Меню

Система регулирования мощности энергоблока

система автоматического регулирования мощности энергоблока

Изобретение относится к теплоэнергетике и может быть использовано при регулировании мощности энергоблоков. Система состоит из паровой турбины 1, турбогенератора 2 и котла. Путем воздействия на клапаны 4 регулятором 3 осуществляется открытие турбины 1; регулятор 3 действует от центробежного маятника 5, электродвигателя 6, электрогидравлического преобразователя 7 и механизма ручного управления 8. Датчиком 9 обеспечивается снижение нечувствительности исполнительных органов системы; в ней также имеются датчик 10 управляющего давления, управляемый задатчик 11 открытия турбины 1, усилители 14 и 15, ограничитель 16, пропорционально-дифференциальный преобразователь 17. Для снижения нелинейности характеристики турбины 1 «частота-мощность» в системе предусмотрены блок деления 18, датчик давления 19 в регулирующей ступени цилиндра высокого давления турбины 1, датчик давления 20 перед турбиной 1 и переключатель 21. Система обеспечивает автоматическое регулирование мощности энергоблока при значительном уменьшении нечувствительности по частоте и нелинейности характеристики турбины «частота-мощность» при работе в сети. 2 з.п. ф-лы, 1 ил.

система автоматического регулирования мощности энергоблока, патент № 2258146

Формула изобретения

1. Система автоматического регулирования мощности энергоблока, содержащая турбогенератор, котел с регулятором его производительности, турбину с регулятором ее открытия, воздействующим на клапаны турбины и выполненным в виде блока механогидравлических преобразователей и гидроусилителей, на вход которого поступает воздействие от центробежного маятника, электродвигателя механизма управления турбиной и электрогидравлического преобразователя, и блок коррекции задаваемой мощности по частоте сети, выполненный в виде датчика отклонения частоты напряжения турбогенератора, выход которого подключен к входам регулятора открытия турбины и регулятора производительности котла, отличающаяся тем, что система снабжена управляемым задатчиком открытия турбины, усилителем и ограничителем, связанными с электрогидравлическим преобразователем, вторым усилителем и пропорционально-дифференциальным преобразователем, подключенным к электродвигателю механизма управления турбиной, датчиком управляющего давления, связанным с регулятором открытия турбины, датчиком давления в регулирующей ступени цилиндра высокого давления турбины, датчиком давления перед турбиной, блоком деления и переключателем, при этом на входах указанных усилителей алгебраически суммируются сигналы от управляемого задатчика открытия турбины, датчика отклонения частоты напряжения турбогенератора и переключателя, к одному из входов которого подключен выход датчика управляющего давления регулятора открытия турбины, к другому входу подключен выход блока деления, на вход делимого которого подключен выход датчика давления в регулирующей ступени цилиндра высокого давления турбины, а вход делителя блока деления связан с выходом датчика давления перед турбиной.

2. Система по п.1, отличающаяся тем, что задатчик открытия турбины снабжен входами от ключа дистанционного управления.

3. Система по п.1, отличающаяся тем, что запуск задатчика открытия турбины осуществляется от ее регулятора мощности.

Описание изобретения к патенту

Изобретение относится к области теплоэнергетики и может быть использовано для оптимизации процессов регулирования мощности энергоблока.

Известна система автоматического регулирования мощности энергоблока, содержащая задатчик электрической мощности и регуляторы электрической мощности и отбора тепла; при этом система снабжена двумя органами сравнения, двумя сумматорами, интегратором, функциональным преобразователем и ограничителями темпа задания и изменения отбора тепла, причем к входу первого органа сравнения подключены задатчик электрической мощности и выход интегратора, вход которого соединен с выходом первого органа сравнения, связанным также с входом ограничителя изменения отбора и с входом второго органа сравнения, к которому подключен также выход ограничителя изменения отбора, соединенный с входами регулятора отбора и функционального преобразователя, выходы регулятора отбора соединены с входами ограничителя изменения отбора, выходы интегратора и второго органа сравнения подключены к первому сумматору, соединенному своим выходом с входом ограничителя темпа задания, выход которого вместе с выходом функционального преобразователя подключены ко второму сумматору, соединенному своим выходом с регулятором электрической мощности [1].

