Меню

Сформулируйте определение работы тока

Работа электрического тока

Протекая по цепи электрический ток совершает работу. Опять сравним протекание электрического тока с потоком воды в трубе. Если этот поток направить, например, на лопасти генератора, то поток будет совершать работу, вращая генератор. Таким же образом электрический ток совершает работу, протекая по проводнику. И эта работа тем больше, чем больше сила тока и напряжение в цепи.

Таким образом, работа электрического тока, совершаемая на участке цепи, прямо пропорциональна силе тока в цепи, напряжению на этом участке и времени действия тока. Работа электрического тока обозначается латинской буквой A.

Формула работы электрического тока имеет вид:

A = I*U*t

Произведение I*U есть не что иное, как мощность электрического тока.

Тогда формула работы электрического тока примет вид:

A = P*t

Работа электрического тока измеряется в ваттсекундах или иначе говоря в джоулях.

Поэтому, если мы хотим узнать, какую работу про­извел ток, протекая по цепи в течение нескольких секунд, мы должны умножить мощность на это число секунд.

Например, через реостат с сопротивлением 5 Ом протекает ток си­лой 0,5 А. Нужно определить, какую работу произведет ток в течение 4 часов (14 400 сек.). Так как работа тока в одну секунду будет равна:

P=I 2 R = 0,5 2 *5= 0,25*5 =1,25 Вт,

то за время t=14400 сек. она будет в 14 400 раз больше. Следователь­но, работа электрического тока А будет равна:

А = Р*t= 1,25*14 400= 18 000 вт-сек.

Ваттсекунда (джоуль) являет­ся слишком малой единицей для измерения работы тока. По­этому на практике пользуются единицей, называемой ваттчас (втч).

Один ваттчас равен 3 600 Дж, так как в часе 3 600 сек.

В нашем последнем примере работа тока, выраженная в ваттчасах, будет равна:

В электротехнике для измерения работы тока применяют­ся еще большие единицы, называемые гектоваттчас (гвтч) и киловаттчас (квтч):

1 квтч =10 гвтч =1000 втч = 3600000 Дж,

1 гвтч =100 втч = 360 000 Дж,

1 втч = 3 600 Дж.

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Работа электрического тока. Закон Джоуля-Ленца.

Работа электрического тока Закон ДжоуляЛенца

Для определения работы, которая совершается током, проходящим по некоторому участку цепи, нужно воспользоваться определением напряжения: . Значит,

где А — работа тока; q — электрический заряд, который прошел за определенное время через исследуемый участок цепи. Подставив в последнее равенство формулу q = It, имеем:

Работа электрического тока на участке цепи является произведением напряжения на концах это­го участка на силу тока и на время, на протяжении которого совершалась работа.

Закон Джоуля-Ленца .

Закон Джоуля — Ленца гласит: количество теплоты, которое выделяется в проводнике на участке электрической цепи с сопротивлением R при протекании по нему постоянного тока I в течение времени t равно произведению квадрата тока на сопротивление и время:

Закон был установлен в 1841 г. английским физиком Дж. П. Джоулем, а в 1842 г. подтверж­ден точными опытами русского ученого Э. X. Ленца. Само же явление нагрева проводника при прохождении по нему тока было открыто еще в 1800 г. французским ученым А. Фуркруа, которо­му удалось раскалить железную спираль, пропустив через нее электрический ток.

Из закона Джоуля — Ленца видно, что при последовательном соединении проводников, поскольку ток в цепи всюду одинаков, максимальное количество тепла будет выделяться на про­воднике с наибольшим сопротивлением. Это применяется в технике, например, для распыления металлов.

Работа электрического тока Закон ДжоуляЛенца

При параллельном соединении каждый проводник находятся под одинаковым напряжением, но токи в них разные. Из формулы (Q = I 2 Rt) видно, что, так как, согласно закону Ома , то

Работа электрического тока Закон ДжоуляЛенца

Следовательно, на проводнике с меньшим сопротивлением будет выделяться больше тепла.

