Меню

Симисторный регулятор мощности ламп

Схемы регуляторов мощности (диммеров) на симисторах.

Принцип работы симисторных регуляторов мощности (напряжения) в цепях
переменного тока.

Что такое симистор, принцип его работы, а также справочные характеристики некоторых популярных приборов мы с Вами внимательно рассмотрели на странице &nbspСсылка на страницу.
Там же мы отметили, что симистор пришёл на смену рабочей лошадке-тиристору и практически полностью вытеснил его из электроцепей переменного тока.

Вспомним пройденный материал.
Отличительной чертой симистора является то, что при подаче на его управляющий электрод тока (напряжения), прибор переходит в проводящее состояние, замыкая нагрузку, причём проводит ток, независимо от полярности, приложенного к нагрузке напряжения.
Полярность открывающего напряжения должна быть либо отрицательной для обеих полярностей напряжения на условном аноде, либо совпадать с полярностью «анодного» напряжения (т.е. быть плюсовой в момент прохождения положительной полуволны и минусовой — в момент прохождения отрицательной).

Итак. Важным плюсом симисторных схем в электроцепях переменного тока является отсутствие выпрямительных устройств, и двухполюсность напряжения в нагрузке, что даёт возможность подключать их, помимо всего прочего, как трансформаторам, так и электродвигателям переменного тока.

Познакомимся с расхожими схемами симисторных регуляторов.

Для начала давайте рассмотрим простейшую, но вполне себе работоспособную схему симисторного регулятора мощности с фазово-импульсным управлением, позволяющего работать с нагрузками вплоть до 1200 Вт.

Рис.1

При замене симистора на другой, с большей величиной допустимого тока, мощность нагрузки можно увеличивать практически неограниченно.

А теперь — как это всё работает?
В начале действия положительного полупериода симистор закрыт. По мере увеличения сетевого напряжения конденсатор С1 заряжается через последовательно соединённые резисторы R1 и R2. Причём увеличение напряжения на конденсаторе С1 отстаёт (сдвигается по фазе) от сетевого на величину, зависящую от суммарного сопротивления резисторов и номинала ёмкости С1. Чем выше значения резисторов и конденсатора — тем больше сдвиг по фазе.
Заряд конденсатора продолжается до тех пор, пока напряжение на нём не достигнет порога пробоя динистора (около 35 В). Как только динистор откроется (следовательно, откроется и симистор), через нагрузку потечёт ток, определяемый суммарным сопротивлением открытого симистора и нагрузки.
При этом симистор остаётся открытым до конца полупериода, т.е. момента, когда полуволна сетевого напряжения приблизится к нулевому уровню.
Переменным резистором R2 устанавливают момент открывания динистора и симистора, производя тем самым регулировку мощности, подводимой к нагрузке.

При действии отрицательной полуволны принцип работы устройства аналогичен.

Диаграммы напряжения на нагрузке при различных значениях переменного резистора приведены на Рис.1 справа.

Для предотвращения ложных срабатываний триаков, вызванных переходными процессами в индуктивных нагрузках (например, в электродвигателях и обмотках трансформаторов), симисторы должны иметь дополнительные компоненты защиты. Это, как правило, демпферная RC-цепочка (снабберная цепь) между силовыми электродами триака, которая используется для ограничения скорости изменения напряжения (на схеме Рис.1 показана синим цветом).
В некоторых случаях, когда нагрузка имеет ярко выраженный ёмкостной характер, между силовыми электродами необходима индуктивность для ограничения скорости изменения тока при коммутации.

Существуют и различные модификации приведённой выше простейшей схемы диммера.

Рис.2

Дополнительная цепочка R3 C2 (Рис.2 слева) призвана увеличить максимально достижимый фазовый сдвиг между сетевым напряжением и напряжением, поступающим на левый вывод динистора, что в свою очередь позволяет производить более глубокую регулировку мощности, подводимой к нагрузке.

На схеме, приведённой на Рис.2 справа, цепь, образованная диодами D1, D2 и резистором R1, обеспечивает плавность регулировки при минимальной выходной мощности. Без неё характеристика управления регулятором имеет гистерезис, что проявляется в скачкообразном повышении регулируемой мощности от нуля до 3. 5% от максимальной.
Диодно-резисторная цепочка разряжает конденсатор при переходе сетевого напряжения от отрицательной к положительной полуволне и, тем самым, устраняет эффект скачкообразного начального увеличения мощности в нагрузке.