Известная система имеет существенный недостаток, заключающийся в том, что она не обеспечивает требуемую степень снижения зоны нечувствительности в условиях колебаний частоты сети, в которую включен турбогенератор энергоблока.

Наиболее близким техническим решением по отношению к предложенному является система автоматического регулирования мощности энергоблока, содержащая турбогенератор, котел с регулятором его производительности, турбину с регулятором ее открытия, воздействующим на клапаны турбины и выполненным в виде блока механогидравлических преобразователей и гидроусилителей, на вход которого поступает воздействие от центробежного маятника, электродвигателя механизма управления турбиной и электрогидравлического преобразователя, и блок коррекции задаваемой мощности по частоте сети, выполненный в виде датчика отклонения частоты напряжения турбогенератора, выход которого подключен к входам регулятора открытия турбины и регулятора производительности котла [2].

Однако данная система автоматического регулирования мощности энергоблока имеет недостатки. Система автоматического регулирования мощности энергоблока должна обеспечивать автоматическое нормированное первичное регулирование при высоких требованиях по чувствительности к отклонению частоты сети, в которую включен турбогенератор. Современными нормативами предусматривается необходимость снижения зоны нечувствительности от регламентированных раньше 150÷300 мГц до 10÷20 мГц. Известная система как раз и не может обеспечить необходимую зону нечувствительности, которая регламентируется в пределах 0,02÷0,04%. Кроме того, недостатком этой системы является значительная нелинейность характеристики «частота-мощность» при работе в сети, вызываемая неточностями и нестабильностью регулировки характеристики парораспределения.

Авторы ставили перед собой задачу разработать систему автоматического регулирования мощности энергоблока, которая отличалась бы от известных систем аналогичного назначения тем, что она обеспечивала бы существенное уменьшение нечувствительности по частоте и нелинейности характеристики турбины «частота-мощность» при работе в сети.

Отмечаемый технический результат достигается посредством совокупности существенных конструктивных признаков новой системы, а именно: система автоматического регулирования мощности энергоблока, содержащая турбогенератор, котел с регулятором его производительности, турбину с регулятором ее открытия, воздействующим на клапаны турбины и выполненным в виде блока механогидравлических преобразователей и гидроусилителей, на вход которого поступает воздействие от центробежного маятника, электродвигателя механизма управления турбиной и электрогидравлического преобразователя, и блок коррекции задаваемой мощности по частоте сети, выполненный в виде датчика отклонения частоты напряжения турбогенератора, выход которого подключен к входам регулятора открытия турбины и регулятора производительности котла; система снабжена управляемым задатчиком открытия турбины, усилителем и ограничителем, связанными с электрогидравлическим преобразователем, вторым усилителем и пропорционально дифференциальным преобразователем, подключенным к электродвигателю механизма управления турбиной, датчиком управляющего давления, связанным с регулятором открытия турбины, датчиком давления в регулирующей ступени цилиндра высокого давления турбины, датчиком давления перед турбиной, блоком деления и переключателем, при этом на входах указанных усилителей алгебраически суммируются сигналы от управляемого задатчика открытия турбины, датчика отклонения частоты напряжения генератора и переключателя, к одному из входов которого подключен выход датчика управляющего давления регулятора открытия турбины, к другому входу подключен выход блока деления, на вход делимого которого подключен выход датчика давления в регулирующей ступени цилиндра высокого давления турбины, а вход делителя блока деления связан с выходом датчика давления перед турбиной; задатчик открытия турбины снабжен входами от ключа дистанционного управления; запуск задатчика открытия турбины осуществляется от ее регулятора мощности.

Сущность изобретения поясняется на чертежом, на котором представлена структурная схема системы автоматического регулирования мощности энергоблока, выполненной согласно настоящему изобретению.