Если в формуле (А = IUt) выразить U через IR, воспользовавшись законом Ома, получим Закон Джоуля — Ленца. Это лишний раз подтверждает тот факт, что работа тока расходуется на выделение тепла на активном сопротивлении в цепи.

Источник

Работа и мощность электрического тока

теория по физике 🧲 постоянный ток

При упорядоченном движении заряженных частиц в проводнике электрическое поле совершает работу. Ее принято называть работой тока.

Рассмотрим произвольный участок цепи. Это может быть однородный проводник, к примеру, обмотка электродвигателя или нить лампы накаливания. Пусть за время ∆t через поперечное сечение проводника проходит заряд ∆q. Тогда электрическое поле совершит работу:

Но сила тока равна:

Тогда работа тока равна:

Работа тока на участке цепи равна произведению силы тока, напряжения и времени, в течение которого совершалась работа.

Выражая через закон Ома силу тока и напряжение, получим следующие формулы для вычисления работы тока:

A = I 2 R Δ t = U 2 R . . Δ t

Работа тока измеряется в Джоулях (Дж).

Пример №1. Определите работу тока, совершенную за 10 секунд на участке цепи напряжением 200В и силой тока 16 А.

A = I U Δ t = 16 · 220 · 10 = 35200 ( Д ж ) = 35 , 2 ( к Д ж )

Закон Джоуля-Ленца

В случае, когда на участке цепи не совершается механическая работа, и ток не производит химических действий, происходит только нагревание проводника. Нагретый проводник отдает теплоту окружающим телам.

Закон, определяющий количество теплоты, которое выделяет проводник с током в окружающую среду, был впервые установлен экспериментально английским ученым Д. Джоулем (1818—1889) и русским Э.Х. Ленцем (1804—1865). Закон Джоуля—Ленца сформулирован следующим образом:

Количество теплоты, выделяемое проводником с током, равно произведению квадрата силы тока, сопротивления проводника и времени прохождения тока по проводнику.

Количество теплоты измеряется в Джоулях (Дж).

Читайте также:  Управляемый источник питания переменного тока

Пример №2. Определить, какое количество теплоты было выделено за 2 минуты проводником при напряжении 12 В и сопротивлении 2 Ом.

Используем закон Ома и закон Джоуля—Ленца:

Q = I 2 R Δ t = ( U R . . ) 2 Δ t = U 2 R . . Δ t = 12 2 2 . . = 72 ( Д ж )

Мощность тока

Любой электрический прибор (лампа, электродвигатель и пр.) рассчитан на потребление определенной энергии в единицу времени. Поэтому наряду с работой тока очень важное значение имеет понятие мощности тока.

Мощность тока — это работа, производимая за 1 секунду. Обозначается как P. Единица измерения — Ватт (Вт).

Численно мощность тока равна отношению работы тока за время ∆t к этому интервалу времени:

Это выражение для мощности можно переписать в нескольких эквивалентных формах, если использовать закон Ома для участка цепи:

P = I U = I 2 R = U 2 R . .

Пример №3. При силе тока в электрической цепи 0,3 А сопротивление лампы равно 10 Ом. Определите мощность электрического тока, выделяющуюся на нити лампы.

P = I 2 R = 0 , 3 2 · 10 = 0 , 9 ( В т )

Выразив силу тока через заряд, прошедший за единицу времени, получим:

Мощность тока равна мощности на внешней цепи. Ее также называют мощностью на нагрузке, полезной мощностью или тепловой мощностью. Ее можно выразить через ЭДС:

P = ( ε R + r . . ) 2 R

Мощность тока на внешней цепи будет максимальная, если сопротивление внешней цепи равно внутреннему сопротивлению: R = r.

P m a x = ( ε r + r . . ) 2 r = ε 2 4 r . .

Мощность тока внутренней цепи:

P в н у т р = I 2 r = ( ε R + r . . ) 2 r

P п о л н = I 2 ( R + r ) = ε 2 R + r . .

Пример №4. ЭДС постоянного тока ε = 2 В, а его внутреннее сопротивление r = 1 Ом. Мощность тока в резисторе, подключенном к источнику, P = 0,75 Вт. Чему равно минимальное значение силы тока в цепи?

