Меню

Силовые трансформаторы как понизить напряжение

Как понизить напряжение?

За счет наличия большого количества международных стандартов и технических решений питание электронных устройств может осуществляться от различных номиналов. Но, далеко не все они присутствуют в свободном доступе, поэтому для получения нужной разности потенциалов придется использовать преобразователь. Такие устройства можно найти как в свободной продаже, так и собрать самостоятельно из радиодеталей.

В связи с наличием двух родов электрического тока: постоянного и переменного, вопрос, как понизить напряжение, следует рассматривать в ключе каждого из них отдельно.

Понижение напряжения постоянного тока

В практике питания бытовых приборов существует масса примеров работы электрических устройств от постоянного тока. Но номинал рабочего напряжения может существенно отличаться, к примеру, если из 36 В вам нужно получить 12 В, или в ситуациях, когда от USB разъема персонального компьютера нужно запитать прибор от 3 В вместо имеющихся 5 вольт.

Для снижения такого уровня от блока питания или другого источника почти вполовину можно использовать как простые методы – включение в цепь дополнительного сопротивления, так и более эффективные – заменить стабилизатор напряжения в ветке обратной связи.

Замена резистора или стабилитрона

Рис. 1. Замена резистора или стабилитрона

На рисунке выше приведен пример схемы блока питания, в котором вы можете понизить вольтаж путем изменения параметров резистора и стабилитрона. Этот узел на рисунке обведен красным кругом, но в других моделях место установки, как и способ подсоединения, может отличаться. На некоторых схемах, чтобы понизить напряжение вы сможете воспользоваться лишь одним стабилитроном.

Если у вас нет возможности подключаться к блоку питания – можно обойтись и менее изящными методами. К примеру, вы можете понизить напряжение за счет включения в цепь резистора или подобрать диоды, второй вариант является более практичным для цепей постоянного тока. Этот принцип основан на падении напряжения за счет внутреннего сопротивления элементов. В зависимости от соотношения проводимости рабочей нагрузки и полупроводникового элемента может понадобиться около 3 – 4 диодов.

Понижение постоянного напряжения диодами

Рис. 2. Понижение постоянного напряжения диодами

На рисунке выше показана принципиальная схема понижения напряжения при помощи диодов. Для этого они включаются в цепь последовательно по отношению к нагрузке. При этом выходное напряжение окажется ниже входного ровно на такую величину, которая будет падать на каждом диоде в цепи. Это довольно простой и доступный способ, позволяющий понизить напряжение, но его основной недостаток – расход мощности для каждого диода, что приведет к дополнительным затратам электроэнергии.

Понижение напряжения переменного тока

Переменное напряжение в 220 Вольт повсеместно используется для бытовых нужд, за счет физических особенностей его куда проще понизить до какой-либо величины или осуществлять любые другие манипуляции. В большинстве случаев, электрические приборы и так рассчитаны на питание от электрической сети, но если они были приобретены за рубежом, то и уровень напряжения для них может существенно отличаться.

К примеру, привезенные из США устройства питаются от 110В переменного тока, и некоторые умельцы берутся перематывать понижающий трансформатор для получения нужного уровня. Но, следует отметить, что импульсный преобразователь, которым часто комплектуется различный электроинструмент и приборы не стоит перематывать, так как это приведет к его некорректной работе в дальнейшем. Куда целесообразнее установить автотрансформатор или другой на нужный вам номинал, чтобы понизить напряжение.

С помощью трансформатора

Изменение величины напряжения при помощи электрических машин используется в блоках питания и подзарядных устройствах. Но чтобы понизить вольтаж источника в такой способ, можно использовать различные типы преобразовательных трансформаторов:

  • С выводом от средней точки – могут выдавать разность потенциалов как 220В, так и в два раза меньшее – 127В или 110В. От него вы сможете взять установленный номинал на те же 110В со средней точки. Это заводские изделия, которые массово устанавливались в старых советских телевизорах и других приборах. Но у этой схемы преобразователя имеется существенный недостаток – если нарушить целостность обмотки ниже среднего вывода, то на выходе трансформатора получится номинал значительно большей величины.