Предложенная система предназначена для осуществления автоматического регулирования мощности энергоблока, в который входят паровая турбина 1, турбогенератор 2 и котел с регулятором его производительности (не показаны); в турбине 1 предусматривается регулятор 3 ее открытия, который воздействует на клапаны 4 турбины 1 и выполняется в виде блока (комплекса) механогидравлических преобразователей и гидроусилителей. На вход регулятора 3 поступают воздействия от центробежного маятника 5, электродвигателя 6 механизма управления турбиной 1, электрогидравлического преобразователя 7 и механизма ручного управления 8.

В системе с целью обеспечения снижения нечувствительности ее исполнительных органов используются блок коррекции задаваемой мощности по частоте сети, который представляет собой датчик 9 отклонения частоты напряжения турбогенератора 2, подключаемый к входам регулятора 3 открытия турбины 1 и регулятора производительности котла, датчик 10 управляющего давления, по которому определяется степень открытия регулирующих клапанов 4 турбины 1, управляемый задатчик 11 открытия турбины 1 с входами от ключа 12 дистанционного управления или от турбинного регулятора мощности 13, усилитель 14 и усилитель 15, на входах которых алгебраически суммируются сигнал задания от задатчика 11, сигнал от датчика 9 отклонения частоты напряжения турбогенератора 2 и сигнал обратной связи от датчика 10 управляющего давления. Усилитель 14 через ограничитель 16 подключен к электрогидравлическому преобразователю 7, а усилитель 15 подключен к входу пропорционально дифференциального преобразователя 17, выход которого подключен к электродвигателю 6 механизма управления турбиной 1.

Читайте также:  Calidor super 500 мощность

Для уменьшения нелинейности характеристики турбины 1 «частота-мощность» при работе в сети в систему вводятся также блок деления 18, на вход делимого которого подключается выход датчика давления 19 в регулирующей ступени цилиндра высокого давления турбины 1, на вход делителя подключается выход датчика давления 20 перед турбиной 1, а с выхода блока деления 18 сигнал поступает на нормально разомкнутый вход переключателя 21, сигнал с выхода которого суммируется с сигналами, поступающими на входы усилителей 14 и 15. На нормально замкнутый вход переключателя 21 подключается выход датчика 10 управляющего давления.

Система работает следующим образом.

При ручном управлении турбиной 1 оператор, воздействуя на задатчик 11 ключом 12, задает величину открытия турбины 1. При автоматическом управлении задание формируется турбинным регулятором мощности 13. Это задание сравнивается с величиной управляющего давления Р упр. от датчика 10 управляющего давления (при нагрузке ниже заданной) или (после срабатывания переключателя 21 при нагрузке больше заданной) с величиной, эквивалентной открытию турбины 1, с выхода блока деления 18. Алгебраическая сумма этих сигналов через усилитель 14 и ограничитель 16 воздействует на электрогидравлический преобразователь 7 и через усилитель 15 и пропорционально дифференциальный преобразователь 17 на электродвигатель 6 механизма управления турбиной 1. Электрогидравлический преобразователь 7 обеспечивает быстрое перемещение клапанов 4 турбины 1 в пределах диапазона действия ограничителя 16. Под действием изменяющейся после этого алгебраической суммы сигналов на входе усилителей 14 и 15 пропорционально дифференциальный преобразователь 17 через электродвигатель 6 механизма управления турбиной 1 соответственно изменяет задание на открытие турбины.

При отклонении частоты сети, в которую включен турбогенератор 2, от текущего значения это отклонение с коэффициентом усиления, обратным статизму турбины 1, поступает на вход усилителя 14. Одновременно отклонение частоты вращения турбины 1 через центробежный маятник 5 воздействует на комплекс механогидравлических преобразователей регулятора открытия 3 турбины 1. Если отклонение находится в зоне нечувствительности центробежного маятника 5, то работает только канал электрогидравлического преобразователя 7, поскольку коэффициент усиления усилителя 14 выбран таким, чтобы обеспечить по каналу электрогидравлического преобразователя 7 чувствительность выше, чем по каналу центробежного маятника 5. Если отклонение выходит за зону нечувствительности центробежного маятника 5, то работает не только канал электрогидравлического преобразователя 7, но и канал центробежного маятника 5. При этом электрогидравлический преобразователь 7 выходит на ограничение, а центробежный маятник 5 продолжает действовать в нужном направлении. Одновременно в том же направлении работает канал механизма управления турбиной 1. Процесс завершается, когда изменение открытия турбины 1 станет равным частному от отклонения частоты, деленному на статизм, установленный в датчике 9.

