянный ток в переменный используются инверторы. Такие приборы генерируют переменное напряжение с синусоидой. Существует несколько видов таких аппаратов: инверторы с электродвигателями, релейные и электронные. Все они отличаются друг от друга по качеству выдаваемого переменного тока, стоимости и размерам. В качестве примера такого устройства можно привести блоки бесперебойного питания, инверторы в автомобилях или, например, в солнечных электростанциях.

Где используется и в чём преимущества переменного и постоянного тока

Для выполнения различных задач может потребоваться использование как переменного тока, так и постоянного. У каждого вида тока есть свои недостатки и достоинства.

Переменный ток чаще всего используется тогда, когда присутствует необходимость передачи тока на большие расстояния. Такой ток передавать целесообразнее с точки зрения возможных потерь и стоимости оборудования. Именно поэтому в большинстве электроприборов и механизмов используется только этот вид тока.

Жилые дома и предприятия, инфраструктурные и транспортные объекты находятся на расстоянии от электростанций, поэтому все электрические сети — переменного тока. Такие сети питают все бытовые приборы, аппаратуру на производствах, локомотивы поездов. Приборов, работающих на переменном токе невероятное количество и намного проще описать те устройства, в которых используется постоянный ток.

Постоянный ток используется в автономных системах, таких, например, как бортовые системы автомобилей, летательных аппаратов, морских судов или электропоездов. Он широко используется в питании микросхем различной электроники, в средствах связи и прочей технике, где требуется минимизировать количество помех и пульсаций или исключить их полностью. В ряде случае, такой ток используется в электросварочных работах с помощью инверторов. Существуют даже железнодорожные локомотивы, которые работают от систем постоянного тока. В медицине такой ток используется для введения лекарств в организм с помощью электрофореза, а в научных целях для разделения различных веществ (электрофорез белков и прочее).

Обозначения на электроприборах и схемах

Часто возникает потребность в том, чтобы определить на каком токе работает устройство. Ведь подключение устройства, работающего на постоянном токе в электрическую сеть переменного тока, неминуемо приведет к неприятным последствиям: повреждению прибора, возгоранию, электрическому удару. Для этого в мире существуют общепринятые условные обозначения для таких систем и даже цветовая маркировка проводов.

Чем отличаются и где используются постоянный и переменный ток

Условно, на электроприборах, работающих на постоянном токе указывается одна черта, две сплошных черты или сплошная черта вместе с пунктирной, расположенные друг под другом. Также такой ток маркируется обозначением латинскими буквами DC. Электрическая изоляция проводов в системах постоянного тока для положительного провода окрашена в красный цвет, отрицательного в синий или черный цвет.

На электрических аппаратах и машинах переменный ток обозначается английской аббревиатурой AC или волнистой линией. На схемах и в описании устройств его также обозначают двумя линиями: сплошной и волнистой, расположенных друг под другом. Проводники в большинстве случаев обозначаются следующим образом: фаза – коричневым или черным цветом, ноль – синим, а заземление желто-зеленым.

Почему переменный ток используется чаще

Выше мы уже говорили о том, почему переменный ток в настоящее время используется чаще, чем постоянный. И все же, давайте рассмотрим этот вопрос подробнее.

Споры о том, какой же ток в использовании лучше идет со времен открытий в области электричества. Существует даже такое понятие, как «война токов» — противоборство Томаса Эдисона и Николы Теслы за использование одного из видов тока. Борьба между последователями этих великих ученых просуществовала вплоть до 2007 года, когда город Нью-Йорк перевели на переменный ток с постоянного.

Читайте также:  Напряжение лампы равно 50 в сопротивление 5 ом чему равна сила тока в лампе

Чем отличаются и где используются постоянный и переменный ток

Самая главная причина, по которой переменный ток используется чаще – это возможность передавать его на большие расстояния с минимальными потерями . Чем больше расстояние между источником тока и конечным потребителем, тем больше сопротивление проводов и тепловые потери на их нагрев.

Для того, чтобы получить максимальную мощность необходимо увеличивать либо толщину проводов (и уменьшать тем самым сопротивление), либо увеличивать напряжение.

В системах переменного тока можно увеличивать напряжение при минимальной толщине проводов тем самым сокращая стоимость электрических линий. Для систем с постоянным током доступных и эффективных способов увеличивать напряжение не существует и поэтому для таких сетей необходимо либо увеличивать толщину проводников, либо строить большое количество мелких электростанций. Оба этих способа являются дорогостоящими и существенно увеличивают стоимость электроэнергии в сравнении с сетями переменного тока.

При помощи электротрансформаторов напряжение переменного тока эффективно (с КПД до 99%) можно изменять в любую сторону от минимальных до максимальных значений, что тоже является одним из важных преимуществ сетей переменного тока. Применение трехфазной системы переменного тока еще больше увеличивает эффективность, а механизмы, например, двигатели, которые работают в электросетях переменного тока намного меньше, дешевле и проще в обслуживании, чем двигатели постоянного тока.

Исходя из всего вышесказанного можно сделать вывод о том, что использование переменного тока выгодно в больших сетях и при передаче электрической энергии на большие расстояния, а для точной и эффективной работы электронных приборов и для автономных устройств целесообразно использовать постоянный ток.

Чем отличаются и где используются постоянный и переменный ток

Как устроен генератор переменного тока — назначение и принцип действия

Что такое активная и реактивная мощность переменного электрического тока?

Чем отличаются и где используются постоянный и переменный ток

Что такое частотный преобразователь, основные виды и какой принцип работы

Чем отличаются и где используются постоянный и переменный ток

Что такое конденсатор, виды конденсаторов и их применение

Чем отличаются и где используются постоянный и переменный ток

Как условно обозначаются элементы на электрических схемах?

Чем отличаются и где используются постоянный и переменный ток

Что такое варистор, основные технические параметры, для чего используется

Источник

Источники постоянного тока

Постоянный ток — это такой ток, который почти (поскольку ничего идеального в мире нет) не изменяется во времени, ни по величине, ни по направлению. Исторически первые источники постоянного тока были исключительно химическими. Сначала они были представлены только гальваническими элементами, а позже появились и аккумуляторы.

Гальванические элементы и аккумуляторы имеют строго определенную полярность, и направление тока в них самопроизвольно не изменяется, поэтому химические источники тока — это принципиально источники постоянного тока.

Источники постоянного тока

Гальванический элемент

Пальчиковая батарейка АА — яркий пример современного гальванического элемента. Цилиндрическая щелочная батарейка ( которую любят называть алкалиновой, тогда как слово «alkaline» переводится как «щелочная») содержит внутри раствор гидроксида калия в качестве электролита. На положительном полюсе батарейки находится диоксид марганца, а на отрицательном — цинк в виде порошка.

Гальванические элементы

Когда внешняя цепь батарейки замыкается на нагрузку, на аноде (отрицательном полюсе) происходит химическая реакция окисления цинка, одновременно с этим на катоде (положительном полюсе) идет реакция восстановления оксида марганца четырехвалентного до оксида марганца трехвалентного.

В результате с отрицательного полюса электроны бегут в сторону положительного полюса через внешнюю цепь нагрузки. Так работает источник постоянного тока — гальванический элемент.

Химический процесс в гальваническом элементе не обратим, то есть пытаться заряжать его бесполезно. Напряжение между полюсами новой пальчиковой батарейки 1,5 вольта, что обусловлено потенциалами веществ, участвующих в химической реакции внутри нее.