Используем формулу для нахождения полезной мощности:

P = ( ε R + r . . ) 2 R

Применим закон Ома для полной цепи:

Выразим сопротивление внешней цепи:

P = ( ε ε I . . − r + r . . ) 2 ( ε I . . − r ) = I 2 ( ε I . . − r ) = I ε − r I 2

Так как внутреннее сопротивление равно единице, получаем квадратное уравнение следующего вида:

r I 2 − I ε + P = 0

I 2 − 1 I + 0 , 75 = 0

Решив это уравнение, получим два корня: I = 0,5 и I = 1,5 А. Следовательно, наименьшая сила тока равна 0,5 А.

Подсказки к задачам

Конденсатор в цепи постоянного тока

Постоянный ток через конденсатор не идет, но заряд на нем накапливается, и напряжение между обкладками поддерживается. Напряжение на конденсаторе такое же, как на параллельном ему участке цепи.

Ток не проходит через те резисторы, что соединены с конденсатором последовательно. При расчете электрической цепи их сопротивления не учитывают.

Подсказки к задачам

W = q 2 2 C . . = C U 2 2 . .

Пример №5. К источнику тока с ЭДС ε = 9 В и внутренним сопротивлением r = 1 Ом подключили параллельно соединенные резистор с сопротивлением R = 8 Ом и плоский конденсатор, расстояние между пластинами которого d = 0,002 м. Какова напряженность электрического поля между пластинами конденсатора?

Напряжение на конденсаторе равно напряжению на резисторе, так как он подключен к нему последовательно. Чтобы найти это напряжение, сначала выразим силу тока на этом резисторе:

Применим закон Ома:

Приравняем правые части выражений и получим:

Отсюда напряжение на конденсаторе равно:

Напряженность электрического поля равна:

E = U d . . = ε R d ( R + r ) . . = 9 · 8 0 , 002 ( 8 + 1 ) . . = 72 0 , 018 . . = 4000 ( В м . . )

Вольтметр подключён к клеммам источника тока с ЭДС ε = 3 В и внутренним сопротивлением r = 1 Ом, через который течёт ток I = 2 А (см. рисунок). Вольтметр показывает 5 В. Какое количество теплоты выделяется внутри источника за 1 с?

Источник

Особенности работы тока

Время на чтение:

Сегодня электрический ток имеет большую область применения. Связано это с тем, что он переносит с собой энергию, которую можно превратить в любую форму.

Что такое работа тока

При хаотичном движении заряженных частиц в проводнике электрическое поле будет совершать работу, которую решили назвать работой тока. Определение работы тока следующее: это работа электрического поля по переносу зарядов внутри проводника.

Важно! Помимо электрических сил, на проводник действуют еще и магнитные, которые также могут совершать работу. Однако в обычных условиях она будет очень мала.

Мощность

Абсолютно каждый электрический прибор рассчитан на поглощение энергии за единицу времени. Поэтому на практике большее значение имеет такое понятие, как мощность. Мощность — это скалярная физическая величина, в общем виде равная скорости изменения, преобразования, передачи или потребления энергии системы.

Единицы измерения

Любая физическая величина, которая может быть превращена в энергию, будет измеряться в Джоулях (Дж). 1 Джоуль равен работе при перемещении точки, к которой приложена сила, равная 1 Ньютону, умноженному на Путь в 1 метр. Получается, что 1 Дж = 1 Н · 1 м.

Единица измерения мощности — это Ватт (Вт). Он равен работе 1 Дж, совершенной за единицу времени в 1 с. Таким образом, 1 Вт = 1 Дж : 1 с

Единица измерения мощности

Формула вычисления

В 1841 году английский ученый Джеймс Джоуль сформулировал закон для нахождения количественной меры теплового воздействия электрического тока. В 1842 году этот же закон был также открыт русским физиком Эмилием Ленцем. Из-за этого он получил двойное название закона Джоуля-Ленца. В общем виде закон записывается следующим образом: Q = I² • R • t.