Предложенная система автоматического регулирования мощности энергоблока позволяет обеспечить его надежную и экономичную работу, а также нормированное первичное и автоматическое вторичное регулирование частоты с характеристиками, требуемыми при синхронной параллельной работе крупных энергообъединений.

Источники информации, принятые во внимание

[1] Авторское свидетельство СССР №1562479, F 01 К 13/02 от 14.06.88. Бюллетень №17.

[2] Авторское свидетельство СССР №1332041, F 01 К 13/02 от 21.12.79. Бюллетень №31.

Источник



Автоматическое регулирование мощности энергоблока

С реактором типа ВВЭР-1000

Регулирование мощности блока, а также температуры в первом и давления во втором контурах осуществляется воздействием на два регулирующих параметра – расход пара на турбину (положение регулирующих клапанов турбины) и регулирующие органы реактора. Последнее воздействие может осуществляться различными способами: перемещением одного, группы или всех регулирующих кассет (стержней, кластеров); изменением концентрации бора в теплоносителе первого контура. При этом с точки зрения воздействия на полную мощность реактора все эти способы (при одинаковой внесенной реактивности) эквивалентны. Однако они существенно различны, по своему действию на форму поля энерговыделения в реакторе. Кроме того, изменение концентрации бора из-за «грубости» способа и малой скорости выведения обычно применяется для компенсации медленных изменений реактивности в процессе кампании реактора. Текущее регулирование мощности реакторов типа ВВЭР осуществляется за счет перемещения регулирующих органов, причем собственно регуляторы мощности, как правило, управляют только полной мощностью реактора. Автоматическое управление формой поля за счет избирательного управления перемещением отдельных стержней (или групп стержней) обычно осуществляется с помощью УВМ.

Для реализации выбранной программы может регулироваться давление во втором контуре или средняя температура первого контура. Хотя принципиально возможно использование других параметров (например, выходной температуры теплоносителя), такие схемы не получили распространения.

Рисунок 9.8. — Схемы регулирования блоков с реакторами ВВЭР, предназначенные для работы в регулирующем режиме.

а — программа p2=const; б — программа tcp=const.

На рис. 9.8 показаны схемы регулирования мощности блоков, предназначенные для работы в регулирующем режиме. На рис. 9.8 а) показана схема, в которой в качестве регулируемого параметра используется давление пара второго контура, а на рис. 9.8 б) — температура теплоносителя первого контура.

В обеих схемах для управления мощностью реактора применен каскадный регулятор 2, получающий импульс от ионизационной камеры 1 и воздействующий на приводы регулирующих стержней 3. Задатчик 4 регулятора 2 управляется регуляторами средней температуры теплоносителя первого контура 8 или давления пара второго контура 5. Для приведения в соответствие электрической мощности, вырабатываемой блоком, и мощности, требуемой энергосистемой, используется регулятор скорости турбины 12, перемещающий регулирующие клапаны турбины 13 при отклонении частоты от номинального значения. Работа схем протекает следующим образом. При изменении, например увеличении, частоты в энергосистеме клапаны турбины прикрываются, что вызывает подъем давления второго контура. В схеме рис. 9.8 а) изменение давления воспринимается манометром 6 и регулятором давления 5, изменяющим задание регулятору нейтронного потока 2. Последний перемещает регулирующие органы реактора так, чтобы его мощность снизилась. При этом выходная, а, следовательно, и средняя температура теплоносителя первого контура снижаются, перепад температур между первым и вторым контуром уменьшается, что вызывает уменьшение генерации пара, и давление возвращается к прежнему уровню при новом положении регулирующих клапанов.