Симисторный регулятор мощности

Изредка можно встретить устройства, в которых регулировка мощности производится посредством отдельной схемы, которая формирует импульсы с регулируемой длительностью для управления симистором.
Такие диммеры обладают значительно лучшими характеристиками, чем представленные выше, однако обратной стороной медали является повышенная сложность устройств и необходимость наличия отдельного источника питания схемы. Исключения составляют устройства, выполненные на специализированных ИМС. Примером такой микросхемы является фазовый регулятор КР1182ПМ1.

Рис.3

Применение КР1182ПМ1 в регуляторах мощности (Рис.3) позволяет добиваться как хорошей повторяемости, так и широкого диапазона перестройки и высокой температурной стабильности.

А если уж мы решили заморачиваться созданием отдельной схемы формирования управляющих импульсов, то имеет смысл отказаться от фазово-импульсного метода управления, и обратиться в сторону регуляторов мощности, работающих по принципу пропускания через нагрузку определённого целого числа периодов сетевого напряжения в единицу времени.
При таком способе регулирования появляется возможность включения симистора вблизи точки пересечения сетевым переменным напряжением нулевого потенциала, вследствие чего радикально снижается уровень помех, вносимых в электросеть.
Освещение таким диммером не запитаешь ввиду заметного мерцания, а вот для беспомехового регулирования мощности электронагревательных приборов — самое то.

Симисторный регулятор мощности

Данная схема (Рис.4) перекочевала со страницы https://www.radiokot.ru/circuit/power/converter/50/ и представляет собой модификацию регулятора мощности, описанного в журнале Радио, 2009, № 9, с. 40–41 «В.Молчанов Симисторный регулятор мощности». Вот, что пишет автор.

«Устройство предназначено для беспомехового регулирования мощности электронагревательных приборов, работающих от сети переменного тока 220 В.
Кроме снижения уровня коммутационных помех, в регуляторе реализован принцип пропускания в нагрузку целого числа периодов сетевого напряжения. При таком способе регулирования с высокой точностью обеспечивается отсутствие постоянной составляющей напряжения на нагрузке, вследствие чего дополнительно снижается уровень искажений, вносимых в электросеть. Это особенно важно в случае мощной нагрузки.
Максимальная мощность нагрузки, подключаемой к регулятору, составляет 1 кВт. Потребляемый регулятором ток от сети не превышает 4 мА (действующее значение), типовое потребление – 3,5 мА.

На микросхеме DD1 и элементах R1, C1, VD1, VD2 выполнен синхронизированный с сетью генератор прямоугольных импульсов. Период импульсов, вырабатываемых генератором, составляет около 1,3 с. Резистор R1 регулирует скважность импульсов. Элементы DD1.1, DD1.2 и DD1.3, DD1.4 включены как два RS‑триггера, на входы которых (выводы 1 и 9 микросхемы) через делитель R7R6 поступает часть сетевого напряжения. Транзисторы VT1 и VT2 выполняют функцию мощного инвертора логических сигналов для управления симистором. Питание устройства осуществляется через параметрический стабилизатор, в котором задействованы балластный резистор R7, стабилитрон VD3 и сглаживающий конденсатор C3. Когда напряжение на верхнем по схеме сетевом выводе относительно нижнего отрицательное, стабилитрон VD3 пропускает ток в прямом направлении, когда положительное – ограничивает напряжение на выводах 1 и 9 микросхемы DD1 на уровне 10 В. Ток, проходящий через эти выводы и внутренние защитные диоды микросхемы, заряжает конденсатор C3 до напряжения около 9,2 В, которое служит для питания низковольтной части устройства. Использование защитных диодов микросхемы не приводит к её защёлкиванию, поскольку амплитудное значение тока через резистор R7 ограничено и составляет около 5 мА.