Он имеет достаточно обобщенный характер, так как не имеет зависимости от природных сил, генерирующих ток. Сегодня этот закон активно применяется в быту. Например, для определения степени нагрева вольфрамовой нити, используемой в лампочках.

Закон Джоуля-Ленца

Закон Джоуля-Ленца определяет количество теплоты, выделяемое током. Но, тем не менее, это поможет узнать, по каким формулам вычисляется работа электрического поля. Всё потому, что она впоследствии проявляется в виде нагревания проводника. Это говорит о том, что работа тока равна теплоте нагревания проводника (A=Q). Работа эл тока, формула: А= I² • R • t. Это не единственная формула для нахождения работы. Если использовать закон Ома для участка цепи (I=U:R), то можно вывести еще две формулы: А=I•U•t или A=U²:R.

Читайте также:  Каковы наиболее опасные пути прохождения электрического тока через тело человека

Общая формула для того, чтобы вычислять мощность, заключается в ее прямой пропорциональности работе и обратной зависимости от времени (P=A:t). Если говорить о мощности в электрическом поле, то исходя из предыдущих формул, можно составить целых три: Р= I² • R; Р=I•U; Р=U²:R.

Закон Ома для участка цепи

Приборы для измерения тока

Электроизмерительные приборы — это особый вид устройств, которые используются для измерения многих электрических величин. К ним относятся:

  • Амперметр переменного тока;
  • Вольтметр переменного тока;
  • Омметр;
  • Мультиметр;
  • Частометр;
  • Электрические счетчики.

Амперметр

Чтобы определить силу тока в электрической цепи, необходимо применить амперметр. Данный прибор включается в цепь последовательным образом и из-за пренебрежимо малого внутреннего сопротивления не оказывает влияния на ее состояние. Шкала амперметра проградуирована в амперах.

В классическом приборе через электромагнитную катушку проходит измеряемый ток, который образует магнитное поле, заставляющее отклоняться магнитную стрелку. Угол отклонения прямо пропорционален измеряемому току.

Классический амперметр

Электродинамический амперметр имеет более сложный принцип работы. В нем находятся две катушки: одна подвижная, другая стоит на месте. Между собой они могут быть соединены последовательно или параллельно. При прохождении тока через катушки их магнитные поля начинают взаимодействовать, что в результате заставляет подвижную катушку с закрепленной на ней стрелкой отклониться на некоторый угол, пропорциональный величине измеряемого тока.

Вольтметр

Для определения величины напряжения (разности потенциалов) на участке цепи используют вольтметр. Подключаться прибор должен параллельно цепи и обладать высоким внутренним сопротивлением. Тогда лишь сотые доли силы тока попадут в прибор.

Школьный вольтметр

Принцип работы заключается в том, что внутри вольтметра установлена катушка и последовательно подключенный резистор с сопротивлением не менее 1кОм, на котором проградуирована шкала вольтов. Самое интересное, что на самом деле резистор регистрирует силу тока. Однако деления подобраны таким образом, что показания соответствуют значению напряжения.

Омметр

Данный прибор используют для определения электрически активного сопротивления. Принцип действия состоит в изменении измеряемого сопротивления в напрямую зависящее от него напряжение благодаря операционному усилителю. Нужный объект должен быть подключен к цепи обратной связи или к усилителю.

Если омметр электронный, то он будет работать по принципу измерения силы тока, протекающего через необходимое сопротивление при постоянной разности потенциалов. Все элементы соединяют последовательно. В этом случае сила тока будет иметь следующую зависимость: I = U/(r0 + rx), где U — ЭДС источника, r0 — сопротивление амперметра, rx — искомое сопротивление. Согласно этой зависимости и определяют сопротивление.

Электронный омметр

Мультиметр

Приведенные в пример приборы сегодня используют лишь в школах на уроках физики. Для профессиональных задач были придуманы мультиметры. Самое обычное устройство включает в себя одновременно функции амперметра, вольтметра и омметра. Прибор бывает как легко переносимым, так и огромным стационарным с большим количеством возможностей. Название «мультиметр» в первый раз было применено именно к цифровому измерителю. Аналоговые приборы чаще называют «авометр», «тестер» или просто «Цешка».

