Меню

Сила притяжения обкладок конденсатора от напряжения

С какой силой притягиваются друг к другу обкладки заряженного плоского воздушного конденсатора?

Для школьников.

Когда говорят фразу » воздушный конденсатор «, то имеют ввиду, что пространство между его обкладками заполнено воздухом, диэлектрическая проницаемость которого принята равной единице.

Если же это пространство заполнить стеклом, с диэлектрической проницаемостью

равной пяти, то стекло уменьшит напряжённость поля в 5 раз, увеличив этим в 5 раз ёмкость конденсатора.

Иначе, в присутствии стекла конденсатор при том же напряжении между обкладками накопит в 5 раз больший заряд и, значит, сможет отдать в электрическую цепь в 5 раз больший заряд при разрядке.

О возможности диэлектрика ослаблять внутри себя электрическое поле см. Занятие 51 .

С какой силой притягиваются друг к другу обкладки заряженного плоского воздушного конденсатора?

Вывод формулы для нахождения напряжённости электрического поля, создаваемого заряженной плоскостью (в нашем случае электрическое поле создаётся одной обкладкой конденсатора в месте нахождения второй обкладки) дан в Занятии 48 .

Учтём, что заряд обкладки поделённый на её площадь даёт плотность заряда на обкладке.

Подписывайтесь на канал. Ставьте лайки. Сообщите друзьям о существовании этого канала.

Предыдущая запись : Действие рентгеновских лучей , направленных на одну обкладку незаряженного плоского конденсатора.

Следующая запись : Какую работу надо совершить, чтобы раздвинуть обкладки плоского заряженного конденсатора на некоторое расстояние?

Ссылки на занятия до электростатики даны в Занятии 1 .

Ссылки на занятия (статьи), начиная с электростатики, даны в Занятии 45 (в конце занятия).

Источник



Энергия конденсатора. Силы. действующие на заряженные проводники

Рассмотрим теперь энергию, требуемую на то, чтоб зарядить конденсатор. Если заряд Q был снят с одной обкладки конденсатора и перенесен на другую, то между обкладками возникает разность потенциалов, равная

Маленькое изображение

где С — емкость конденсатора. Сколько работы затрачено на зарядку конденсатора? Поступая точно так же, как мы поступали с шаром, вообразим, что конденсатор уже заряжен переносом заряда с одной обкладки на другую маленькими порциями dQ. Работа, требуемая для переноса заряда dQ, равна

Маленькое изображение
Маленькое изображение

Или, интегрируя от Q = 0 до конечного заряда Q, получаем

Маленькое изображение

Эту энергию можно также записать в виде

Маленькое изображение

Вспоминая, что емкость проводящей сферы (по отношению к бесконечности) равна

Маленькое изображение

мы немедленно получим из уравнения (8.9) энергию заряженной сферы

Маленькое изображение

Это выражение, конечно, относится также и к энергии тонкого сферического слоя с полным зарядом Q; получается 5 /6 энергии однородно заряженного шара [уравнение (8.7)].

Посмотрим, как применяется понятие электростатической энергии. Рассмотрим два вопроса. Какова сила, действующая между обкладками конденсатора? Какой вращательный (крутящий) момент вокруг некоторой оси испытывает заряженный проводник в присутствии другого проводника с противоположным зарядом? На такие вопросы легко ответить, пользуясь нашим выражением (8.9) для электростатической энергии конденсатора и принципом виртуальной работы (см. вып. 1, гл. 4, 13 и 14).

Применим этот метод для определения силы, действующей между двумя обкладками плоского конденсатора. Если мы представим, что промежуток между пластинами расширился на небольшую величину Δz, то тогда механическая работа, производимая извне для того, чтобы раздвинуть обкладки, была бы равна

Маленькое изображение

где F — сила, действующая между обкладками. Эта работа обязана быть равной изменению электростатической энергии конденсатора, если только заряд конденсатора не изменился.

Согласно уравнению (8.9), энергия конденсатора первоначально была равна

Маленькое изображение

Изменение в энергии (если мы не допускаем изменения величины заряда) тогда равно

Маленькое изображение

Приравнивая (8.12) и (8.13), получаем

Маленькое изображение

что может также быть записано в виде

Маленькое изображение

Ясно, эта сила здесь возникает от притяжения зарядов на обкладках; мы видим, однако,что заботиться о том, как там они распределены, нам нечего; единственное, что нам нужно,— это учесть емкость С.