Понижение трансформатором с отводом от средней точкиРис. 3. Понижение трансформатором с отводом от средней точки

  • Автотрансформатором – это универсальная электрическая машина, которая способна не только понизить вольтаж, но и повысить его до нужного вам уровня. Для этого достаточно перевести ручку в нужное положение и проследить полученные показания на вольтметре.

Использование автотрансформатораРис. 4. Использование автотрансформатора

  • Понижающим трансформатором с преобразованием 220В на нужный вам номинал или с любого другого напряжения переменной частоты. Реализовать этот метод можно как уже готовыми моделями трансформаторов, так и самодельными. За счет наличия большого количества инструментов и приспособлений, сегодня каждый может собрать трансформатор с заданными параметрами в домашних условиях. Более детально об этом вы можете узнать из соответствующей статьи: https://www.asutpp.ru/transformator-svoimi-rukami.html

Выбирая конкретную модель электрической машины, чтобы понизить напряжение, обратите внимание на характеристики конкретной модели по отношению к тем устройствам, которые вы хотите запитать.

Наиболее актуальными параметрами у трансформаторов являются:

  • Мощность – трансформатор должен не только соответствовать, подключаемой к нему нагрузке, но и превосходить ее, хотя бы на 10 – 20%. В противном случае максимальный ток приведет к перегреву обмоток трансформатора и дальнейшему выходу со строя.
  • Номинал напряжения – выбирается и для первичной, и для вторичной цепи. Оба параметра одинаково важны, так как, выбрав модель с входным напряжением на 200 или 190В, на выходе вы при питании от 220В получится пропорционально большая величина.
  • Защита от поражения электротоком – все обмотки и выводы от них должны обязательно иметь достаточную изоляцию и защиту от прикосновения.
  • Класс пыле- влагозащищенности – определяет устойчивость оборудования к воздействию окружающих факторов. В современных приборах обозначается индексом IP.
Читайте также:  Как подключить токовый датчик по напряжению

Помимо этого любой преобразователь напряжения, даже импульсный трансформатор, следовало бы защитить от токов короткого замыкания и перегрузки в обмотках. Это существенно сократит затраты на ремонт при возникновении аварийных ситуаций.

С помощью резистора

Для понижения напряжения в цепь нагрузки последовательно включается делитель напряжения в виде активного сопротивления.

Основной сложностью в регулировке напряжения на подключаемом приборе является зависимость от нескольких параметров:

  • величины напряжения;
  • сопротивления нагрузки;
  • мощности источника.

Если вы будете понижать от бытовой сети, то ее можно считать источником бесконечной мощности и принять эту составляющую за константу. Тогда расчет резистора будет выполняться таким методом:

  • R – сопротивление резистора;
  • RН – сопротивление прибора нагрузки;
  • I – ток, который должен обеспечиваться в номинальном режиме прибора;
  • UC – напряжение в сети.

После вычисления номинала резистора можете подобрать соответствующую модель из имеющегося ряда. Стоит отметить, что куда удобнее менять потенциал при помощи переменного резистора, включенного в цепь. Подключив его последовательно с нагрузкой, вы можете подбирать положение таким образом, чтобы понизить напряжение до необходимой величины. Однако эффективным способ назвать нельзя, так как помимо работы в приборе, электрическая энергия будет просто рассеиваться на резисторе, поэтому этот вариант является временным или одноразовым решением.

Видео по теме

Источник



Регулирование напряжения трансформатора

Проблема состоит в том, что напряжение в электрической сети меняется в зависимости от ее нагруженности, в то время как для адекватной работы большинства потребителей электроэнергии необходимым условием является нахождение питающего напряжения в определенном диапазоне, чтобы оно не было бы выше или ниже определенных приемлемых границ.

Поэтому и нужны какие-то способы подстройки, регулирования, корректировки сетевого напряжения. Один из лучших способов — это изменение по мере надобности коэффициента трансформации путем уменьшения или увеличения числа витков в первичной или во вторичной обмотке трансформатора, в соответствии с известной формулой: U1/U2 = N1/N2.

