Меню

Синфазное напряжение это напряжение помехи

Термины: Сигналы синфазный и противофазный (дифференциальный)

Сигналы синфазный и противофазный (дифференциальный)

При описании распространения сигнала или помехи в электропроводной среде часто употребляются термины синфазный (СФ) и противофазный (ПФ). Эти термины употребляются тогда, когда в рассматриваемой системе есть две точки (два полюса) приложения сигнала (помехи): условно X и Y, как показано на рисунке. СФ сигнал действует с одной и той же фазой на точки X и Y приложения сигнала относительно условного нуля или некой третьей опорной или общей точки. ПФ сигнал действует с противоположной фазой (противоположным знаком) на точки X и Y приложения сигнала относительно внешней среды. Поэтому, противофазный сигнал также часто называют дифференциальным, подразумевая его «разностную» сущность.

При рассмотрении напряжений в рассматриваемых точках электропроводной среды помеха приложена синфазно, а полезный сигнал – противофазно, как это бывает в случае дифференциальных или симметричных цепей.

Некоторые функциональные узлы электрических схем (например дифференциальный приёмник сигнала, трансформатор, схемы гальваноразвязки на разных физических принципах) могут подавлять синфазный сигнал, а пропускать противофазный. В противоположность этому: линейные мостовые балансные схемы способны значительно скомпенсировать противофазный сигнал по отношению к синфазному.

Ярким примером раздельной аналоговой обработки синфазной и противофазной составляющих сигнала является стандартная схема гальваноразвязки Ethernet, в которой прослеживаются разные пути распространения СФ и ПФ сигналов.

При анализе дифференциальных электрических цепей обычно рассматривают две эквивалентные электрические схемы: для СФ и ПФ сигналов раздельно, подразумевая линейное разложение сигнала на эти две составляющие (0,5*(Х + Y) и X-Y, соответственно, если X и Y – это фазные напряжения, как показано на рисунке выше). Как следствие этого анализа, в частности, возникает необходимость описания электрических свойств дифференциального входа или дифференциального выхода для СФ и ПФ сигналов отдельно: диапазона, входного или выходного сопротивления, характеристик пропускания или подавления на определённых частотах и т.д. С этой точки зрения, мгновенные значения СФ и ПФ сигналов дифференциальной или симметричной цепей можно рассматривать как две координаты при описании мгновенного состояния физического сигнала в двумерном пространстве.

Перейти к другим терминам Cтатья создана: 12.06.2015
О разделе «Терминология» Последняя редакция: 12.08.2019

Использование терминов

Термины используются при описании свойств дифференциального входа, например, в документации следующих измерительных модулей АЦП, имеющих дифференциальные входы:

Разрядность: 14 бит
Частота преобразования 400 кГц суммарно
Каналов: 16 дифференциальных/ 32 с общей землей
Диапазоны: ±0,15 В…±10 В

LTR11

Модуль АЦП универсальный
16/32 каналов, 14 бит, 400 кГц

LTR11

Разрядность: 24 бита
Частота преобразования до 78 кГц на канал
Каналов: 8 для ICP-датчиков
Питание датчиков: источник тока 2,86 / 10 мА

LTR25

Модуль АЦП для ICP датчиков
8 каналов, 24 бит, 78 кГц

LTR25

Разрядность: 24 бита
Частота преобразования до 117 кГц на канал
Каналов: 4 дифференциальных + 4 для ICP-датчиков или тензорезисторов
Диапазоны: ±2 В…±10 В

Читайте также:  Импульсный блок питания как проверить напряжение

LTR24

Модуль АЦП универсальный
4 канала, 24 бит, 117 кГц

LTR24

АЦП: 16 бит; 16/32 каналов;
±0,2 В…10 В; 2 МГц
ЦАП: 16 бит; 2 канала; ±5 В; 1 МГц
Цифровые входы/выходы:
17/16, ТТЛ 5 В
Интерфейс: USB 2.0 (high-speed), Ethernet (100 Мбит)
Гальваническая развязка.