Легко понять, как обобщить эту идею на проводники произвольной формы и на прочие составляющие силы. Заменим в уравнении (8.14) F той составляющей, которая нас интересует, а Δz — малым смещением в соответствующем направлении. Или если у нас есть электрод, насаженный на какую-то ось, и мы хотим знать вращательный момент τ, то запишем виртуальную работу в виде

Маленькое изображениегде Δθ — небольшой угловой поворот. Конечно, теперь Δ(1/С) должно быть изменением 1/С, отвечающим повороту на Δθ. Таким способом мы можем определить вращательный момент, действующий на подвижные пластины переменного конденсатора, показанного на фиг. 8.3.

Вернемся к частному случаю плоского конденсатора; мы можем взять формулу для емкости, выведенную в гл. 6:

Маленькое изображение

где А — площадь каждой обкладки. Если промежуток увеличится на Δz, то

Маленькое изображение

Из (8.14) тогда следует, что сила притяжения между двумя обкладками равна

Маленькое изображение

Взглянем на уравнение (8.17) повнимательнее и подумаем, нельзя ли сказать, как возникает эта сила. Если заряд на одной из обкладок мы запишем в виде

Маленькое изображение

то (8.17) можно будет переписать так:

Маленькое изображение

поскольку поле между пластинами равно

Маленькое изображение

Маленькое изображениеМожно было сразу догадаться, что сила, действующая на одну из пластин, будет равна заряду Q этой пластины, умноженному на поле, действующее на заряд. Но что удивляет, так это множитель 1 /2. Дело в том, что Е —это не то поле, которое действует на заряды. Если вообразить, что заряд на поверхности пластины занимает какой-то тонкий слой (фиг. 8.4), то поле будет меняться от нуля на внутренней границе слоя до Е в пространстве снаружи пластин. Среднее поле, действующее на поверхностные заряды, равно E/2. Вот отчего в (8.18) стоит множитель 1 /2.

Вы должны обратить внимание на то, что, рассчитывая виртуальную работу, мы предположили, что заряд конденсатора постоянен, что конденсатор не был электрически связан с другими предметами и полный заряд не мог изменяться.

А теперь пусть мы предположили, что при виртуальных перемещениях конденсатор поддерживается при постоянной разности потенциалов. Тогда мы должны были бы взять

Маленькое изображение

и вместо (8.15) мы бы имели

Маленькое изображение

что приводит к силе, равной по величине той, что была получена в уравнении (8.15) (так как V=Q/C), но с противоположным знаком!

Конечно, сила, действующая между пластинами конденсатора, не меняет свой знак, когда мы отсоединяем конденсатор от источника электричества. Кроме того, мы знаем, что две пластины с разноименными электрическими зарядами должны притягиваться. Принцип виртуальной работы во втором случае был применен неправильно, мы не приняли во внимание виртуальную работу, производимую источником, заряжающим конденсатор. Это значит, что для того, чтобы удержать потенциал при постоянном значении V, когда меняется емкость, источник электричества должен снабдить конденсатор зарядом VΔC. Но этот заряд поступает при потенциале V, так что работа, выполняемая электрической системой, удерживающей заряд постоянным, равна V 2 ΔC. Механическая работа FΔz плюс эта электрическая работа V 2 ΔC вместе приводят к изменению полной энергии конденсатора на 1 /2V 2 ΔC. Поэтому на механическую работу, как и прежде, приходится FΔz= – 1 /2 V 2 ΔC.

Источник

Учебники

Разделы физики

Журнал «Квант»

Лауреаты премий по физике

Общие

Слободянюк А.И. Физика 10/16.7

§16. Превращение энергии в электрических и магнитных явлениях

16.7 Изменение энергии конденсатора при изменении его емкости.

Энергия конденсатора зависит от его емкости. Емкость конденсатора можно изменять, когда он заряжен — при этом будет изменяться его энергия. При рассмотрении этих процессов можно выделить два принципиально различных случая: первый — изменение емкости происходит при неизменных зарядах на обкладках; второй – емкость конденсатора изменяется при постоянном напряжении между обкладками (в этом случае конденсатор подключен к источнику постоянной ЭДС).