Силовой трансформатор

Для регулировки напряжения на вторичных обмотках трансформаторов, с целью поддержания у потребителей правильной величины напряжения, — у некоторых трансформаторов предусмотрена возможность изменять соотношение витков, то есть корректировать таким образом в ту или иную сторону коэффициент трансформации.

Подавляющее большинство современных силовых трансформаторов оснащено специальными устройствами, позволяющими выполнять регулировку коэффициента трансформации, то есть добавлять или убавлять витки в обмотках.

Такая регулировка может выполняться либо прямо под нагрузкой, либо только тогда, когда трансформатор заземлен и полностью обесточен. В зависимости от значимости объекта, и от того, насколько часто необходимы данные регулировки, — встречаются более или менее сложные системы переключения витков в обмотках: осуществляющие ПБВ — «переключение без возбуждения» или РПН — «регулирование под нагрузкой». В обеих случаях обмотки трансформатора имеют ответвления, между которыми и происходит переключение.

Устройство силового трансформатора

Переключение без возбуждения

Регулирование напряжения трансформатора

Переключение без возбуждения выполняют от сезона — к сезону, это плановые сезонные переключения витков, когда трансформатор выводится из эксплуатации, что конечно не получилось бы делать часто. Коэффициент трансформации изменяют, делают больше или меньше в пределах 5%.

На мощных трансформаторах переключение выполняется с помощью четырех ответвлений, на маломощных — при помощи всего двух. Данный тип переключения сопряжен с прерыванием электроснабжения потребителей, поэтому и выполняется он достаточно редко.

Зачастую ответвления сделаны на стороне высшего напряжения, где витков больше и корректировка получается более точной, к тому же ток там меньше, переключатель выходит компактнее. Изменение магнитного потока в момент такого переключения витков на понижающем трансформаторе очень незначительно.

Если требуется повысить напряжение на стороне низшего напряжения понижающего трансформатора, то витков на первичной обмотке убавляют, если требуется понизить — прибавляют. Если же регулировка происходит на стороне нагрузки, то для повышения напряжения витков на вторичной обмотке прибавляют, а для понижения — убавляют. Переключатель, применяемый на обесточенном трансформаторе, называют в просторечии анцапфой.

Место контакта, хотя и выполнено подпружиненным, со временем оно подвергается медленному окислению, что приводит к росту сопротивления и к перегреву. Чтобы этого вредного накопительного эффекта не происходило, чтобы газовая защита не срабатывала из-за разложения масла под действием излишнего нагрева, переключатель регулярно обслуживают: дважды в год проверяют правильность установки коэффициента трансформации, переключая при этом анцапфу во все положения, дабы убрать с мест контактов оксидную пленку, прежде чем окончательно установить требуемый коэффициент трансформации.

Также измеряют сопротивление обмоток постоянному току, чтобы убедиться в качестве контакта. Эту процедуру выполняют и для трансформаторов, которые долго не эксплуатировались, прежде чем начинать их использовать.

Регулирование под нагрузкой

Оперативные переключения осуществляются автоматически либо в вручную, прямо под нагрузкой, там где в разное время суток напряжение сильно изменяется. Мощные и маломощные трансформаторы, в зависимости от напряжения, имеют РПН разных диапазонов — от 10 до 16% с шагом в 1,5% на стороне высшего напряжения, — там, где ток меньше.

Здесь, конечно, есть некоторые сложности: просто рвать цепь на мощном трансформаторе нельзя, т. к. в этом случае возникнет дуга и трансформатор просто выйдет из строя; кратковременно витки замыкаются между собой накоротко; необходимы устройства ограничения тока.

Читайте также:  Перепад напряжения для дхо

Токоограничительные реакторы в системах РПН

Регулирование под нагрузкой с ограничением тока позволяет осуществить система с двумя контакторами и двухобмоточным реактором.

К двум обмоткам реактора подключено по контактору, которые в обычном рабочем режиме трансформатора сомкнуты, примыкая к одному и тому же контакту на выводе обмотки. Рабочий ток проходит через обмотку трансформатора, затем параллельно через два контактора и через две части реактора.

В процессе переключения один из контакторов переводится на другой вывод обмотки трансформатора (назовем его «вывод 2»), при этом часть обмотки трансформатора оказывается накоротко шунтирована, а рабочий ток ограничивается реактором. Затем второй контакт реактора переводится на «вывод 2».