Читайте также:  Генератор от камаза мощность

Во время проверки регулятора мощности удобно в качестве нагрузки подключить лампу накаливания (желательно на 100 Вт или более). Устройство обычно не нуждается в налаживании, но если оказалось, что симистор VS1 открывается ненадёжно (лампа в нагрузке не включается или мерцает), можно попробовать уменьшить сопротивление резистора R4 или подобрать экземпляр симистора с меньшим током открывания. Резистор R4 позволяет выставить мгновенное напряжение сети, при котором происходит открывание симистора. Это напряжение может быть рассчитано по формуле Uпор ≈ Uпит∙R7/(2∙R4), где Uпит ≈ 9,2 В – напряжение на конденсаторе C3, сопротивления резисторов R6 и R7 должны быть равны. Уменьшение сопротивления резистора R4 обеспечивает более надёжное открывание симистора, но увеличивает уровень создаваемых помех, поэтому делать его сопротивление менее 30 кОм нежелательно».

И конечно, было бы совсем неправильно не упомянуть о таком важном представителе симисторного семейства, как — оптосимистор.
Оптосимистор включается посредством освещения полупроводникового слоя и представляет собой комбинацию оптоизлучателя и симистора в одном корпусе. Преимущество — простая однополярная схема управления и гальваническая изоляция цепей управления от фаз сетевого напряжения.

Оптосимисторы могут коммутировать нагрузку как сами (Рис.5),

Симисторный регулятор мощности

Рис.5

так и управлять более мощными симисторами (Рис.6).

Симисторный регулятор мощности

Рис.6

За счёт полной гальванической развязки управляющих цепей оптосимистора, основное его предназначение — это управление мощностью нагрузки при помощи логических устройств или микроконтроллеров с собственными цепями питания.

Рис.7

В качестве примера на Рис.7 приведена схема регулятора мощности паяльника.
Вот, как работу этой схемы описывает уважаемый Falconist на странице сайта http://forum.cxem.net .

«Оптосимистор серии МОС204х/306х/308х содержит внутри себя схему пересечения питающим напряжением нуля, т.е. открывается только в точке нулевого значения синусоидального сетевого напряжения, независимо от момента поступления управляющего напряжения на его светодиод. Тем самым обеспечивается ключевой режим подключения нагрузки, с практически полным отсутствием ВЧ помех, проникающих в сеть 220 В. Поэтому его замена на оптосимисторы МОС302х/305х, не имеющих такой схемы, крайне нежелательна, т.к. порочит сам принцип беспомехового регулирования.
Конденсатор С1 является балластным реактивным сопротивлением. Ток, который он пропускает совместно с подключенным параллельно ему резистором R1,приближенно составляет 16 мА. Данный ток используется для питания таймера DA1 и инфракрасного светодиода оптрона DA2».

Работа таймера, формирующего управляющий сигнал для оптотиристора, аналогична работе DD1 на Рис.4 и сводится к формированию импульсов с изменяемой скважностью.

Источник



Наладка и исследование регулятора мощности

Сегодня на блоге публикую статью, с которой выступает в Конкурсе наш постоянный читатель, писатель и комментатор – Алексей Сидоркин, известный также под ником Alex S. Статья участвует в Конкурсе статей лета 2017 г. Алексей не раз принимал участие в Конкурсах, привлекая внимание читателей, и вызывая живое обсуждение.

На этот раз статья – целое исследование с применением компьютерного моделирования и построения графиков в программе Excel. Программу, кстати, можно будет скачать в конце статьи.

Итак, слово Автору:

Наладка регулятора мощности на симисторе

На мой взгляд, представленный материал будет интересен для любителя тем, что показывает экспериментальную возможность подбора состава элементов и их номиналов, исходя из наличия. Вместе с тем, дает практику работы с электронной таблицей Excel в виде ссылки на xls-файл с открытым кодом .

Excel – мощный инструмент и для дома, и для работы любого специалиста, великолепно поддается программированию на языке VB Excel. Литературы и справочников по Excel масса, наиболее удачные, с моей точки зрения, могу отметить в комментариях на СамЭлектрик. Автор разработал ряд программ на базе Excel, успешно используемых теперь реальными предприятиями.

Исходная схема регулятора мощности

Исходная схема с «приблизительными» номиналами элементов была собрана на плате от регулятора яркости бывшей настольной лампы из 70-х годов прошлого века, а элементы L1, C1, L2, C2 просто остались. В качестве прототипа взята схема регулятора мощности на симисторе с неоновой лампой на управляющем электроде. Элементная база, включая симистор BT139-600B, изменена по наличию. Элементы силовой цепи на схемах рис.1 и рис.4 выполнены толстыми линиями, элементы управления – тонкими.