E-502

Модуль АЦП/ЦАП
16/32 каналов, 16 бит, 2 МГц, USB, Ethernet

E-502

АЦП: 16 бит; 16/32 каналов;
±0,2 В…10 В; 2 МГц
ЦАП: 16 бит; 2 канала; ±5 В; 1 МГц
Цифровые входы/выходы:
18/16 TTL 5 В
Интерфейс: PCI Express

L-502

Плата АЦП/ЦАП
16/32 каналов, 16 бит, 2 МГц, PCI Express

L-502

АЦП: 14 бит; 16/32 каналов;
±0,15 В…10 В; 200 кГц
ЦАП: 16 бит; 2 канала; ±5 В; 200 кГц
Цифровые входы/выходы:
16/16 TTL 5 В
Интерфейс: USB 2.0

E14-140M

Модуль АЦП/ЦАП
16/32 каналов, 14 бит, 200 кГц, USB

E14-140M

АЦП: 14 бит; 16/32 каналов;
±0,156 В…10 В; 400 кГц
ЦАП: 12 бит; 2 канала; ±5 В; 8 мкс
Цифровые входы/выходы:
16/16 TTL 5 В
Интерфейс: USB 2.0

E14-440

Модуль АЦП/ЦАП
16/32 каналов, 14 бит, 400 кГц, USB

Источник



Противофазные и синфазные сигналы и помехи

Пусть имеется двухпроводная система с учётом влияния земли, предназначенная для передачи информации. Фактически такая система состоит из трёх проводников.

Существуют несимметричные и симметричные двухпроводные системы для передачи данных.

В несимметричных систему опорного потенциала связывают с обратным проводником, в симметричных – со средней точкой между прямым и обратным проводниками.

Противофазным напряжением в симметричной или несимметричной системе называется напряжение между прямым и обратным проводниками.

uпф(t) = u(t) = u1(t) – u2(t).

Противофазным током в несимметричной двухпроводной системе называется ток в прямом проводнике.

Противофазным током в симметричной двухпроводной системе называется среднее значение токов прямого и обратного проводников.

Синфазным током в симметричной или несимметричной системе называется ток земли.

Синфазным напряжением в несимметричной двухпроводной системе называется потенциал обратного провода относительно земли.

Синфазным напряжением в симметричной двухпроводной системе называется потенциал средней точки между прямым и обратным проводом относительно земли.

Для передачи полезного сигнала используется противофазное напряжение или противофазный ток.

Противофазная помеха арифметически складывается с полезным сигналом, поэтому она является аддитивной.

Синфазное напряжение и ток никогда не используются для передачи сигнала. Эти сигналы всегда являются следствием действия синфазной помехи.

Если в системе передачи данных отсутствуют паразитные связи и не нарушена симметрия параметров, то синфазная помеха никак не будет влиять на передачу полезного сигнала. Эта помеха будет влиять только на условия электробезопасности.

Если в системе передачи данных нарушена симметрия параметров и имеются паразитные связи, то синфазная помеха обязательно будет преобразовываться в противофазный сигнал и будет поступать на вход приёмника вместе с полезным сигналом, поэтому в системах передачи данных выполняются мероприятия по борьбе с синфазными помехами.

Читайте также:  Работа асинхронных двигателей при пониженном напряжении

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

Источник

Противофазные и синфазные помехи

Помехи, возникающие в проводах, могут рассматриваться как противофазные или синфазные напряжения и токи.

Противофазные напряжения помех (поперечные, симметричные) возникают между проводами двухпроводной линии (ud на рис. 1.3.). Противофазные помехи возникают через гальванические или полевые связи или преобразуются из синфазных помех в системах, несимметричных относительно земли. Конкретные примеры возникновения противофазных помех рассматриваются в последующих разделах.

Рис. 1.3. Помехи, связанные с передачей сигналов по линии:

СЕ — паразитные емкости относительно заземленного корпуса; Q1 — источник противофазных помех; Q2 — источник синфазных помех; ZQ, ZS — полные сопротивления источника и приемника помех; iC1, iC2 — синфазные токи, id — противофазный ток; uC1, uC2 — синфазные напряжения помех; ud – противофазное напряжение помех.

Противофазные напряжения помех непосредственно накладываются на полезные сигналы в сигнальных цепях или на напряжение питания в цепях электроснабжения, воздействуют на линейную изоляцию между проводами и могут быть восприняты как полезные сигналы в устройствах автоматизации и тем самым вызывать ошибочное функционирование.