Процесс регулирования завершен. Переключатель с реактором имеет небольшие потери в средней точке, так как ток нагрузки наложен на конвекционный ток двух переключателей, и реактор может все время находится в цепи.

Токоограничительные резисторы в системах РПН

Альтернатива реактору — триггерный пружинный контактор, в котором происходит последовательно 4 быстрых переключения с использованием промежуточных положений, когда ток ограничивается резисторами. В рабочем положении ток идет через шунтирующий контакт К4.

Когда требуется произвести переключение цепи из положения II в положение III (в данном случае — с меньшим количеством витков), — избиратель переводится с контакта I на контакт III, затем параллельно замкнутому контактору К4 подключается резистор R2 через контактор К3, затем контактор К4 размыкается, и теперь ток в цепи ограничен только резистором R2.

Следующим шагом замыкается контактор К2, и часть тока устремляется также через резистор R1. Контактор К3 размыкается, отсоединяя резистор R2, замыкается шунтирующий контакт К1. Переключение завершено.

Если у переключателя с реактором реактивный ток прервать трудно, и поэтому он используется чаще на стороне низкого напряжения с большими токами, то быстродействующий переключатель с резисторами успешно используется на стороне высокого напряжения с относительно малыми токами.

Источник

Регулирование напряжения на выходе трансформатора

Напряжение на вторичной обмотке трансформатора ТМ 6/0,4 при холостом ходе составляет 400 В, когда на первичную обмотку подано 6000 В. При подключении нагрузки потери напряжения в трансформаторе и питающей линии составят 5% (20 В) и напряжение на зажимах электроприемника будет равно номинальному значению 380 В. Напряжение на вторичной обмотке трансформатора ТМ 35/6,3 при холостом ходе составляет 6300 В, когда на первичную обмотку подано 35000 В.

В питающей линии от трансформатора ТМ 35/6,3 до трансформатора ТМ 6/0,4 и в самом трансформаторе ТМ 35/6,3 потери напряжения составляют 5% (300 В) и на первичную обмотку трансформатора ТМ 6/0,4 поступит напряжение 6000 В (рис. 2.67).

Рис. 2.67. Схема питания трансформатора ТМ 6/0,4 и электроприемника

Если подстанция ТМ 35/6,3 расположена близко к подстанции 6/0,4, то потери напряжения в питающей линии будут минимальные и на первичную обмотку трансформатора ТМ 6/0,4 будет поступать напряжение больше номинального, равного 6000 В, например, 6300 В.

Напряжение на вторичной обмотке трансформатора ТМ 6/0,4 будет больше 400 В на 5%, т.е. 420 В. На зажимах электроприемника напряжение будет больше номинального, равного 380 В и составит 400 В. Перенапряжение на зажимах электроприемника, например, лампах накаливания приводит к быстрому выходу из строя (перегорают).

Если подстанция 35/6,3 расположена далеко от подстанции 6/0,4, то потери напряжения в питающей линии будут максимальные и на первичную обмотку трансформатора ТМ 6/0,4 будет поступать напряжение меньше номинального, равного 6000 В, например, 5700 В (что на 5% меньше 6000 В). Напряжении е на вторичной обмотке трансформатора ТМ 6/0,4 будет меньше 400 В на 5%, т.е. 380 В. Напряжение на зажимах электроприемника будет меньше номинального 380 В и составит 360 В. Пониженное напряжение на зажимах асинхронных электродвигателей ведет к снижению вращающего момента и повышенному нагреву. Необходимо сделать так, чтобы когда напряжение на первичной обмотке трансформатора ТМ 6/0,4 больше номинального, или когда оно меньше номинального напряжения на вторичной обмотке, оно было равно 400 В. С этой целью в трансформаторе ТМ 6/0,4 на стороне ВН первичной обмотки имеется основная и дополнительные отпайки.

Основная отпайка соответствует номинальному напряжению 6000 В и номинальному коэффициенту трансформации (рис. 2.68).