Батарейка и лампочка

Аккумулятор

Литий-ионный аккумулятор, в отличие от батарейки, можно после разрядки снова заряжать, поскольку химический процесс в нем обратим. С виду аккумулятор работает как батарейка, то есть тоже дает в цепь нагрузки принципиально только постоянный ток, но емкость у аккумулятора обычно больше чем у батарейки примерно такого же размера.

Аккумуляторы

В ходе разрядки литиевого аккумулятора, химическая реакция на аноде (отрицательном электроде) состоит в отделении лития от углерода и его переходе в состав соли на катоде (положительном электроде). А при зарядке ионы лития вновь переходят к углероду на аноде.

Разность потенциалов между полюсами литий-ионного аккумулятора может доходить до 4,2 вольт. Максимальный ток зависит от площади взаимодействия электродов внутри аккумулятора с электролитом и соответственно друг с другом.

Генератор

В промышленных масштабах постоянный ток получают при помощи генераторов постоянного тока. Как правило, на статоре такой машины расположены неподвижные магниты либо электромагниты, наводящие во вращающихся контурах ЭДС по закону электромагнитной индукции.

Генераторы на электростанции

Вращающиеся контуры соединены каждый с контактными пластинами щеточно-коллекторного узла, через которые посредством неподвижных щеток и снимается в цепь нагрузки генерируемый ток. Поскольку контуры контактируют с положительной и отрицательной щетками только при прохождении мимо определенных магнитных полюсов статора, ток во внешней цепи получается выпрямленным переменным, то есть пульсирующим постоянным.

Величина тока зависит от сечения проводов, индукции магнитного поля статора и площади статора. Величина напряжения — от скорости вращения ротора генератора и от индукции магнитного поля статора.

Солнечный элемент

Солнечные батареи также дают постоянный ток. Фотоны солнечного света попадая на фотоэлемент вызывают движение положительно заряженных дырок и отрицательно заряженных электронов через p-n-переход, и во внешней цепи получается таким образом постоянный ток.

Солнечные элементы

Чем больше совокупная площадь фотоэлементов — тем больше электронов и дырок участвуют в образовании тока, тем больший ток можно получить от солнечной батареи. Генерируемое напряжение солнечной батареи зависит от интенсивности солнечного света и от количества соединенных последовательно фотоэлементов, входящих в конструкцию солнечной батареи.

Трансформатор с выпрямителем

Раньше в электронной аппаратуре для получения постоянного тока, при питании от бытовой сети переменного тока, сплошь и рядом использовались блоки питания с трансформаторами на железе. Переменное сетевое напряжение понижалось при помощи трансформатора, а затем выпрямлялось при помощи лампового или диодного выпрямителя.

Трансформатор с выпрямителем

После выпрямителя в такой схеме всегда стоит фильтр, состоящий как минимум из конденсатора, а в лучшем случае — из конденсатора и дросселя, да еще и транзисторного стабилизатора напряжения, особенно если источник тока должен быть регулируемым.

Напряжение на выходе такого блока питания зависит от количества витков вторичной обмотки трансформатора, а максимальная величина тока — от номинальной мощности трансформатора.

Источник питания для светодиодной ленты

Импульсный блок питания

Сегодня в радиоэлектронной аппаратуре для получения постоянного тока почти не используют блоки питания с низкочастотными трансформаторами на железе, на замену им пришли импульсные блоки питания. В них выпрямленное сетевое напряжение сначала понижается при помощи высокочастотного трансформатора и транзисторных ключей, а затем выпрямляется. Ток направляется через фильтр в конденсатор фильтра.

Импульсный блок питания

Конструкция импульсного блока питания получается гораздо меньше размером, чем с трансформатором на железе. Но шумов в выходном токе больше. Поэтому особое внимание при конструировании импульсных блоков питания уделяют фильтрации тока на выходе к нагрузке.

Напряжение на выходе импульсного блока питания зависит от устройства электронной схемы, а максимальный ток — от размера высокочастотного трансформатора и качества находящихся на схеме радиоэлектронных компонентов.

Конденсатор и ионистор

Источником постоянного электрического тока можно назвать в определенном смысле электрический конденсатор. Конденсатор накапливает электрическую энергию в форме постоянного электрического поля между своими обкладками, а затем может отдавать эту энергию в форме постоянного тока или импульсного разряда. И то и другое по сути — постоянный ток, отличающийся лишь длительностью проявления.

Ионисторы

Но электролитические конденсаторы сегодня выпускаются на огромные емкости в тысячи и более микрофарад. Особая разновидность конденсатора — ионистор (суперконденсатор) — он занимает промежуточное место между аккумулятором и конденсатором.

Химические процессы в ионисторе протекают практически с такой же скоростью как в конденсаторе, но в отличие от аккумулятора, ионистор обладает меньшим внутренним сопротивлением, что позволяет получать от ионисторов большие постоянные токи на протяжении более длительного времени. Чем больше емкость конденсатора — тем больший по величине и более продолжительный ток можно получить с его помощью.

Источник

Практикум. Подбор защитного оборудования для сетей постоянного тока

Постоянный ток (DC — от англ DirectCurrent) — один из главных способов передачи и распределения электрической энергии. Сегодня он широко используется в следующих областях:

  • преобразование различных видов энергии в электрическую (например, фотогальванические станции);
  • транспорт (трамвайные линии, железные дороги и пр.);
  • питание систем аварийного предупреждения, а также систем собственных нужд;
  • промышленные установки (электролитические процессы и т.п.).

Сети постоянного тока довольно специфичны, поэтому для того, чтобы грамотно выбрать коммутационное оборудование, необходимо следовать определённой последовательности действий.

ШАГ 1. Определение топологии сети

Отключение постоянного тока связано с существенными трудностями при гашении дуги. Проблема обусловлена тем, что в системах постоянного тока отсутствует естественный переход кривой зависимости I(t) через ноль и необходимо принудительно снижать значение тока. Характер уменьшения указанной величины до нуля зависит от напряжения источника питания, параметров электроустановки и сопротивления, возникающего во время гашения дуги. Чем больше соединённых последовательно полюсов, тем выше сопротивление дуги, и больше максимальный коммутируемый ток короткого замыкания (КЗ). Для улучшения работы автоматических выключателей в условиях КЗ в зависимости от напряжения электроустановки и топологии сети необходимо использовать специальные комбинации соединения полюсов. Эта информация позволяет оценить возможные неисправности, после чего выбрать подходящий тип соединения полюсов выключателя с учётом характеристик электроустановки (ток КЗ, напряжение питания, номинальная величина нагрузки и т.д.).

Читайте также:  Автомат с номинальным током 500

Рассмотрим три основные системы распределения на постоянном токе.

1. Сеть, изолированная от земли (IT)


Рис. 1. Система IT постоянного тока

Описание. Все токоведущие части источника питания изолированы, открытые проводящие части заземлены.

Топологии повреждения Самая Опасная для IT неисправность — короткое замыкание между положительным и отрицательным полюсами.

Соединение полюсов оборудования. Зависит от напряжения источника питания и требуемой отключающей способности.

NB!

Возможность двойного замыкания на землю (первое — замыкание одного из полюсов со стороны источника питания, второе — замыкание другого полюса со стороны нагрузки) не рассматривается. Однако следует использовать устройство контроля изоляции сети относительно земли.