Экспериментальная наладка

Наладка обычно производится после нового монтажа, а также после замены какого-либо элемента изделия. Цель – согласование номиналов элементов управления с силовой цепью устройства, главным образом с конкретным симистором, при удовлетворительной линейности характеристики. В процессе наладки рассматриваемого устройства производились измерения напряжения и тока нагрузки (для расчета мощности) или непосредственно измерение потребляемой мощности при различных углах поворота движка регулятора.

Для оценки работы регулятора мощности фиксировались параметры одних и тех же, но разных по мощности активных нагрузок (лампа накаливания, кипятильник в стакане с водой и утюг номинальной мощностью соответственно 100, 500 и 1000 Вт). С целью удобства сопоставления и обобщения результатов экспериментов, анализировались не абсолютные значения мощности, а их относительные (приведенные) величины.

Параметры нагрузки в зависимости от угла поворота движка регулятора

Пояснения к таблице, скопированной из Excel-файла:

  • угол поворота 290° – это упор резистора;
  • U – напряжение на нагрузке, прямое измерение, мультиметр M890F (исходная схема без R4);
  • I – ток нагрузки, прямое измерение, мультиметр DT9208A (исходная схема без R4);
  • P = U * I – потребляемая мощность, расчетное значение;
  • P отн. = P / Pmax – относительная (приведенная) мощность, расчетное значение;
  • расцветка выделенных значений параметров соответствует расцветке линий на графике;
  • индекс “w” относится к измерениям с использованием ваттметра DuVolt PowerMeter (уже с R4);
  • «цифровое заполнение» каждой ячейки в строках “P” , “P отн.” и “P w отн.” происходит автоматически согласно формуле в ячейке (=результат математических действий со ссылкам на другие ячейки, содержащие известные величины).

В среде Excel кривые на графике выстраиваются «автоматически» по величинам из заданного диапазона ячеек таблицы. Все параметры построения и оформления графика задаются по желанию пользователя.

Как видно по ходу кривых, регулировка мощности в исходной схеме начинается только после поворота движка регулятора на угол более 45° (это поворот «впустую»), и лишь после наблюдается нарастание мощности, причем, не пропорционально углу поворота.

Читайте также:  Пульт управления усилителем мощности

С целью “линеаризации” (выпрямления) регулировочной характеристики параллельно потенциометру R2 был установлен добавочный постоянный резистор R4=750к.

Но прежде я экспериментально подобрал этот номинал, временно впаяв в схему переменный резистор 1M:

– установил угол поворота движка потенциометра/резистора R2 в положение “0” (ноль) мощности регулятора;

– вращая движок резистора R4, добился момента полного гашения нагрузки (по амперметру/ваттметру 0 – это важно! – момент эффективного воздействия всех элементов управления на открытие/закрытие симистора);

– после отключений (схемы от 220 В и R4 от схемы!) измерил сопротивление переменного резистора (у меня получилось 750к) и заменил постоянным номиналом.

Теперь (при R4=const) нужно снять характеристики наших нагрузок при различном положении движка резистора R2 (группа кривых толстыми линиями).

Измерение мощности на нагрузках

К этому времени я получил через Интернет-магазин бытовой ваттметр DuVolt PowerMeter 3 (анализатор расхода электроэнергии) и предварительно сделал несколько контрольных измерений мощности новым ваттметром и параллельно моими цифровыми мультиметрами на совпадение показаний/расчетных значений мощности. Результаты уложились в паспортные показатели точности упомянутых приборов. Покупкой ваттметра доволен.

Дальнейшее снятие характеристик (заполнение таблицы) с теми же нагрузками производил с использованием этого прибора уже без измерения напряжения и тока на нагрузке. Видно, что после установки резистора R4 характеристики сместились и стали более прямолинейными, исходящими из «0», чего и добиваются «линеаризацией».

Индуктивности/дроссели L1 и L2, как оказалось позже, сыграли отрицательную роль. А именно, будучи намотаны на ферритовых стержнях, при длительной нагрузке 1..1,5 кВт стали перегреваться, и их ПХВ-оболочка оплавилась и обуглилась. Изначально ПХВ-оболочка скрыла их “коварную” ферритовую сущность, дроссели превратились в серьезную нагрузку в силовой цепи регулятора, и их пришлось удалить из схемы. Убрал и конденсаторы на входе питания 220в.