В некоторых схемах регулирования для улучшения динамики переходных процессов на регулятор 2 заводится импульс по расходу пара на турбину от расходомера 14, что позволяет при изменении мощности турбины сразу устанавливать величину нейтронного потока реактора, приблизительно равную требуемой. Точное приведение в соответствие мощности реактора и турбины осуществляется за счет наличия интегральной составляющей в законе регулирования регулятора давления.

В схеме рис. 9.8 б) повышение давления пара второго контура приводит к увеличению средней температуры теплоносителя первого контура, что воспринимается термометрами 9 и регулятором 8. Регулятор 8 уменьшает мощность реактора, снижая температуру теплоносителя на выходе из реактора и возвращая таким образом среднюю температуру первого контура к прежнему значению. Уменьшение температурного перепада между первым и вторым контурами обеспечивается в установившемся состоянии за счет того, что увеличивается давление второго контура.

Описанные схемы обеспечивают статическое регулирование частоты сети.

Изменение заданной температуры (или давления) производится перемещением задатчиков 7, 10. Изменение мощности, которая вырабатывается блоком при номинальной частоте сети, производится перемещением синхронизатора турбины 11.

Рисунок 9.9. — Схемы регулирования блоков с реакторами ВВЭР, предназначенные для работы в базисном режиме.

Читайте также:  Найти активную мощность потребляемую цепью

а — программа p2=const; б — программа tcp=const.

На рис. 9.9 показаны схемы регулирования, предназначенные для работы по тем же программам, но в базисном режиме, в котором мощность блока (в статике) постоянна и не зависит от отклонений частоты сети. На рис. 9.9 а) показана схема, реализующая программу p2=const, а на рис. 9.9 б) — схема, реализующая программу tcp=const. Отличие их от соответствующих схем рис. 9.8 заключается в том, что регулятор давления или температуры 8 действует не на мощность реактора, а на расход пара на турбину путем перемещения синхронизатора. При использовании такой схемы возмущения по частоте сети также приводят к перемещению клапанов турбины 13 за счет работы регулятора скорости 12, что вызывает изменение давления второго контура. В схеме рис. 9.9 а) отклонение давления воспринимается регулятором давления 5, который, воздействуя на синхронизатор 11, перемещает клапаны в прежнее положение, что приводит к стабилизации давления на прежнем уровне. В схеме рис. 9.9 б) изменение давления второго контура приводит к изменению средней температуры первого контура, что вызывает реакцию регулятора 8. При этом мощность реактора остается неизменной. Электрическая мощность генератора в первый момент после нанесения возмущения несколько изменяется (за счет аккумулирующей способности блока), а затем возвращается к прежнему уровню. Изменение заданной мощности блока производится воздействием на задатчик 4, а заданного давления (или заданной температуры) – на задатчики 7 или 10.

9.6 Регулятор уровня в парогенераторе

В состав системы регуляторов входят:

— основной регулятор, воздействующий на основной регулирующий клапан;

— пуско-остановочный регулятор, воздействующий на регулирующий клапан, установленный на байпасной линии подачи питательной воды в парогенератор.

Пуско-остановочный регулятор применяется при работе блока на малых мощностях (расходах питательной воды до 42 кг/с), а также при расхолаживании. Для этих целей в алгоритме авторегулятора используется две уставки по уровню: 2,4 м – для нормальной работы и 3,55 м – при расхолаживании. Причём, при включении режима расхолаживания, изменение величины уставки с текущего значения уровня до 3,55 м происходит плавно, со скоростью 0,4 м/час. В регуляторе используется две обратные связи: по уровню и по производной положения регулирующего клапана. При этом в связи с тем, что площадь «зеркала» уменьшается с увеличением уровня (ПГ – это цилиндр, лежащий на боку), в режиме расхолаживания коэффициент усиления обратной связи по положению является функцией текущего значения уровня (увеличивается с ростом уровня).