2. Сеть с одной заземлённой полярностью


Рис. 2. Система ТТ (слева) и TN-C-S (справа) постоянного тока
для сети с одной заземлённой полярностью

Описание. Один из полюсов сети соединён с землёй. Такой тип системы может привести к перенапряжениям вследствие статического электричества, стекающего через землю.

Топология повреждений. В данном случае основное повреждение — это короткое замыкание между двумя полярностями. Но необходимо брать в рассмотрение также замыкание между незаземлённой полярностью и землёй, поскольку ток может течь под полным напряжением.

Соединение полюсов оборудования. Зависит от напряжения источника питания и требуемой отключающей способности. Заземление должно быть осуществлено со стороны питания автоматического выключателя.

3. Сеть с заземлённой средней точкой источника питания


Рис. 4. Система ТТ (слева) и TN-C-S (справа) постоянного тока
для сети с заземлённой средней точкой

Описание. Средняя точка источника питания соединена с землёй. Основной недостаток данного соединения в сравнении с другими типами заключается в том, что замыкание между любой из полярностей и землёй вызывает ток с приложенным напряжением, равным половине напряжения питания.

Топология повреждений Основное повреждение, как и в предыдущем случае — короткое замыкание между двумя полярностями НО необходимо брать в рассмотрение также замыкание между полярностью И землёй, поскольку ток может течь под напряжением, равным U / 2.

Соединение полюсов оборудования. Необходимо устанавливать автоматические выключатели таким образом, чтобы на каждую полярность приходилось по два полюса автоматического выключателя. При возникновении короткого замыкания между двумя полюсами сети напряжение цепи равно номинальному, и такой сверхток отключается четырьмя последовательно соединёнными полюсами автоматического выключателя.

ШАГ 2. Электрические параметры

Для верного выбора защитного устройства в сети постоянного тока необходимо знать несколько электрических параметров, характерных для этого аппарата:

  1. Номинальное напряжение установки Un. Оно определяет рабочую величину Ue, которая зависит от соединения полюсов и проверяется соотношением Un ≤ Ue.
  2. Ток короткого замыкания в месте установки автоматического выключателя Ik. Он определяет исполнение автоматического выключателя (зависит от типоразмера и соединения полюсов) и проверяется выражением

  • Номинальный ток, потребляемый нагрузкой Ib. От данной величины зависит номинальный ток В термомагнитного или электронного расцепителя. Должно выполняться следующее соотношение: Ib≤In.
  • Словарь инженера
    Номинальное рабочее напряжение Ue – задаётся из стандартизированного ряда величин, определяющих уровень изоляции сети и электрооборудования.
    Номинальный непрерывный ток Iu – величина, которую оборудование может выдерживать в течение долгого времени работы.
    Номинальный ток автоматического выключателя In – определяет защитные характеристики аппарата в соответствии с возможными настройками расцепителя.
    Предельная отключающая способность автоматического выключателя Icu –максимальный ток КЗ, который аппарат способен отключить однократно при соответствующем номинальном рабочем напряжении, без гарантии сохранения работоспособности.
    Номинальная рабочая отключающая способность Ics – максимальный ток КЗ, который аппарат способен отключить три раза 1 при определённом рабочем напряжении (Ue) и определённой постоянной времени. После этого автоматический выключатель должен проводить номинальный ток.
    Номинальный кратковременно выдерживаемый ток КЗ – величина, которую автоматический выключатель способен проводить в замкнутом положении в течение определённого промежутка времени. Аппарат должен выдерживать данный ток в течение установленной временной задержки для обеспечения селективности между последовательно стоящими автоматическими выключателями.

    ШАГ 3. Обеспечение селективности

    Работа аппаратов защиты в цепях постоянного тока координируется путём постепенного повышения порогов токов и задержки срабатывания по мере приближения к источнику питания, то есть обеспечивается так называемая временная селективность. Нужно убедиться, что вышестоящие автоматические выключатели с задержкой срабатывания имеют значение кратковременно выдерживаемого тока, превышающее максимальную величину КЗ, которая может протекать в рассматриваемой части установки.

    «Временная селективность обычно реализуется в электроустановках на уровне вводных устройств и главных распределительных щитов (ГРЩ). Для реализации селективности на нижних уровнях электроустановок следует выбрать другой тип координации устройств защиты. Так, например, для аппаратов в литом корпусе серии Tmax XT и Tmax на постоянном токе можно реализовать энергетическую селективность, а для воздушных автоматических выключателей Emax DC осуществляется также и зонная селективность», — дополняет Игорь Мещеряков , менеджер по группе изделий компании АББ, лидера в производстве силового оборудования и технологий для электроэнергетики и автоматизации.

    Для обеспечения селективного срабатывания автоматических выключателей на постоянном токе необходимо:

    • построить времятоковые характеристики автоматических выключателей с термомагнитными и электронными расцепителями с учётом допусков и поправочных коэффициентов;
    • проанализировать построенные характеристики с точки зрения обеспечения функций защиты и селективного срабатывания;
    • составить карту уставок с учётом необходимых настроек расцепителей.

    В случае необходимости обеспечения высоких предельных токов селективности, подобрать выключатели в соответствие с указаниями таблиц координации.

    «Возможностей создать энергетическую систему с учётом требований по селективности на сегодняшний день более чем достаточно, — утверждает Игорь Мещеряков (АББ). — Современные электронные расцепители для постоянного тока, например, такие как PR122/DC — PR123/DC, обладают несколькими селективными задержками от короткого замыкания с обратнозависимой или фиксированной кратковременной задержкой срабатывания. Наличие широкого спектра встроенных защит (от замыкания на землю, превышения температуры, небаланса токов, колебаний напряжения, реверсирования мощности и др.) Позволяет осуществить функции, которые раньше были доступны только для электроустановок переменного тока».

    От теории к практике

    Пример 1. Рассмотрим выбор автоматического выключателя для сетей постоянного тока на примере автоматических выключателей в литом корпусе серии Tmax.

    Параметры установки:
    Тип сети: с одной заземлённой полярностью (только отрицательная)
    Напряжение установки: Un = 250 В постоянного Тока
    Номинальный ТОК, потребляемый нагрузкой: В = 450
    Ток короткого замыкания: 40 кА

    Для выбранного автоматического выключателя должны выполняться следующие условия:
    Ue ≥ Un
    Icu ≥ Ik
    In ≥ Ib

    Как правило, у производителей существуют таблицы для подбора аппаратов постоянного тока, ниже в примерах приведены необходимые выдержки из них.
    В соответствии с типом сети необходимо выбрать таблицу, относящуюся к сети с одной заземлённой полярностью (см. табл. 1).

    Табл. 1. Варианты соединения полюсов автоматических выключателей в литом корпусе Tmax для работы в сети с одной заземлённой полярностью (в рассматриваемых соединениях заземлена отрицательная полярность)

    * Заземление должно быть осуществлено со стороны питания автоматического выключателя

    Выбираем столбец с напряжением сети больше или равным напряжению электроустановки. Нужная строка подбирается по номинальному непрерывному току МЕ автоматического выключателя, который должен быть больше или равен току нагрузки. В соответствии с заданными в примере условиями следует выбирать автоматический выключатель Tmax Т5 c Iu=630A.