Анализ максимальных табличных значений мощностей по нагрузкам показывает, что включенные через регулятор электроприборы не добирают своей полной мощности даже при крайнем положении движка регулятора, особенно кипятильник (470 вместо 500 Вт – 94%) и утюг (790 вместо 1000 Вт – 80%). Получается, для работы нагрузок/электроприборов на полную мощность их следует включать в сеть напрямую.

Так и предусмотрено в схемах фирменных электроинструментов – при полном нажатии курка срабатывают контакты прямого включения, минуя регулятор оборотов. Этот недостаток кроется и в схемном решении рассматриваемого регулятора и его устранение, вероятно, потребует детального анализа осциллограмм работы схемы и корректировки ее элементов, что не входит в объем представленной статьи.

  1. • Характеристики регулятора мощности.xls / , xls, 113.5 kB, скачан: 431 раз./
    – программа анализа и построения графика .
  2. Простой регулятор мощности для паяльника – https://oldoctober.com/ru/power_regulator/
  3. • Сплан — Splan_7.0_rus — программа для черчения электрических схем / Программа непрофессиональная, но очень удобна в быстром и простом начертании схем. Архив содержит русский хелп, библиотеки компонентов, файл установки, просмотрщик, файл описания. Не требует ключа активации, работает сразу после установки., rar, 3.55 MB, скачан: 16083 раз./
  4. Alt-коды вывода спецсимволов – https://ru.wikipedia.org/wiki/Alt-код

От Администратора блога.

Голосуйте за Алексея, голосование начнется в конце апреля, следите за новостями на блоге (подписывайтесь) и в группе ВК (вступайте).

На всякий случай напоминаю, что описанный в статье регулятор – почти тот же современный диммер, разве вместо тиратрона (неоновой лампы) использован динистор, по принципу действия такой же, но полупроводниковый прибор.

Принцип работы диммера на симисторе рассмотрен мной здесь, а его ремонт – здесь.

Источник

Эффективные симисторные регуляторы для светодиодных источников

James Patterson, National Semiconductor

В системах освещения уже более века повсеместно используются лампы накаливания, а в последние 50 лет для управления уровнем освещенности применяются фазовые регуляторы. Однако стандартные симисторные регуляторы на основе фазового метода регулирования плохо совместимы с системами управления современными светодиодными источниками. Что еще хуже, регуляторы могут очень сильно различаться по характеристикам. Хотя сегодня и есть новые, усовершенствованные регуляторы с фазовым управлением по обратному фронту, стандартные регуляторы с отсечкой по фазе переднего фронта настолько широко распространены в электросетях по всему миру, что производители систем LED освещения просто не могут их игнорировать. Как обычно, обратная совместимость имеет первостепенное значение.

Регуляторы освещенности с отсечкой по переднему фронту

Стандартный регулятор с фазовым управлением состоит из симистора, симметричного динистора и RC цепи (Рисунок 1). С помощью потенциометра изменяется сопротивление и, постоянная времени RC цепи управляет задержкой открытия симистора, или фазой открытия. Промежуток полуволны переменного напряжения, когда симистор находится в проводящем состоянии обозначается θ. Результирующая осциллограмма напряжения имеет вид ограниченной по фазе синусоиды.

Рисунок 1. Стандартный регулятор с фазовым управлением состоит из симистора, симметричного динистора и RC цепи.

Подобный тип регуляторов яркости хорошо работает с лампами накаливания, которые аналогичны обычной резистивной нагрузке. Среднее по времени напряжение на нити накаливания уменьшается по мере уменьшения длительности открытого состояния симистора, обеспечивая естественное плавное затухание лампы.

Симистор имеет требования к минимальному току удержания. Протекающий через него ток должен оставаться выше этого минимального уровня, чтобы гарантировать открытое состояние на протяжении соответствующей части периода синусоиды. Нагрузка в виде нити накаливания легко удовлетворяет этому условию из-за определенных и не изменяющихся величин мощности, например, 40, 60, 75 Вт.