Рис. 2.68. Ответвления от первичной обмотки трансформатора

Если =6000 В, переключатель П находится в среднем положении на основной отпайке и напряжение =400 В при холостом ходе.

где – число витков первичной обмотки; – число витков вторичной обмотки.

Если =6,300 В, то необходимо увеличить коэффициент К.

Из соотношения необходимо увеличить число витков . Переключатель П устанавливается в положение +5%.

Если =5700 В, то необходимо уменьшить коэффициент К, т.е. уменьшить число витков . Переключатель П устанавливается в положение -5% и вторичное напряжение, равное станет равно 400 В.

Переключение ответвлений производится только после отключения трансформатора от сети и называется «переключение ответвлений обмоток без возбуждения (ПБВ)».

Более совершенным является регулирование под нагрузкой (РПН), осуществляемое без разрыва цепи. Переключатель помещается в общем баке трансформатора над магнитопроводом и приводится в действие электродвигателем. В комплект РПН входят переключающее устройство и блок автоматического управления приводом.

В табл. 2.18 представлены данные мощностей силовых трансформаторов.

Таблица 2.18

Шкала номинальных мощностей силовых трансформаторов

Номинальные мощности, кВ·А Габариты
I
II
III
IV

Отношения мощностей: 16/10=1,6; 25/16=1,6; 40/25=1,6; 63/40=1,6.

Приключательные пункты

Приключательный пункт представляет собой высоковольтную ячейку, предназначенную для подключения питания и защиты электрооборудования экскаваторов, драг и других технологических машин открытых горных работ в электрических сетях напряжением 6 и 10 кВ. Внутри ячейки установлены высоковольтные аппараты: разъединитель, вакуумный выключатель, трансформатор тока, измерительный трансформатор напряжения, предохранители. Напряжение 6 кВ от ВЛ-6 через проходные изоляторы в крыше подается на неподвижные контакты разъединителя РВЗ (рис. 2.69, 2.70).

Читайте также:  Преобразователи переменного напряжения предназначены для

Рис. 2.69. Схема включения защит в ЯКНО:

Р – разъединитель; В – выключатель; ТТА, ТТС – трансформаторы тока в фазах

А и С; НОМ-6 – трансформатор напряжения однофазный; 1 – пружина выключателя; 2 – защелка; 3 – катушка напряжения 100 В; 4 – катушка токовая, запитана от ТТ

фазы С; 5 – катушка токовая, запитана от ТТ фазы А; 6 – пружина катушки

напряжения; 7 – контакт реле земляной защиты

С 1975 г. изготавливались приключательные пункты с масляными выключателями типа ЯКНО-6(10) (ячейка комплектная наружная одиночная), позднее, с 2000 г. с вакуумным выключателем типа КРУПЭ (комплектное распределительное устройство передвижное экскаваторное).

В настоящее время изготавливается ячейка высоковольтная приключательная типа ЯВП-6 УХЛ1, содержащая автогазовый выключатель нагрузки ВНПР-10/630-2бз с двумя комплектами заземляющих ножей, вакуумный выключатель ВБЭМ-10-12,5/800, трансформатор собственных нужд ОЛС-1,25/6, предохранитель токоограничивающий ПКТ-6-2, ограничитель перенапряжений ОПН-КС-6/4,7. Габаритные размеры 770 х 1425 х 2330 мм. (ширина х глубина х высота). Масса 580 кг. Степень защиты IP-55. Коммутационный ресурс вакуумного выключателя 50 тыс. циклов ВО при номинальном токе 800 А. Изготовитель ЯВП-6/300 компания «Объединенная энергия» г. Москва.

Защиты в ЯКНО-6(10)

В ЯКНО имеется 4 вида защит:

Работа нулевой защиты. При включении разъединителя Р измерительный трансформатор напряжения НОМ-6 выдает 100 В и катушка 3 втягивает свой сердечник, сжимая пружину 7 под сердечником. Пока есть напряжение в сети, эта пружина сжата. Если напряжение в сети исчезнет, то пружина выталкивает сердечник из катушки, который ударяет по защелке 2 и взведенная пружина 1 выключателя отключает выключатель В.