Img Slob-10-16-152.jpg

Рассмотрим теперь превращения энергии при изменении емкости плоского конденсатора, образованного двумя параллельными одинаковыми платинами площади S. Размеры пластин будем считать значительно превышающими расстояние между ними, что позволяет пренебречь краевыми эффектами, то есть считать электрическое поле \(

\vec E\) однородным (Рис. 152). Пусть конденсатор заряжен, так что заряды каждой пластины одинаковы по модулю и равны q и противоположны по знаку, поверхностная плотность заряда на каждой пластине равна \(

Читайте также:  Напряжение коллектора транзистора выходного

\sigma = \frac\). Напряженность поля между пластинами в этом случае равна

причем заряды каждой пластины создают поле, напряженность которого в два раза меньше напряженности суммарного поля (1); разность потенциалов между пластинами равна

Так заряды пластин разноименные, то пластины будут притягиваться друг к другу с некоторой силой F. Сила, действующая на одну пластину, равна произведению ее заряда на напряженность поля, создаваемого зарядом второй пластины,

Этой формуле можно придать иной вид, если выразить силу через напряженность электрического поля с помощью формулы (1)

Важно отметить, что давление электрического поля на проводящую платину в точности равно объемной плотности энергии поля

Чтобы изменить (для определенности увеличить см. Рис. 152) расстояние между пластинами, к ним необходимо приложить внешнюю силу F, превышающую по модулю силе электрического притяжения. При перемещении пластины (увеличении расстояния) на величину Δh эта внешняя сила совершит положительную работу.

Если пластины конденсатора изолированы, то электрический заряд и, как следствие, напряженность поля и сила притяжения не зависят от расстояния между пластинами. Поэтому работа внешней силы по перемещению пластины на расстояние Δh будет минимальна, когда эта сила равна силе притяжения между пластинами, при этом

A = F_0 \Delta h = \frac<\varepsilon_0 E^2> <2>S \Delta h\) . (6)

Благодаря этой работе возрастает энергия электрического поля – при неизменной напряженности и плотности энергии возрастает объем, занятый полем (\(\Delta V = S \Delta h\)), что выражается формулой

A = \Delta W = w \Delta V\) . (7)

При увеличении расстояния между пластинами емкость конденсатора изменяется (уменьшается). Изменение энергии конденсатора можно также рассчитать, с помощью формулы для его энергии, причем следует выразить энергию через не изменяющийся в данном случае заряд конденсатора, то есть

Эта формула равносильна полученным выше выражениям для изменения энергии. Таким образом, в рассмотренном процессе превращения энергии понятны: работа внешней силы увеличивает энергию электрического поля конденсатора.

Img Slob-10-16-153.jpg

Рассмотрим теперь этот же процесс при условии, что обкладки конденсатора подключены к источнику постоянной ЭДС (Рис. 153). В этом случае при изменении расстояния между пластинами, остается неизменным напряжение U = ε между ними.

В этом случае разноименно заряженные пластины также притягиваются, поэтому для увеличения расстояния между ними внешняя сила также совершает положительную работу, однако при этом энергия конденсатора уменьшается, а не растет! Действительно, при постоянном напряжении между пластинами, изменение энергии конденсатора рассчитывается по формуле

В данном случае эта сила зависит от расстояния между пластинами. Поэтому для расчета работы необходимо разбить процесс движения пластины на малые участки и затем просуммировать работы на этих участках. Чтобы избежать этой громоздкой математической процедуры, будем считать, что смещение Δh мало настолько, что можно пренебречь изменением силы притяжения. В этом приближении работа внешней силы будет равна

\delta A_0 = F \Delta h = \frac<\varepsilon_0 U^2 S> <2 h^2_0>\Delta h\) . (11)

Преобразуем также выражение для изменения энергии конденсатора с учетом малости смещения. Запишем \(h_1 = h_0 + \Delta h\) и подставим в формулу (9)

Наконец, найдем работу по зарядке источника, которая равна произведению «вернувшегося» заряда на ЭДС источника (которая равна напряжению конденсатора):

Итак, проведенный расчет полностью подтверждает сделанные ранее заключения: увеличение энергии источника (что равносильно — работа по его подзарядке) равно сумме работы внешней силы и уменьшения энергии поля конденсатора

\Delta W_ = \delta A_0 + (-\Delta W_C)\) .

Задание для самостоятельной работы.

  1. Докажите, что в рассмотренном процессе энергетический баланс выполняется при любом (не малом) смещении пластины.