Совместимость со светодиодами

К сожалению, твердотельные источники освещения плохо соответствуют требованиям фазового регулирования. Светодиод – это полупроводниковый прибор, контроль светового потока которого выполняется путем регулирования прямого тока. Светодиоды повышенной яркости могут потреблять ток от сотен миллиампер до ампер, и для повышения эффективности систем почти всегда применяются импульсные преобразователи.

Обычные импульсные преобразователи поддерживают напряжение на выходе независимо от среднего входного напряжения, а это означает, что ограниченная по фазе синусоида, которую дают фазовые регуляторы, сначала должна быть декодирована. Декодированная информация может быть использована в качестве опорного сигнала при регулировке выходного напряжения. Хотя эта задача и сравнительно проста для разработчиков силовой электроники, есть невидимые на первый взгляд проблемы.

Все дело в том, что нагрузка здесь не чисто резистивная. Конвертер за счет емкостных и индуктивных компонентов схемы является для фазового регулятора реактивной нагрузкой. Поэтому крутой фронт обрезаемого по фазе напряжения вызывает проблемы для обычного преобразователя. Разработчики часто используют стандартные методы RC демпфирования возникающих на фронте волны паразитных колебаний. Однако этот подход всегда сопровождают дополнительные потери мощности.

Неожиданно возникает и еще одна, даже более серьезная проблема. Эффективность светоотдачи у современных светодиодов намного выше, чем у ламп накаливания, которые более 75% своего светового потока излучают в инфракрасном спектре в виде тепла. Светодиоды, напротив, бóльшую часть светового потока излучают в видимой области спектра.

Читайте также:  Как увеличить мощность плм ямаха 4

Новейшие светодиоды повышенной яркости в пять-шесть раз более эффективны, чем аналогичные лампы накаливания, а это означает, что используемые сегодня лампы на 60 Вт могут быть заменены излучателями света мощностью от 10 до 12 Вт. Такое энергосбережение будет большим подарком для потребителей, но не для фазовых регуляторов, которым для нормальной работы требуется обеспечить минимальный ток удержания.

При достижении светодиодным источником определенного уровня затемнения симистор может отключиться раньше времени из-за снижения протекающего через него тока. Моменты преждевременного отключения, как правило, расположены асимметрично в последовательности выпрямленных полупериодов переменного тока и могут колебаться в определенном интервале. Визуальным эффектом этого колебания будет низкочастотное дрожание и мерцание света. Для предотвращения заметности мерцания преобразователь должен обеспечить дополнительную мощность, чтобы не допускать преждевременного выключения симистора.

Снижение эффективности

Расход дополнительной мощности противоречит основной задаче преобразователей питания: обеспечить эффективную, рациональную регулировку мощности. Таким образом, разработчикам необходимо решать сразу две задачи. Обеспечить эффективное преобразование энергии из сети переменного тока для светодиодной нагрузки и корректное функционирование фазового регулятора с минимизацией дополнительных потерь мощности.

Новые требования по электропитанию для многих светодиодных систем требуют использования корректоров коэффициента мощности (ККМ). Коэффициент мощности определяет, насколько хорошо энергия передается с входа на выход преобразователя. Если входной ток не имеет искажений и совпадает по фазе с входным напряжением, коэффициент мощности равен единице. Любой сдвиг фаз или искажения входного тока из-за реактивных элементов и коммутационного шума снижают коэффициент мощности.

Рисунок 2. В большинстве светодиодных систем освещения имеются ККМ, благодаря которым входной ток обычно достаточно хорошо соответствует входному напряжению, и фазовый регулятор преждевременно отключается лишь в конце интервала проводящего состояния, когда напряжение и ток уменьшаются. Отключение влечет за собой изменение угла отсечки, приводящее к ошибкам декодирования.

Поскольку в большинстве светодиодных систем освещения имеются ККМ, входной ток обычно достаточно хорошо соответствует входному напряжению, и фазовый регулятор преждевременно отключается лишь в конце интервала проводящего состояния, когда напряжение и ток уменьшаются (Рисунок 2). Отключение влечет за собой изменение угла отсечки.

Основные решения для сохранения тока удержания

Простым подходом для удовлетворения требований по току удержания является добавление резистивной нагрузки, что должно обеспечить минимальный входной ток во всем интервале проводимости. Этот метод крайне неэффективен. Для замены лампы накаливания мощностью 100 Вт требуется светодиодный излучатель мощностью всего лишь 15 Вт, при этом сохранение необходимого уровня тока удержания может привести к снижению эффективности на 10%… 20%.