Синфазные напряжения помех (несимметричные, продольные напряжения) возникают между каждым проводом и землей (uC1 и uC2 на рис. 1.3.) и воздействуют на изоляцию проводов относительно земли.

Синфазные помехи обусловлены главным образом разностью потенциалов в цепях заземления устройства, например между точками 1 и 2 на рис. 1.3., вызванной токами в земле (аварийными, при замыканиях высоковольтных линий на землю, рабочими или токами молнии) или магнитными полями.

Земля и масса

Другими важными понятиями ЭМС являются понятия: земля и масса. С понятием «заземление» инженеры, работающие с сильноточными устройствами, связывают, как правило, вопросы техники безопасности и грозозащиты, например, устранение не­допустимо высоких напряжений прикосновения. Инженеры же, работающие в области электроники, — скорее электромагнитную совместимость их схем, например устранение контуров заземле­ния, влияние частоты 50 Гц, обращение с экранами кабелей и т. д.

Следует строго различать два понятия — защитное заземление (защитный про­вод) для защиты людей, животных и т. д. и массу, систему опор­ного потенциала, электрических контуров (это справедливо как для сильноточных, так и для слаботочных цепей). Земля и масса, как правило, в одном месте гальванически связаны друг с дру­гом, но между ними существует большое различие: провода за­земления проводят ток только в аварийной ситуации, нулевые провода — в нормальной рабочей ситуации и часто представляют общий обратный провод нескольких сигнальных контуров, веду­щий к источнику. Это различие существенно и характеризуется следующими понятиями:

Земля Масса
Защитный провод Нейтральный провод
Заземление Масса схемы
Защитное заземление Нулевая точка
Нулевой провод заземления Сигнальная масса
Провод заземленной системы опорного потенциала Измерительная земля
Заземленный корпус Нулевое напряжение ( 0 В)
Читайте также:  Защита ноутбука скачков напряжения

Понятие «земля» поясняет рис. 1.4. .

В нормальном режиме по нейтральному проводу Н протекает обратный ток электроприемников и его потенциал вследствие падения напряжения на его сопротивлении отличается от потенциала земли (за исключением эквипотенциальной шины, где он равен потенциалу земли). Защитный провод ЗП в нормальном режиме тока не проводит и его потенциал равен потенциалу земли. Поскольку корпус оборудования присоединен к защитному проводу ЗП, то и его потенциал также равен потенциалу земли и не создает угрозы для людей и животных.

При замыкании одного из фазных проводов (на рис. 1.4. провода Л3 ) на корпус оборудования в фазном проводе возникает большой ток короткого замыкания и оборудование отключается предвключенным защитным автоматом Зз.

Рис. 1.4. Заземление в низковольтной сети:

Л1, Л2, Л3 – фазные провода сети; ЗПН – защитный провод нейтрали; ЗП – защитный провод; Н – нейтральный провод; Зз – защитный автомат; RА , RВ – сопротивление заземлителя потребителя и подстанции

Понятие «масса» поясняет рис. 1.5..

Рис. 1.5. К понятию «масса»

Под массой в схемотехнике понимают общую систему опор­ного потенциала, по отношению к которой измеряются узловые напряжения цепи (шина, провод опорного потенциала, корпус, нулевая точка). В простой цепи это просто обратный провод, в электронной схеме — общий обратный провод для всех электри­ческих контуров (рис. 1.5. а,б).Масса может, но не должна иметь потенциал земли. Однако, как правило, она в одном месте не­пременно соединена с защитным проводом и тем самым заземле­на. Масса выполняет те же функции, что и нейтральный провод. Прежде всего, на работу схемы не оказывает влияния заземле­ние массы. Однако если занимающая доста­точно обширное пространство масса заземлена в нескольких ме­стах, возникает контур заземления (см. рис. 1.3). Тогда при раз­личных потенциалах точек заземления могут протекать уравни­тельные токи, а на полных сопротивлениях массы возникать па­дения напряжения, которые накладываются на напряжения, дей­ствующие вдоль отдельных контуров цепи и являются противо­фазными помехами. При высоких частотах это даже не требует гальванического заземления, так как при наличии печатных плат с навесным монтажом и плоской массой контуры заземления могут образовываться благодаря их емкостям относительно мас­сы.

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Источник