    Исполнение по отключающей способности (НШ и т.д.) определяется с учётом выполнения условия Icu>Ik. В данном случае можно выбрать исполнение S, так как Ik = 40 кА.

    Указанным требованиям удовлетворяют две схемы соединения полюсов, если должен отключаться заземлённый полюс сети, то следует выбрать следующий вариант:

    Среди номинальных токов, доступных для термомагнитного расцепителя выключателя T5S630, может быть выбран In = 500 A, поэтому допустимо применять трёхполюсный термомагнитный автоматический выключатель T5S630 TMA500. Аппарат использует два полюса, соединённых последовательно на изолированной полярности, и один — на заземлённой. При этом при выборе автоматического выключателя с термомагнитным расцепителем необходимо учитывать поправочный коэффициент срабатывания по КЗ. 2

    Пример 2. Рассмотрим выбор воздушного автоматического выключателя на примере серии Emax.

    Параметры установки:
    Тип сети: изолированная
    Напряжение установки: Un = 500 В постоянного Тока
    Номинальный ток, потребляемый нагрузкой: In = 1800 А
    ток короткого замыкания: 45кA

    Выбор автоматического выключателя

    В соответствии с типом сети необходимо выбрать таблицу, относящуюся к сети, изолированной от земли (см. табл. 2).

    Табл. 2. Соединение полюсов воздушных выключателей Emax для работы в изолированной сети

    Исходя из заданной величины номинального напряжения выбираем столбец Un ≤ 500 В. В нём наиболее подходящим по характеристикам тока короткого замыкания является автоматический выключатель E2N (N = 50 кА> IK), но если выбрать этот аппарат, не будет выполняться условие In ≥ Ib.

    Согласно таблице 3, относящейся к номинальному непрерывному току, необходимо выбрать автомат типа E3N, т.к. он имеет ток Iu = 2000 A (это значение соответствует In расцепителя) и только в этом случае выполняется соотношение In ≥ Ib.

    Табл. 3. Исполнения автоматических выключателей Emax для постоянного тока

    Выбран трёхполюсный автоматический выключатель E3N 2000 с расцепителем PR122-123/DC In = 2000A. В таблице 2 показано соединение между трёхполюсным выключателем, нагрузкой и источником питания:

    Читайте также:  Как проверить коэффициент трансформации трансформатора тока 3 фазы


    Стоит отметить, что правильный выбор аппаратов защиты для сетей постоянного тока возможен только в случае строгого соблюдения описанных выше рекомендаций. Важно помнить, что некорректно подобранный автоматический выключатель не только не выполнит свои прямые защитные функции, но и в случае неправильно рассчитанной отключающей способности может выйти из строя и оставить электроустановку полностью незащищённой.

    1 В соответствии с циклом отключений и включений (О-трет-СО-трет-CO).

    2 см. Техническая брошюра «Низковольтные автоматические выключатели АББ для применений на постоянном токе» стр. 33-34.

    Источник

    

    Источники постоянного тока: виды, характеристики, сферы применения

    Постоянный ток существует только в замкнутой цепи и сохраняет свое направление и основные параметры неизменными во времени. Для его поддержания необходимо наличие постоянного напряжения. Это требование является неизменным для различных источников постоянного тока.

    Источники постоянного электрического тока

    Существует несколько основных видов источников энергии постоянного тока. Каждый из них основан на использовании разных физических принципов и используется в определенных условиях. К ним можно отнести следующие виды:

    • механические, превращающие механическую энергию вращения ротора в электрическую энергию;
    • тепловые, в которых в электрическую энергию преобразуется тепловая энергия;
    • химические, в которых в электрическую энергию преобразуется энергия, выделяющаяся в результате химического процесса;
    • световые, превращающие энергию солнечного света в электрическую энергию.

    В основном электроэнергия вырабатывается электростанциями, от которых потребители получают не постоянный, а переменный ток, который затем преобразуется в постоянный. Но во многих сферах можно применять только тепловые, световые или химические источники постоянного электрического тока.

    Тепловые источники

    В этих источниках используется термоэлектрический эффект. Электрический ток в замкнутой цепи возникает благодаря разнице температур, контактирующих между собой, металлов или полупроводниковых структур. В месте контакта при нагреве возникает электродвижущая сила (термо-ЭДС). Электрический ток заряженных частиц направлен от нагретого участка в сторону холодного. Его величина пропорциональна разнице температур. В месте спая образуется термопара.

    Приборы, которые для создания постоянного тока используют тепло, выделяющееся при распаде радиоактивных изотопных материалов, являются радиоизотопными термоэлектрическими генераторами.

    Световые источники

    Свойство полупроводников создавать ЭДС при попадании на них потока света используется при создании световых источников постоянного тока.

    Солнечная батарея

    Объединение большого количества кремниевых структур позволяет создавать солнечные батареи. Небольшие электростанции, созданные на базе таких солнечных панелей, имеют на сегодняшний день КПД не более 15%.

    Химические источники

    Получение положительных и отрицательно заряженных частиц в химических источниках постоянного тока осуществляется за счет химических реакций. По классификации химических источников они делятся на 3 группы:

    • гальванические элементы, являющиеся первичными источниками ;
    • электрические аккумуляторные батареи (АКБ), или вторичные ХИТ;

    *ХИТ — химические источники тока.

    Гальванические элементы используют принцип действия, основанный на взаимодействии двух металлов через среду электролита. Вид и характеристики ХИТ зависят от выбранной пары металлов и состава электролита. Два металлических электрода источника тока по аналогии с прибором односторонней проводимости получили название анода («+») и катода («-«).

    Материалом для изготовления анода могут служить свинец, цинк, кадмий и другие. Катод изготавливают из оксида свинца, графита, оксида марганца, гидрооксида никеля. По составу электролита гальванические элементы разделяются на 3 вида:

    • солевые или «сухие»;
    • щелочные;
    • литиевые.

    В элементах первых двух видов графито-марганцевый стержень (катод) помещен по оси цинкового цилиндрического стаканчика (анода). Свободное пространство между ними заполнено пастой на основе хлорида аммония (солевые) или гидрооксида калия (щелочные).

    Батарейка одноразовая

    В литиевых элементах цинковый анод заменен щелочным литием, что привело к значительному увеличению продолжительности работы. Материал катода в них определяет выходное напряжение батарейки (1,5-3,7) В. Первичные ХИТ являются источниками одноразового действия. Его реагенты, расходующиеся в процессе работы, не подлежат восстановлению.

    Аккумуляторы представляют собой устройства, в которых производится преобразование электрической энергии внешнего источника тока в химическую энергию при заряде и ее накопление. В процессе работы (разряд) происходит обратное преобразование — химическая энергия служит источником постоянного электрического тока.

    К основным видам аккумуляторов относятся:

    • свинцово-кислотные;
    • никель-кадмиевые щелочные;
    • литий-ионные.

    Для создания химических процессов набор пластин помещен в раствор электролита. В АКБ, созданных по современным технологиям, раствор представляет собой не жидкость, а гелиевый состав (GEL) или сотовые сепараторы, пропитанные электролитом и помещенные между свинцовыми пластинами (AGM).