Кроме того, в регуляторе применён контур ограничения максимально допустимого расхода питательной воды, действие которого также применяется и в основном регуляторе. Принцип действия этого контура состоит в следующем. Контур состоит из двух ветвей ограничения расхода основных и вспомогательных питательных насосов. Для каждой группы насосов определяется максимальное текущее значение индивидуального расхода, из полученного результата вычитается уставка — максимально допустимое значение. Полученное рассогласование (для каждой ветки) направляется на интегратор, нижняя граница которого не может быть меньше нуля, и выделитель максимума (второе число – 0, функция не пропускает отрицательные значения). Результат интегрирования и выделения максимума складывается. Фактически, такая комбинация представляет собой пропорционально-интегральную функцию, на выходе которой не может быть отрицательных значений. Сумма результатов двух веток и является ограничивающим воздействием, которое вычитается из рассогласований основного и пуско- остановочного регуляторов. При расходах меньше максимально-допустимого ограничивающее воздействие равно 0, при превышении расхода каким-либо насосом воздействие увеличивается, заставляя уменьшаться рассогласование регуляторов, тем самым, прикрывая клапаны и ограничивая расход.

По мере набора мощности блоком, когда расход питательной воды через парогенератор начинает превышать 42 кг/с, происходит автоматическое переключение регуляторов: основной авторегулятор подключается к основному регулирующему клапану, а пуско-остановочный сначала начинает плавно закрывать свой клапан (со скоростью 3 %/мин) а, когда тот полностью закроется, отключается от клапана. Переключение в обратную сторону происходит по такому же принципу при снижении расхода меньше 33 кг/с, скорость прикрытия основного клапана составляет 1,7 %/мин. В случае, когда блок разогревался на двух или трёх ГЦНА, с последующим включением оставшихся в процессе нагружения, переключение с пуско- остановочного на основной авторегулятор может произойти и при меньших (чем 42 кг/с) расходах питательной воды. В данном случае критерием на переключение является факт включения ГЦНА при условии, что суммарный расход питательной воды превысил 139 кг/с.

Алгоритм регулирования основным клапаном использует пропорционально-интегральный закон управления, имеет фиксированную уставку по уровню – 2,4 м. В качестве обратной связи используется сигнал уровня и производная материального баланса, т.е. разности расходов питательной воды и острого пара. Для избежания реакции регулирующего клапана на «шум» показаний расхода пара, применён нелинейный фильтр. Задачей такого фильтра является подавление колебаний с периодом менее 90с и амплитудой меньше 5.

Точность поддержания уровня в парогенераторе в статическом режиме определяется зоной нечувствительности регуляторов. Для пуско-остановочного и основного она составляет 5 мм. В динамических режимах точность регулирования зависит от степени настроенности алгоритмов (установленных коэффициентов усиления и постоянных времени) и должна быть не хуже, чем ±50 мм для самых сильных возмущений системы.

Источник

Регулирование частоты и мощности в энергосистемах

В настоящее время все производство, практически все распределение и большая часть потребления электроэнергии в энергосистемах выполняются на переменном токе. Поэтому параметры переменного тока — частота, величина и форма кривой напряжения — приобрели значение унифицированных параметров, в соответствии с которыми конструируются все источники, средства передачи и приемники электрической энергии. В особенности это относится к частоте. Практически сохранилось лишь два стандартных значения частоты — 50 Гц в странах Европы, в том числе в России, и 60 Гц в США и Канаде.

В процессе работы энергосистемы все параметры переменного тока могут изменяться. Чем ближе они поддерживаются к номинальным, т.е. расчетным для оборудования, значениям, тем ближе режим к оптимальному. Таким образом, частота приобретает значение показателя, характеризующего качество продукции энергетической промышленности, качества электроэнергии.

Частота является не только показателем качества электроэнергии, но и важнейшим параметром режима энергосистемы. Непрерывность производства электроэнергии, отсутствие возможности запасать энергию и непрерывное изменение потребления требуют столь же непрерывного контроля за соответствием производства и потребления. Параметром, характеризующим это соответствие, и является частота.