Зачем нужно отключать выключатель, когда исчезает напряжение в сети? Если этого не сделать, то при появлении напряжения 6 кВ и включенном выключателе сетевой двигатель начнет вращаться, на генераторах появится напряжение и механизмы подъема, тяги (напора), вращения начнут движение без машиниста, что приведет к их поломке. Такая защита установлена и на двигателях подъемных машин, компрессоров и других механизмов во всем мире.

Работа минимальной защиты. Если напряжение в сети понизится до 0,6 (0,6·6000 = 3600 В), то катушки напряжения 3 не в силах удержать сердечник и пружина его выталкивает, он ударяет по защелке и выключатель отключается.

Зачем нужна эта защита? При уменьшении напряжения в сети ток в обмотке статора сетевого двигателя увеличивается выше номинального значения и двигатель начнет перегреваться и может сгореть. Защита своевременно его отключит.

Работа максимальной токовой защиты. При нормальном режиме работы ток в фазах сети и кабеле равен номинальному и во вторичной обмотке трансформатора (не более 5 А). Токовые катушки слабо втягивают свои сердечники, и они остаются неподвижными. При коротком замыкании в кабеле и в сетевом двигателе ток увеличивается в десятки раз и более, во столько же раз увеличивается ток в токовой обмотке, сердечник резко втягивается, ударяет по защелке и выключатель отключает место короткого замыкания. Время отключения составляет порядка 1 секунды. Если не отключить ток быстро, то возможно загорание поврежденного кабеля.

Работа земляной защиты. От вторичных обмоток трехфазного измерительного трансформатора напряжения типа НТМИ-6 запитываются:

1. Катушка нулевой защиты напряжением 100 В.

2. Реле земляной защиты РЗЗ.

При нормальном режиме (нет обрыва ни одной фазы сети) напряжение на реле РЗЗ отсутствует. При замыкании какой-либо фазы на землю появляется напряжение на концах вторичной обмотки, соединенной в открытый треугольник, реле РЗЗ включается и размыкает свой контакт в цепи нулей катушки, которая, обесточившись, отключает выключатель.

2.13. Контрольные вопросы к главе 2

1. Назначение разъединителя. Почему нельзя отключать нагрузку разъединителем? Процесс образования «взрыва».

2. Конструкция разъединителя для внутренней установки. Основные детали, привод. Расшифруйте РВ-6/400.

3. Конструкция разъединителя для наружной установки. Основные детали, привод. Расшифруйте РЛН-10/600.

4. Конструкция разъединителя с заземляющими ножами. Порядок работы с ним. Блокировка. Условное обозначение разъединителя с заземляющими ножами. Расшифруйте РВЗ-6/600.

5. Условное обозначение трехфазного разъединителя в трехлинейном и однолинейном изображениях с заземляющими ножами и без них.

6. Порядок отключения электроустановки для ремонта.

7. Устройство, принцип действия, назначение и условное обозначение выключателя нагрузки. Расшифровка ВНА-10/630.

8. Устройство и принцип действия масляного выключателя ВМБ-10. Масляные выключатели горшкового типа ВМП-10/630.

9. Устройство и принцип действия воздушных и электромагнитных выключателей.

10. Устройство и принцип действия элегазовых выключателей.

11. Устройство и принцип действия вакуумных выключателей.

12. Устройство однофазного измерительного трансформатора напряжения НОМ-6, НОМ-10, НОМ-35, НОЛ-6.

13. Устройство трехфазного трансформатора напряжения типа НТМИ-6.

14. Приборы и реле, подключаемые к НОМ-6.

15. Устройство трансформатора тока. Схема подключения амперметра. Шкала трансформатора тока 1000/5. Одновитковые и многовитковые трансформаторы тока.

16. Встроенные трансформаторы тока. Условное обозначение трансформатора тока.

17. Устройство, назначение высоковольтных предохранителей. Условное обозначение.

18. Устройство и назначение разрядников трубчатых и подстанционных. Условное обозначение.

19. Устройство и назначение ограничителей напряжений (ОПН). Условное обозначение.

20. Устройство и назначение короткозамыкателей и отделителей. Схема их совместной работы. Условное обозначение.

Глава 3. Электрические сети

Источник