    Аккумулятор автомобильный

    Свинцово-кислотные и никель-кадмиевые щелочные аккумуляторы для работы в качестве источников постоянного тока для запуска двигателей автомобилей собирают из набора отдельных аккумуляторных элементов («банок»). Каждая «банка» обеспечивает на своих клеммах напряжение 2,1 В. Соединенные последовательно 6 элементов и помещенные в ударопрочный корпус, имеют на выходных клеммах аккумулятора необходимые для запуска двигателя 12 В.

    В литий-ионных аккумуляторах носителями электрического тока служат ионы лития. Они образуются на катоде, изготовленному из соли лития. Анод может быть изготовлен из графита или оксидов кобальта. Напряжение постоянного тока на выходе аккумулятора может варьироваться в пределах (3,0-4,2) В в зависимости от используемых материалов. Эти аккумуляторы имеют низкое значение тока саморазряда и допускают большое количество циклов заряд/разряд. Благодаря этому все современные гаджеты используют аккумуляторы этого вида.

    Механические источники постоянного тока

    Устройствами, преобразующими механическую энергию в электрическую, являются турбо и гидро генераторы. Они вырабатывают переменный электрический ток. Для основной части бытовых приборов источником постоянного тока выступают их блоки питания. В них производится преобразование переменного напряжения генератора в постоянное напряжение, необходимое для работы устройств. Эту задачу выполняют выпрямители, которые должны обеспечивать необходимую мощность источника постоянного тока для их нагрузки и постоянное значение выходного напряжения, не зависящее от потребляемого тока.

    Блоки питания могут быть линейными и импульсными. Линейные блоки выполняются по разным схемам, основу которых составляют:

    • однополупериодые выпрямители;
    • двухполупериодные выпрямители.

    В выпрямителях используется свойство полупроводниковых диодов пропускать ток только в одном направлении. Выпрямленное таким образом напряжение еще не является постоянным. Емкости последующих за выпрямителем конденсаторов сглаживающего фильтра при своем быстром заряде и медленном разряде поддерживают величину положительного однополярного напряжения на определенном значении. Его величина определяется трансформатором, получающим напряжение от генератора переменного тока. Для однофазного напряжения домашней сети 220 В 50 Гц его стальной сердечник имеет значительные размеры и вес.

    Схемы однополупериодных содержат всего один полупроводниковый диод, пропускающий только одну полуволну синусоидального переменного входного напряжения.

    Выпрямитель одного периода

    Двухполупериодные выпрямители выполняются по мостовой схеме или по схеме с общей точкой. В последнем случае вторичная обмотка сетевого трансформатора имеет вывод от своей середины. Эти выпрямители представляют собой параллельное включение двух однополупериодных выпрямителей. Они действуют на обе полуволны синусоиды переменного входного напряжения.

    Выпрямитель со средней точкой

    Мостовая схема выпрямителя является наиболее распространенной. Соединение 4-х диодов в ней напоминает «квадрат». К одной из диагоналей подключается переменное напряжение вторичной обмотки сетевого трансформатора. Нагрузка включается в другую диагональ «квадрата». Им будет входной элемент сглаживающего фильтра.

    Мостовая схема выпрямления

    Регулирование источника

    Для обеспечения постоянного значения уровня выходного напряжения, не зависящего от потребляемого нагрузкой тока и колебаний входного переменного напряжения, все современные источники питания постоянного тока имеют ступень стабилизации и регулирования.

    Схемы стабилизаторов

    В ней выходное напряжение сравнивается с эталонным (опорным) значением.

    При появлении различия между ними вырабатывается управляющий сигнал, который по цепи управления изменяет величину выходного напряжения. Величину значения опорного напряжения можно изменять в широких пределах, имея на выходе регулированного источника питания постоянного тока необходимое для работы напряжение.

    Импульсные источники

    Схемы с использованием входных трансформаторов напряжения сети получили название линейных. В импульсных источниках питания производится двойное преобразование — сначала переменное напряжение выпрямителем преобразуется в постоянное, затем вырабатывается переменное импульсное напряжение более высокой частоты, которое в выходном каскаде снова преобразуется в постоянное напряжение необходимого значения.

    Генераторы импульсов вырабатывают непрерывную импульсную последовательность с частотой (15-60) кГц. Регулирование выходного напряжения осуществляется посредством широтно-импульсной модуляции (ШИМ), при которой уровень сигнала на выходе блока питания определяется шириной импульсов, вырабатываемых генератором и значением их скважности. Регулированные источники питания постоянного тока импульсного типа все чаще используются при создании аппаратуры различного назначения.

    Сравнение источников

    Отсутствие мощного входного трансформатора в импульсных источниках питания позволяет создавать конструкции значительно более легкие и с меньшими линейными размерами. Их эффективность значительно выше источников, выполненных по линейным схемам. Коэффициент полезного действия доходит до значения 98%. В них широкое распространение получили микросхемы, выполняющие функции контроллеров.

    Каждый из типов стабилизированных источников постоянного тока находит применение в своей сфере. А она весьма многообразна. Основой являются характеристики источников постоянного тока. Линейные источники обеспечивают низкий уровень пульсаций выходного напряжения и малое значение уровня собственного шума. Это достигается отсутствием переключений при их работе, которые создают большой уровень помех в широком частотном диапазоне. В импульсных источниках приходится применять сложные схемные решения для борьбы с ними, что приводит к удорожанию изделий, в которых они применяются.

    Заключение

    В статье был дан общий обзор существующих источников постоянного тока. Изложенный материал лишь знакомит читателей с основными принципами их работы. Из него можно сделать вывод, что каждый из видов источников постоянного тока используется в своей области.

    Источник

    Сеть постоянного тока с источником постоянного напряжения

    Что такое постоянный ток

    Постоянный ток, в отличие от переменного тока не изменяется со временем ни по силе, ни по направлению движения. Он возникает в результате воздействия постоянного напряжения и существует исключительно в замкнутой цепи. Во всех участках не разветвленной цепи имеет одинаковую силу. Самый простой его источник – гальванический элемент. Полярность такого химического источника не может самопроизвольно изменяться. К простым источникам относятся также и аккумуляторы.

    Применение постоянного тока

    Широкое распространение постоянный ток получил в различных областях техники. Практически, все электронные схемы, используют в- своей работе для питания постоянный электрический ток. Переменный, при его практическом использовании, используется, в основном, на этапе передачи от генератора до потребителя. В электронном оборудовании, работающем от сети переменного тока, для его преобразования в постоянный применяют выпрямитель.

    С целью уменьшения колебаний напряжения используют сглаживающие фильтры (например, для питания компьютерной техники). С этой же целью используют для защиты аппаратуры стабилизаторы напряжения или стабилизаторы тока. В- некоторых случаях, наоборот, он преобразуют в переменный специальными преобразователями – инверторами.

    Таким образом, мы видим, что своевременная стабилизация напряжения напрямую влияет на качество работы и надежность электронной аппаратуры, особенно цифровой. Вся электронная аппаратура, использующая питание сети 220В, имеет внутренние блоки питания. Эти блоки служат для преобразования тока, получаемого из сети, в постоянный питания внутренних схем. Одновременно происходит понижение напряжения, так как во внутренних схемах используется напряжение 3 – 12В постоянного.