Универсальный мультиметр

Работа тока — сложная, но очень важная тема в электродинамике. Не зная ее, не получится решить даже простейших задач. Даже электрики используют формулы по нахождению работы для проведения необходимых подсчетов.

Источник



Работа и мощность электрического тока. Закон Джоуля-Ленца

1. Электрический ток, проходя по цепи, производит разные действия: тепловое, механическое, химическое, магнитное. При этом электрическое поле совершает работу, и электрическая энергия превращается в другие виды энергии: во внутреннюю, механическую, энергию магнитного поля и пр.

Как было показано, напряжение ​ \( (U) \) ​ на участке цепи равно отношению работы ​ \( (F) \) ​, совершаемой при перемещении электрического заряда ​ \( (q) \) ​ на этом участке, к заряду: ​ \( U=A/q \) ​. Отсюда ​ \( A=qU \) ​. Поскольку заряд равен произведению силы тока ​ \( (I) \) ​ и времени ​ \( (t) \) ​ ​ \( q=It \) ​, то ​ \( A=IUt \) ​, т.е. работа электрического тока на участке цепи равна произведению напряжения на этом участке, силы тока и времени, в течение которого совершается работа.

Единицей работы является джоуль (1 Дж). Эту единицу можно выразить через электрические единицы:

​ \( [A] \) ​= 1 Дж = 1 В · 1 А · 1 с

Для измерения работы используют три измерительных прибора: амперметр, вольтметр и часы, однако, в реальной жизни для измерения работы электрического тока используют счётчики электрической энергии.

Если нужно найти работу тока, но при этом сила тока или напряжение неизвестны, то можно воспользоваться законом Ома, выразить неизвестные величины и рассчитать работу по формулам: ​ \( A=\fract \) ​ или ​ \( A=I^2Rt \) ​.

2. Мощность электрического тока равна отношению работы ко времени, за которое она совершена: ​ \( P=A/t \) ​ или ​ \( P=IUt/t \) ​; ​ \( P=IU \) ​, т.е. мощность электрического тока равна произведению напряжения и силы тока в цепи.

Единицей мощности является ватт (1 Вт): ​ \( [P]=[I]\cdot[U] \) ​; ​ \( [P] \) ​ = 1 А · 1 В = 1 Вт.

Читайте также:  Смертельный разряд током для человека

Используя закон Ома, можно получить другие формулы для расчета мощности тока: ​ \( P=\frac;P=I^2R \) ​.

Значение мощности электрического тока в проводнике можно определить с помощью амперметра и вольтметра, измерив соответственно силу тока и напряжение. Можно для измерения мощности использовать специальный прибор, называемый ваттметром, в котором объединены амперметр и вольтметр.

3. При прохождении электрического тока по проводнику он нагревается. Это происходит потому, что перемещающиеся под действием электрического поля свободные электроны в металлах и ионы в растворах электролитов сталкиваются с молекулами или атомами проводников и передают им свою энергию. Таким образом, при совершении током работы увеличивается внутренняя энергия проводника, в нём выделяется некоторое количество теплоты, равное работе тока, и проводник нагревается: ​ \( Q=A \) ​ или ​ \( Q=IUt \) ​. Учитывая, что ​ \( U=IR \) ​, ​ \( Q=I^2Rt \) ​.

Количество теплоты, выделяющееся при прохождении тока но проводнику, равно произведению квадрата силы тока, сопротивления проводника и времени.

Этот закон называют законом Джоуля-Ленца.

ПРИМЕРЫ ЗАДАНИЙ

Часть 1

1. Силу тока в проводнике увеличили в 2 раза. Как изменится количество теплоты, выделяющееся в нём за единицу времени, при неизменном сопротивлении проводника?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

2. Длину спирали электроплитки уменьшили в 2 раза. Как изменится количество теплоты, выделяющееся в спирали за единицу времени, при неизменном напряжении сети?