Более сложный подход заключается в линейном увеличении нагрузки в каждом цикле, который включает дополнительное повышение тока удержания в конце интервала проводимости. Этот метод очень энергоэффективен, однако, его трудно реализовать при большом рабочем диапазоне.

Например, в диапазоне от 85 до 305 вольт переменного тока для универсального входа 15-ваттного светодиодного светильника наихудшее состояние для тока удержания наступает при 305 В, когда входной ток минимален. Для того чтобы гарантировать включенное состояние симистора во всем интервале проводимости при напряжении 305 В, вы должны обеспечить большой ток удержания. Из-за универсальности решения добавленный ток удержания при напряжении 85 В будет примерно в четыре раза больше, чем необходимо – это большая потеря энергии.

Динамическое удержание

Наиболее эффективным методом является регулирование минимального входного тока. В этом случае ток удержания тиристора не увеличивается, пока входной ток превышает регулируемый уровень. При понижении входного тока ниже регулируемого уровня, схема поддерживает минимально необходимый ток удержания. Этот метод, называемый динамическим удержанием, реализуется в контроллере LM3450 (Рисунок 3). Измерительный резистор между выводом диодного моста и системной «землей» обеспечивает контроль входного тока. Снимаемое с резистора напряжение VSENSE позволяет контроллеру линейно управлять током на выводе УДЕРЖАНИЕ в соответствии c минимальным регулируемым входным током. Это гарантирует минимизацию дополнительно расходуемой мощности.

Рисунок 3. Схема динамического удержания не увеличивает нагрузку, пока входной ток превышает регулируемый уровень. При понижении входного тока ниже этого уровня, схема обеспечивает минимально необходимый ток удержания.

В конечном счете, динамическое удержание требуется для того, чтобы гарантировать корректное декодирование фазового угла, обеспечивающее точный регулирующий сигнал для конвертера. В процессе декодирования необходимо предотвратить ложные отключения симистора при декодировании, чтобы исключить вызывающее мерцание хаотичное изменение угла отсечки. При внимательном изучении работы системы становится ясно, что фактически нет нужды декодировать угол в каждом цикле. Система с выборкой может обеспечить еще большую точность. При таком подходе, повышение тока удержания необходимо только во время интервала с выборкой при декодировании. В циклах без выборки ток не повышается.

В LM3450 используется именно такая схема фазового декодирования с выборкой, и динамическое удержание, таким образом, активировано только в интервалах выборки. Была проведена сравнительная оценка, для которой использовались 15-ваттные светильники на 120 вольт с фиксированным током удержания 20 мА и с намного большим, но динамическим, током удержания 70 мА (Рисунок 4). После проверки более 20 регуляторов освещения оказалось, что динамическое удержание на уровне 70 мА обеспечило полный диапазон регулировки яркости при повышении эффективности на целых 6%.

Рисунок 4. Результаты сравнительной оценки двадцати 15-ваттных светильников на 120 вольт подтвердили, что при фиксированном токе удержания 20 мА и динамическом токе удержания 70 мА обеспечивается полный диапазон регулировки яркости при повышении эффективности на 6%.

При данном подходе перед разработчиком стоит еще одна трудная задача. Предыдущий анализ не учитывал влияния на преобразователь входного фильтра электромагнитных помех (ЭМП). Каждый преобразователь, удовлетворяющий требованиям по нормам излучения ЭМП, должен иметь соответствующий фильтр. К сожалению, добавление реактивных компонентов со стороны переменного напряжения перед мостом искажает форму входного тока, что сказывается на измерении выпрямленного тока.

В конце фазы проводимости, при максимальной скорости изменения входного напряжения dU/dt, эта проблема становится наиболее острой. В этот момент бóльшая часть тока преобразователя проходит через конденсаторы фильтра ЭМП, и симистор проводит даже меньший ток, чем можно ожидать.

Чтобы исключить неточность измерений, регулируемый минимальный входной ток должен быть увеличен, а емкость фильтра ЭМП минимизирована.

Перевод: Виктор Чистяков по заказу РадиоЛоцман

Источник