    Что такое постоянный ток

    Устройства, работающие от обычных батареек или аккумуляторов, могут быть без блока питания и, при необходимости, работают от внешних выпрямителей

    Сети постоянного тока

    В современных энергетических системах наряду с сетями переменного тока имеются и сети постоянного. Эти сети действуют в следующих областях:

    • Тяговые электродвигатели, применяемые на различном транспорте, на флоте. На железнодорожном транспорте и в настоящее время сети делятся на постоянного и переменного тока;
    • Локальные электросети, не дающие постоянный ток в общую энергетическую систему: электролитическое рафинирование металлов – производство алюминия, меди, никеля, гальванопластика, низковольтная аппаратура – микропроцессоры, связь, сигнализация, игрушки;
    • Высоковольтные линии: применяются при передаче больших мощностей на значительные расстояния, в основном, по подводным кабелям.
    • Вставки постоянного тока, связывающие между собой не синхронизированные сети

    Источник

    

    Особенности коммутации сетей постоянного тока

    В конце XIX-начале XX века между специалистами-электротехниками развернулась самая настоящая «война токов». Основная конкуренция проходила между двумя направлениями систем генерации, электроснабжения и электропотребления: постоянным током (англ. DirectCurrent – DC) и переменным (англ. AlternatingCurrent – AC). В итоге предпочтение было отдано трёхфазным цепям переменного тока. Подсчитав объёмы капитальных затрат на создание систем электроснабжения, промышленники выбрали, казалось бы, самый оптимальный вариант. Но удастся ли переменному току удержать лидерство в современных условиях? Сегодня в ряде областей наблюдается развитие технологий и продвижение проектов на постоянном токе.

    Области применения постоянного тока
    Линии электропередачи низкого напряжения

    В рамках финской программы «Интеллектуальные сети и рынок энергии» в Технологическом университете Лаппеенранты разработан проект системы электроснабжения и связи LVDC (англ. Low voltage direct current). Он предназначается для загородных посёлков с малым числом потребителей и линиями электроснабжения большой протяжённости.

    Проект предусматривает замену дорогих традиционных трёхфазных распределительных сетей переменного напряжения 20/0,4 кВ на кабельные подземные линии LVDC (±0,75 кВ). Прокладка кабеля на глубине более 1,5 м минимизирует зоны отчуждения и не создаёт ограничений для ведения сельскохозяйственных работ. Такое решение существенно уменьшает стоимость сети и её зависимость от погодных катаклизмов. Каждое здание и сооружение будет подключаться к сети постоянного тока через преобразователи, согласующие напряжение LVDC с напряжением, необходимым потребителю.

    Энергоснабжение локальных объектов, микро- и минисети постоянного напряжения

    Сегодня для обеспечения повышения энергоэффективности всё чаще предлагаются проекты микросетей постоянного напряжения внутри здания (или нескольких зданий) и на локальной территории. На входе таких сетей установлен высокоэффективный преобразователь, превращающий переменное напряжение распределительных линий в постоянное.

    Современные локальные сети постоянного напряжения имеют ряд преимуществ, среди которых необходимо отметить следующие:

    • общее преобразование из переменного напряжения в постоянное для всех нагрузок уменьшает потери на 10-20%;
    • эффективное интегрирование возобновляемых источников электроэнергии, являющихся также источниками постоянного напряжения (солнечные батареи, небольшие ветряные турбины, топливные элементы и др.);
    • простое согласование перечисленных источников постоянного напряжения, не требующих взаимной синхронизации;
    • эффективное управление графиками нагрузки (включая накопление электрической энергии в периоды избыточной генерации и выдачу в периоды дефицита);
    • повышенная электробезопасность сетей постоянного тока.

    Транспорт

    Не так давно была разработана энергосистема постоянного тока для крупного морского судна гражданского назначения – многоцелевого танкера для обслуживания нефтяных платформ, построенного в Норвегии. Традиционно в судах с электротягой происходит многократное преобразование переменного тока в постоянный для питания винто-рулевых колонок и гребных винтов, на которые приходится более 80% всего электропотребления. Это приводит к большим потерям энергии, снижению общего КПД, а также негативному влиянию на окружающую среду. Компания АББ, лидер в производстве силового оборудования и технологий для электроэнергетики и автоматизации, разработала проект, в котором электроэнергия распределяется через единую цепь постоянного тока. «С помощью нашего решения суда смогут максимально эффективно использовать свои возможности по энергосбережению с применением дополнительных источников постоянного тока, таких как солнечные батареи, топливные ячейки или аккумуляторы, подключенные напрямую к судовой сети постоянного тока», — рассказывает Вели-Матти Рейникала, руководитель подразделения «Автоматизация процессов» компании АББ.

    Читайте также:  Марки реле максимального тока

    В сравнении с системами на переменном токе спроектированная энергосистема имеет следующие преимущества:

    • расход топлива на 20% ниже;
    • за счёт отсутствия силовых низкочастотных трансформаторов суммарный вес и объём электрооборудования уменьшен на 30%;
    • высвобождается место для размещения оборудования, груза и экипажа, то есть улучшена компоновочная схема танкера.

    Управляемый электропривод

    Постоянное напряжение широко применяется для обеспечения эффективного регулирования скорости электродвигателей.
    С каждым годом управляемый электропривод всё больше проникает в те сферы, в которых раньше считалось достаточным применение обычного неуправляемого привода. Специалисты уверены, что сочетание инвертор плюс асинхронный (или вентильный) электродвигатель в ближайшем будущем будет всё больше теснить традиционные типы приводов. А для такого инверторного привода питание постоянным напряжением является естественным и наиболее эффективным.

    Бытовая электротехника и электроника

    Практически вся современная бытовая техника питается переменным напряжением. Однако почти в каждом современном электроприборе происходит преобразование переменного входного напряжения в постоянное. И именно последнее используется электронными схемами.

    Очевидно, что у постоянного тока множество преимуществ перед переменным. Но всё же у такого способа питания оборудования есть целый ряд особенностей, которые необходимо учитывать при разработке топологии электрических цепей и при выборе защитных и коммутационных устройств.

    Особенности цепей постоянного тока

    1. Направление тока

    Электрический ток, называемый «постоянным», имеет неизменные во времени значение и направление. Если рассматривать постоянный ток как прохождение элементарных электрических зарядов через определённую точку, то значение заряда (Q), протекающего через эту точку (а вернее, через поперечное сечение проводника) за единицу времени, будет неизменным.

    В системах постоянного тока относительное направление тока имеет особую важность, поэтому необходимо присоединение нагрузки со строгим соблюдением полярности. Ошибки неотвратимо приводят к тяжёлым аварийным процессам. Например, если аккумуляторная батарея будет подключена к источнику с неправильной полярностью, произойдет её перегрев с дальнейшим закипанием электролита и последующим возможным разрушением ее корпуса, которое обычно носит взрывной характер. При питании обратной полярностью серьёзные повреждения могут так же возникнуть и во многих электронных цепях.

    К полярности чувствительно не только электротехническое оборудование, но и аппараты защиты и коммутации, устанавливающиеся в распределительных щитах. Обычно для того, чтобы избежать ошибок при монтаже электросети, производители наносят на переднюю панель аппаратов специальную маркировку. «Надо понимать, что работа монтажника достаточно однообразна: в день они собирают десятки однотипных схем. Так что от неточностей, связанных с невнимательностью, не застрахованы даже профессионалы. Случается, что коммутационные аппараты подключают неправильно. В итоге подача напряжения на распределительный щит может закончиться возгоранием», — рассказывает Илья Лёшин, начальник измерительной лаборатории компании «Центроэлектромонтаж».