Частота в энергосистеме определяется общим балансом генерируемой и потребляемой активной мощности. Если баланс соблюдается, то частота неизменна. При нарушении баланса мощности, т.е. при появлении небаланса мощности, возникает переходный процесс изменения частоты. По скорости и направлению изменения частоты можно судить о величине и знаке возникшего в энергосистеме небаланса активной мощности. Если частота в энергосистеме уменьшается, то для восстановления нормальной частоты надо увеличить активную мощность, вырабатываемую на электростанциях.

Задача регулирования частоты подразделяется на три взаимосвязанные части:

· первичное регулирование частоты, обеспечивающее стабильность частоты, т.е. удержание отклонений частоты в допустимых рамках при нарушении общего баланса мощности в любой части энергосистемы;

· вторичное регулирование, обеспечивающее восстановление нормального уровня частоты и плановых режимов обмена мощностью между частями энергосистемы или регионами;

· третичное регулирование, под которым можно понимать оперативную корректировку балансов мощности регионов с целью оказания взаимопомощи регионам и предотвращения опасных перегрузок транзитных линий электропередачи.

Рассмотрим более подробно первичное регулирование частоты. Оно осуществляется автоматическими регуляторами частоты вращения (АРЧВ) турбин. Каждая турбина снабжена регулятором, который при изменении частоты вращения турбоагрегата, изменяя положение регулирующих органов турбины (регулирующих клапанов у тепловой турбины или направляющего аппарата у гидротурбины), меняет впуск энергоносителя (пара или воды).

Читайте также:  Что такое мощность при выборе люстры

При повышении частоты вращения регулятор прикрывает регулирующие органы турбины и уменьшает впуск энергоносителя, а при снижении частоты открывает регулирующие органы и увеличивает впуск энергоносителя. Статические характеристики двух параллельно работающих агрегатов, снабженных АРЧВ, показаны на рис. 3.3.

Из рис. 3.3 видно, что при снижении частоты с f до f« в соответствии со статическими характеристиками регулируемых агрегатов вырабатываемая ими активная мощность увеличивается на ∆P1 и ∆Р2 соответственно, что способствует поддержанию уровня частоты в энергосистеме. Приращение мощности ∆Р пропорционально номинальной мощности агрегата и зависит от наклона характеристики. А наклон характеризуется величиной статизма. При более пологой характеристике 2 меньше статизм и больше изменение мощности ∆Р. У агрегата с более крутой характеристикой 1 статизм больше. Таким образом, суммарное приращение мощности распределяется между агрегатами пропорционально номи­нальной мощности и обратно пропорционально статизму регулирования. Если необходимо, чтобы агрегат принимал большее участие в первичном регулировании частоты, надо, чтобы у этого агрегата были большая мощность и меньший статизм.

Существенное влияние на процесс регулирования оказывает зона нечувствительности автоматического регулятора частоты вращения, которая необходима для отстройки от малых случайных колебаний нагрузки в энергосистеме. При наличии зоны нечувствительности регулятора появляется диапазон неопределенности в распределении нагрузки между агрегатами. На рис. 3.4 две параллельные линии, отстоящие друг от друга по вертикали на величину зоны нечувствительности ∆fнеч, ограничивают область возможных состояний регулятора и агрегата. Состояние характеризуется частотой f и нагрузкой Р (так называемая рабочая точка). В установившемся режиме при данной частоте, например f1, рабочие точки всех агрегатов расположены на линии f = f1, но могут занимать случайные положения между указанными выше граничными линиями (между точками а и б на рис. 3.4).