1) увеличится в 4 раза
2) уменьшится в 2 раза
3) увеличится в 2 раза
4) уменьшится в 4 раза

3. Сопротивления резистор ​ \( R_1 \) ​ в четыре раза меньше сопротивления резистора ​ \( R_2 \) ​. Работа тока в резисторе 2

1) в 4 раза больше, чем в резисторе 1
2) в 16 раз больше, чем в резисторе 1
3) в 4 раза меньше, чем в резисторе 1
4) в 16 раз меньше, чем в резисторе 1

4. Сопротивление резистора ​ \( R_1 \) ​ в 3 раза больше сопротивления резистора ​ \( R_2 \) ​. Количество теплоты, которое выделится в резисторе 1

1) в 3 раза больше, чем в резисторе 2
2) в 9 раз больше, чем в резисторе 2
3) в 3 раза меньше, чем в резисторе 2
4) в 9 раз меньше, чем в резисторе 2

5. Цепь собрана из источника тока, лампочки и тонкой железной проволоки, соединенных последовательно. Лампочка станет гореть ярче, если

1) проволоку заменить на более тонкую железную
2) уменьшить длину проволоки
3) поменять местами проволоку и лампочку
4) железную проволоку заменить на нихромовую

6. На рисунке приведена столбчатая диаграмма. На ней представлены значения напряжения на концах двух проводников (1) и (2) одинакового сопротивления. Сравните значения работы тока ​ \( A_1 \) ​ и ​ \( A_2 \) ​ в этих проводниках за одно и то же время.

1) ​ \( A_1=A_2 \) ​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

7. На рисунке приведена столбчатая диаграмма. На ней представлены значения силы тока в двух проводниках (1) и (2) одинакового сопротивления. Сравните значения работы тока \( A_1 \) ​ и ​ \( A_2 \) в этих проводниках за одно и то же время.

1) ​ \( A_1=A_2 \) ​
2) \( A_1=3A_2 \)
3) \( 9A_1=A_2 \)
4) \( 3A_1=A_2 \)

8. Если в люстре для освещения помещения использовать лампы мощностью 60 и 100 Вт, то

А. Большая сила тока будет в лампе мощностью 100 Вт.
Б. Большее сопротивление имеет лампа мощностью 60 Вт.

Верным(-и) является(-ются) утверждение(-я)

1) только А
2) только Б
3) и А, и Б
4) ни А, ни Б

9. Электрическая плитка, подключённая к источнику постоянного тока, за 120 с потребляет 108 кДж энергии. Чему равна сила тока в спирали плитки, если её сопротивление 25 Ом?

1) 36 А
2) 6 А
3) 2,16 А
4) 1,5 А

10. Электрическая плитка при силе тока 5 А потребляет 1000 кДж энергии. Чему равно время прохождения тока по спирали плитки, если её сопротивление 20 Ом?

1) 10000 с
2) 2000 с
3) 10 с
4) 2 с

11. Никелиновую спираль электроплитки заменили на нихромовую такой же длины и площади поперечного сечения. Установите соответствие между физическими величинами и их возможными изменениями при включении плитки в электрическую сеть. Запишите в таблицу выбранные цифры под соответствующими буквами. Цифры в ответе могут повторяться.

ФИЗИЧЕСКАЯ ВЕЛИЧИНА
A) электрическое сопротивление спирали
Б) сила электрического тока в спирали
B) мощность электрического тока, потребляемая плиткой

ХАРАКТЕР ИЗМЕНЕНИЯ
1) увеличилась
2) уменьшилась
3) не изменилась

12. Установите соответствие между физическими величинами и формулами, по которым эти величины определяются. Запишите в таблицу выбранные цифры под соответствующими буквами.

ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ
A) работа тока
Б) сила тока
B) мощность тока

Часть 2

13. Нагреватель включён последовательно с реостатом сопротивлением 7,5 Ом в сеть с напряжением 220 В. Каково сопротивление нагревателя, если мощность электрического тока в реостате составляет 480 Вт?

Источник