    Описанная специалистом проблема была актуальна для постоянного тока в течение многих десятилетий. Но в последнее время на рынке появились устройства, не чувствительные к полярности приложенного напряжения благодаря особым конструкторским решениям. «Использование подобных аппаратов избавляет от множества проблем, – комментирует Алексей Кокорин, менеджер по группе изделий компании АББ, лидера в производстве силового оборудования и технологий для электроэнергетики и автоматизации. — Так, например, за счёт симметричной конструкции полюса выключатели-разъединители серии OTDC производства АББ не чувствительны к полярности приложенного напряжения. Их можно монтировать внутри щита как вертикально, так и горизонтально, подвод питания осуществляется сверху либо снизу».

    2. Электрическая дуга

    Одной из проблем, связанных с использованием аппаратов и переменного, и постоянного тока, является электрическая дуга. Она возникает между размыкающимися контактами из-за ионизации воздушного пространства между ними.

    В выключателе переменного тока гашение дуги происходит при переходе значения переменного тока через ноль. После исчезновения разряда, во избежание его повторного появления, необходимо восстановить электрическую прочность воздушного дугового промежутка. Сделать это можно либо за счёт «принудительной» рекомбинации ионов и электронов, либо с помощью вывода из контактного промежутка заряженных частиц.

    В цепях постоянного тока процесс происходит несколько иначе. В общем случае параметры дуги зависят от характеристик цепи, значения тока, а также параметров самой среды: температуры, давления, состава воздуха и т.п. Существует набор условий, при которых электрическая дуга при размыкании контактов в цепи постоянного тока может устойчиво гореть длительное время. Таким образом, для её гашения необходимо так изменить параметры процесса, чтобы не существовало точки устойчивого горения.

    В аппаратах низкого напряжения применяется два решения: открытый разрыв и щелевые дугогасительные камеры. В первом случае дуга растягивается, допустим, с помощью электродинамических сил, одновременно охлаждаясь воздухом (способ применяется для токов до 5 кА и напряжений до 500 В). Во втором – дуга при помощи магнитного поля растягивается и попадает в узкую камеру, где охлаждается (применяется для токов до 90 кА).

    «Часто эффективность работы дугогасительных механизмов, в которых задействованы магнитные или электродинамические силы, зависит от величины самого тока. При высоких значениях они справляются со своей задачей, но в некоторых случаях магнитных сил недостаточно, чтобы растянуть дугу до требуемой длины. Поэтому иногда аппараты дополняются, к примеру, постоянными магнитами, позволяющими расширить рабочий диапазон токов», — поясняет Алексей Кокорин (АББ). Схема, описанная специалистом, используется в аппаратах серии OTDC, где установлена дугогасительная решётка новой конструкции с удлинёнными пластинами специальной формы. В процессе гашения дуга изгибается в пространстве и растягивается. В то же время для увеличения падения напряжения на ней применяется принцип деионной решётки. Чтобы такой дугогасительный механизм эффективно работал как при низком, так и при высоком напряжении, в него были интегрированы дополнительные постоянные магниты. Их силы поля достаточно, чтобы перемещать дугу к решётке, даже если значения тока малы.

    Читайте также:  Какие меры должны быть применены для защиты от поражения электрическим током в нормальном режиме

    3. Размер защитных аппаратов должен быть минимальным

    Цепи постоянного тока чаще всего применяются именно там, где важна компактность оборудования. «Габариты важны практически во всех отраслях, поскольку любое оборудование занимает дефицитные площади. Кроме того, есть сферы, где важен каждый кубический сантиметр: например, транспорт. При разработке оборудования наша компания уделяет его размерам особое внимание. Например, выключатели нагрузки серии OTDC работают с током 100-250 А при напряжении до 1000 В, имея при этом всего два полюса. Обычно для таких цепей применяются четырёхполюсные автоматические выключатели, имеющие почти в три раза большие габариты. Так как аппараты не чувствительны к полярности, дополнительную экономию места можно обеспечить за счёт удобного варианта размещения модулей в монтажном блоке (вертикально или горизонтально) как на шине, так и без нее, или благодаря более эргономичной подводке питания», — говорит Алексей Кокорин (АББ).

    Хотя ещё полвека назад считалось, что постоянный ток окончательно сдал свои позиции, сегодня в рамках разговоров о повышении энергоэффективности систем электроснабжения всё чаще на повестке дня появляются проекты по строительству сетей DC. Переход промышленности на потребление постоянного тока потребует в первую очередь обновления оборудования и перестройки сложившейся культуры использования энергии. А правильный подбор коммутационной и защитной аппаратуры для цепей постоянного тока – первый шаг к использованию всех преимуществ подобных сетей.

    Источник

    Источники постоянного тока: виды, характеристики, сферы применения

    Постоянный ток существует только в замкнутой цепи и сохраняет свое направление и основные параметры неизменными во времени. Для его поддержания необходимо наличие постоянного напряжения. Это требование является неизменным для различных источников постоянного тока.

    Источники постоянного электрического тока

    Существует несколько основных видов источников энергии постоянного тока. Каждый из них основан на использовании разных физических принципов и используется в определенных условиях. К ним можно отнести следующие виды:

    • механические, превращающие механическую энергию вращения ротора в электрическую энергию;
    • тепловые, в которых в электрическую энергию преобразуется тепловая энергия;
    • химические, в которых в электрическую энергию преобразуется энергия, выделяющаяся в результате химического процесса;
    • световые, превращающие энергию солнечного света в электрическую энергию.

    В основном электроэнергия вырабатывается электростанциями, от которых потребители получают не постоянный, а переменный ток, который затем преобразуется в постоянный. Но во многих сферах можно применять только тепловые, световые или химические источники постоянного электрического тока.

    Тепловые источники

    В этих источниках используется термоэлектрический эффект. Электрический ток в замкнутой цепи возникает благодаря разнице температур, контактирующих между собой, металлов или полупроводниковых структур. В месте контакта при нагреве возникает электродвижущая сила (термо-ЭДС). Электрический ток заряженных частиц направлен от нагретого участка в сторону холодного. Его величина пропорциональна разнице температур. В месте спая образуется термопара.

    Приборы, которые для создания постоянного тока используют тепло, выделяющееся при распаде радиоактивных изотопных материалов, являются радиоизотопными термоэлектрическими генераторами.

    Световые источники

    Свойство полупроводников создавать ЭДС при попадании на них потока света используется при создании световых источников постоянного тока.

    Солнечная батарея

    Объединение большого количества кремниевых структур позволяет создавать солнечные батареи. Небольшие электростанции, созданные на базе таких солнечных панелей, имеют на сегодняшний день КПД не более 15%.

    Химические источники

    Получение положительных и отрицательно заряженных частиц в химических источниках постоянного тока осуществляется за счет химических реакций. По классификации химических источников они делятся на 3 группы:

    • гальванические элементы, являющиеся первичными источниками ;
    • электрические аккумуляторные батареи (АКБ), или вторичные ХИТ;

    *ХИТ — химические источники тока.

    Гальванические элементы используют принцип действия, основанный на взаимодействии двух металлов через среду электролита. Вид и характеристики ХИТ зависят от выбранной пары металлов и состава электролита. Два металлических электрода источника тока по аналогии с прибором односторонней проводимости получили название анода («+») и катода («-«).