Признавая, что «аналогии ничего не доказывают, но много объясняют», рассмотрим гидростатическую аналогию преобразования энергии при изменении «емкости» сосуда. Как мы указывали, аналогом электрического заряда может служить объем жидкости, налитой в сосуд, аналогом изменения потенциала – изменение уровня жидкости, тогда аналогом электроемкости вертикального сосуда служит площадь его дна. Таким образом, изменению емкости должно соответствовать изменение площади поперечного сечения сосуда. Представим себе сосуд в форме параллелепипеда (аквариума), одна из стенок которого может двигаться – при ее смещении изменяется площадь сосуда, то есть изменяется его «емкость». При уменьшении площади сосуда уменьшается «емкость». В рассмотренных электростатических примерах – уменьшению емкости конденсатора соответствует увеличению расстояния между его пластинами.

Читайте также:  Защита светодиодной ленты от скачков напряжения

Img Slob-10-16-155.jpg

Пусть теперь в нашем сосуде находится некоторый объем жидкости, уровень которой равен h (Рис. 155 ). Чтобы сместить подвижную стенку, к ней необходимо приложить некоторую внешнюю силу F. Если объем жидкости в сосуде сохраняется, то при смещении стенки ее уровень повышается, следовательно, увеличивается ее энергия. Понятно, что увеличение потенциальной энергии жидкости равно работе внешней силы.

Сравните: при неизменном объеме жидкости (электрическом заряде) уменьшение площади сосуда (емкости конденсатора) под действием внешней силы приводит к возрастанию уровня жидкости (разности потенциалов) и гидростатической энергии жидкости (электростатической энергии поля).

Img Slob-10-16-156.jpg

Если конденсатор подключен к источнику постоянной ЭДС, то его напряжение поддерживается постоянным. В гидростатической аналогии необходимо в этом случае говорить о постоянной высоте уровня жидкости в сосуде. В качестве устройства, поддерживающего постоянный уровень можно предложить, например, резиновый сосуд («грушу»), жидкость в которой поддерживается при постоянном давлении. Если теперь наш сосуд «переменной емкости» подключить к источнику постоянного давления (резиновой груше), то получим аналог конденсатора, подключенного к источнику постоянной ЭДС (Рис.156) При смещении подвижной стенки в этом случае внешняя сила также совершает положительную работу, но потенциальная энергия жидкости в сосуде уменьшается, так как уменьшается ее объем при неизменной высоте уровня. Под действием этой внешней силы часть жидкости из сосуда заталкивается в резиновую грушу, при этом энергия последней возрастает. Увеличение ее энергии равно сумме работы внешней силы и уменьшения потенциальной энергии жидкости в сосуде.

Сравниваем: при постоянном уровне жидкости в сосуде (напряжении конденсатора) уменьшение площади дна (емкости конденсатора) под действием внешней силы приводит к возвращению части жидкости (электрического заряда) в резиновый сосуд, поддерживаемый при постоянном давлении (источник постоянной ЭДС). При этом увеличение энергии жидкости в резиновом сосуде постоянного давления (источника ЭДС) равно сумме работы внешней силы и уменьшения потенциальной энергии жидкости в сосуде (энергии конденсатора).

Задание для самостоятельной работы.

  1. Докажите, что в рассмотренных гидростатических аналогиях энергетический баланс выполняется точно.

Img Slob-10-16-157.jpg

Электроемкость конденсатора зависит также от диэлектрической проницаемости вещества, находящегося между обкладками. Поэтому емкость конденсатора можно изменять, меняя вещество, находящееся между обкладками. Пусть, например, между обкладками плоского конденсатора находится диэлектрическая пластинка. Если конденсатор заряжен, то для извлечения пластинки необходимо приложить к ней внешнюю силу и совершить положительную работу. Механизм возникновения силы, действующей на пластинку со стороны электрического поля, проиллюстрирован на Рис. 157. При ее смещении изначально однородное распределение зарядов на обкладках конденсатора и поляризационных зарядов на пластинке искажается. Как следствие этого перераспределения зарядов искажается и электрическое поле, поэтому возникаю силы, стремящиеся втянуть пластинку внутрь конденсатора.

Расчет этих сил сложен, но энергетические характеристики происходящих процессов могут быть найдены без особого труда. С формальной точки зрения, не важно чем вызваны изменения емкости конденсатора, поэтому можно воспользоваться всеми рассуждениями и выводами предыдущего раздела, как для случая изолированного конденсатора (при сохранении заряда), так для конденсатора подключенного к источнику постоянной ЭДС.

Чрезвычайно интересными и практически важными являются энергетические характеристики процессов поляризации диэлектриков, однако их расчет представляет собой весьма сложную задачу. Для решения возникающих здесь проблем требует привлечения сведения о строении вещества. Некоторые из этих вопросов мы рассмотрим в следующем году после ознакомления с основами теории строения вещества.

Источник