    Материалом для изготовления анода могут служить свинец, цинк, кадмий и другие. Катод изготавливают из оксида свинца, графита, оксида марганца, гидрооксида никеля. По составу электролита гальванические элементы разделяются на 3 вида:

    • солевые или «сухие»;
    • щелочные;
    • литиевые.

    В элементах первых двух видов графито-марганцевый стержень (катод) помещен по оси цинкового цилиндрического стаканчика (анода). Свободное пространство между ними заполнено пастой на основе хлорида аммония (солевые) или гидрооксида калия (щелочные).

    Батарейка одноразовая

    В литиевых элементах цинковый анод заменен щелочным литием, что привело к значительному увеличению продолжительности работы. Материал катода в них определяет выходное напряжение батарейки (1,5-3,7) В. Первичные ХИТ являются источниками одноразового действия. Его реагенты, расходующиеся в процессе работы, не подлежат восстановлению.

    Аккумуляторы представляют собой устройства, в которых производится преобразование электрической энергии внешнего источника тока в химическую энергию при заряде и ее накопление. В процессе работы (разряд) происходит обратное преобразование — химическая энергия служит источником постоянного электрического тока.

    Читайте также:  Формула работы силы тока через индукцию

    К основным видам аккумуляторов относятся:

    • свинцово-кислотные;
    • никель-кадмиевые щелочные;
    • литий-ионные.

    Для создания химических процессов набор пластин помещен в раствор электролита. В АКБ, созданных по современным технологиям, раствор представляет собой не жидкость, а гелиевый состав (GEL) или сотовые сепараторы, пропитанные электролитом и помещенные между свинцовыми пластинами (AGM).

    Аккумулятор автомобильный

    Свинцово-кислотные и никель-кадмиевые щелочные аккумуляторы для работы в качестве источников постоянного тока для запуска двигателей автомобилей собирают из набора отдельных аккумуляторных элементов («банок»). Каждая «банка» обеспечивает на своих клеммах напряжение 2,1 В. Соединенные последовательно 6 элементов и помещенные в ударопрочный корпус, имеют на выходных клеммах аккумулятора необходимые для запуска двигателя 12 В.

    В литий-ионных аккумуляторах носителями электрического тока служат ионы лития. Они образуются на катоде, изготовленному из соли лития. Анод может быть изготовлен из графита или оксидов кобальта. Напряжение постоянного тока на выходе аккумулятора может варьироваться в пределах (3,0-4,2) В в зависимости от используемых материалов. Эти аккумуляторы имеют низкое значение тока саморазряда и допускают большое количество циклов заряд/разряд. Благодаря этому все современные гаджеты используют аккумуляторы этого вида.

    Механические источники постоянного тока

    Устройствами, преобразующими механическую энергию в электрическую, являются турбо и гидро генераторы. Они вырабатывают переменный электрический ток. Для основной части бытовых приборов источником постоянного тока выступают их блоки питания. В них производится преобразование переменного напряжения генератора в постоянное напряжение, необходимое для работы устройств. Эту задачу выполняют выпрямители, которые должны обеспечивать необходимую мощность источника постоянного тока для их нагрузки и постоянное значение выходного напряжения, не зависящее от потребляемого тока.

    Блоки питания могут быть линейными и импульсными. Линейные блоки выполняются по разным схемам, основу которых составляют:

    • однополупериодые выпрямители;
    • двухполупериодные выпрямители.

    В выпрямителях используется свойство полупроводниковых диодов пропускать ток только в одном направлении. Выпрямленное таким образом напряжение еще не является постоянным. Емкости последующих за выпрямителем конденсаторов сглаживающего фильтра при своем быстром заряде и медленном разряде поддерживают величину положительного однополярного напряжения на определенном значении. Его величина определяется трансформатором, получающим напряжение от генератора переменного тока. Для однофазного напряжения домашней сети 220 В 50 Гц его стальной сердечник имеет значительные размеры и вес.

    Схемы однополупериодных содержат всего один полупроводниковый диод, пропускающий только одну полуволну синусоидального переменного входного напряжения.

    Выпрямитель одного периода

    Двухполупериодные выпрямители выполняются по мостовой схеме или по схеме с общей точкой. В последнем случае вторичная обмотка сетевого трансформатора имеет вывод от своей середины. Эти выпрямители представляют собой параллельное включение двух однополупериодных выпрямителей. Они действуют на обе полуволны синусоиды переменного входного напряжения.

    Выпрямитель со средней точкой

    Мостовая схема выпрямителя является наиболее распространенной. Соединение 4-х диодов в ней напоминает «квадрат». К одной из диагоналей подключается переменное напряжение вторичной обмотки сетевого трансформатора. Нагрузка включается в другую диагональ «квадрата». Им будет входной элемент сглаживающего фильтра.

    Мостовая схема выпрямления

    Регулирование источника

    Для обеспечения постоянного значения уровня выходного напряжения, не зависящего от потребляемого нагрузкой тока и колебаний входного переменного напряжения, все современные источники питания постоянного тока имеют ступень стабилизации и регулирования.

    Схемы стабилизаторов

    В ней выходное напряжение сравнивается с эталонным (опорным) значением.

    При появлении различия между ними вырабатывается управляющий сигнал, который по цепи управления изменяет величину выходного напряжения. Величину значения опорного напряжения можно изменять в широких пределах, имея на выходе регулированного источника питания постоянного тока необходимое для работы напряжение.

    Импульсные источники

    Схемы с использованием входных трансформаторов напряжения сети получили название линейных. В импульсных источниках питания производится двойное преобразование — сначала переменное напряжение выпрямителем преобразуется в постоянное, затем вырабатывается переменное импульсное напряжение более высокой частоты, которое в выходном каскаде снова преобразуется в постоянное напряжение необходимого значения.

    Генераторы импульсов вырабатывают непрерывную импульсную последовательность с частотой (15-60) кГц. Регулирование выходного напряжения осуществляется посредством широтно-импульсной модуляции (ШИМ), при которой уровень сигнала на выходе блока питания определяется шириной импульсов, вырабатываемых генератором и значением их скважности. Регулированные источники питания постоянного тока импульсного типа все чаще используются при создании аппаратуры различного назначения.

    Сравнение источников

    Отсутствие мощного входного трансформатора в импульсных источниках питания позволяет создавать конструкции значительно более легкие и с меньшими линейными размерами. Их эффективность значительно выше источников, выполненных по линейным схемам. Коэффициент полезного действия доходит до значения 98%. В них широкое распространение получили микросхемы, выполняющие функции контроллеров.

    Каждый из типов стабилизированных источников постоянного тока находит применение в своей сфере. А она весьма многообразна. Основой являются характеристики источников постоянного тока. Линейные источники обеспечивают низкий уровень пульсаций выходного напряжения и малое значение уровня собственного шума. Это достигается отсутствием переключений при их работе, которые создают большой уровень помех в широком частотном диапазоне. В импульсных источниках приходится применять сложные схемные решения для борьбы с ними, что приводит к удорожанию изделий, в которых они применяются.

    Заключение

    В статье был дан общий обзор существующих источников постоянного тока. Изложенный материал лишь знакомит читателей с основными принципами их работы. Из него можно сделать вывод, что каждый из видов источников постоянного тока используется в своей области.

    Источник