Диапазон неопределенных значений нагрузок при параллельной работе агрегатов с регуляторами, имеющими зону нечувствительности, прямо пропорционален зоне нечувствительности регулятора ∆fнеч и обратно пропорционален статизму характеристики регулирования. Чтобы повысить качество регулирования частоты, необходимо по возможности добиваться меньшего статизма. Однако при меньшем статизме существенно увеличивается неопределенность нагрузки агрегата. Поэтому на регуляторах, обладающих большей нечувствительностью, приходится устанавливать больший коэффициент статизма. Величина статизма на гидротурбинах обычно поддается оперативному изменению. Зона нечувствительности отечественных регуляторов гидротурбин не превосходит 0,03 Гц. Зона нечувствительности у отечественных паровых турбин составляет по техническим условиям до 0,15 Гц. Величина статизма оперативному изменению не поддается и составляет обычно 0,04—0,05 (4—5 %). Точность распределения нагрузки, обеспечиваемая регуляторами паровых турбин, невелика: 6—7 %. Но идти на дальнейшее увеличение статизма нельзя, так как это угрожает опасным для целости турбины увеличением максимального отклонения частоты вращения при сбросе нагрузки.

Статические характеристики регуляторов отдельных турбин определяют статическую характеристику энергосистемы в целом. На рис. 3.5 показаны характеристика эквивалентного генератора Рг(f) и зависимость мощности суммарной нагрузки энергосистемы Рн от частоты.

Мощность, потребляемая различными типами электроприемников, по-разному зависит от частоты. Например, мощность, потребляемая лампами накаливания и другими термическими установками, от частоты практически не зависит. Но мощность, потребляемая двигателями металлообрабатывающих станков, насосами и вентиляторами, сильно зависит от частоты. В целом зависимость от частоты мощности комплексной нагрузки энергосистемы, состоящей из электроприемников всех типов, имеет примерно такой вид, как на рис. 3.5.

То, что мощность, потребляемая нагрузкой, уменьшается при снижении частоты, облегчает задачу первичного регулирования (лВ

В крупных энергосистемах появляется необходимость поддержания соответствия производства и потребления электроэнергии не только в энергосистеме в целом, но и в отдельных ее частях (регионах). Эта необходимость может быть связана с хозяйственной самостоятельностью частей энергосистемы или с недостаточной пропускной способностью линий электропередачи, ограничивающей обмен мощностью между частями энергосистемы. Поддержание соответствия между потреблением и производством внутри регионов требует регулирования не только частоты, но и перетоков мощности.

С ростом энергосистем и их объединением колебания частоты уменьшаются, необходимость же в регулировании перетоков обычно возрастает, так как увеличивается вероятность появления слабых связей, имеющих недостаточную пропускную способность. Поэтому регулирование перетоков мощности становится во многих случаях задачей не менее важной, чем регулирование частоты. Поскольку вручную решать эту задачу весьма сложно, создаются системы автоматического регулирования частоты и мощности.

В объединенных энергосистемах применяются два основных принципа вторичного регулирования частоты и мощности:

· централизованное регулирование частоты в сочетании с региональным регулированием мощности электростанций;

· децентрализованное комплексное регулирование частоты и перетоков мощности.

В основе централизованного принципа лежит регулирование одной энергосистемой частоты, т.е. баланса мощности во всем энергообъединении независимо от места возникновения небаланса мощности, и регулирование своих перетоков мощности другими энергосистемами независимо от частоты. Этот принцип обладает достаточной эффективностью, если у регулирующей энергосистемы имеются достаточный резерв мощности и диапазон регулирования и если межсистемные линии электропередачи не ограничивают своей пропускной способностью возможность компенсации небаланса мощности, возникающего в любой энергосистеме.

Основным недостатком данного принципа являются неравноправные взаимоотношения энергосистем объединения, одна из которых несет затраты на содержание регулировочных мощностей для всех энергосистем.

Принцип децентрализованного вторичного регулирования наиболее распространен в мировой практике регулирования режима в межгосударственных объединениях энергосистем различных стран (UCTE, NORDEL и др.).

Основным преимуществом данного принципа является справедливое и равноправное участие партнеров по параллельной работе в поддержании нормального уровня частоты и согласованных перетоков мощности. При этом обеспечивается устранение в данной энергосистеме небаланса мощности независимо от того, является ли он единственной причиной отклонения частоты или существует одновременно с наличием небалансов в других энергосистемах.

К недостаткам принципа относится необходимость оперативного вмешательства для восстановления частоты при неустранении энергосистемой-«виновницей» своего небаланса. В этом случае осуществляется третичное регулирование режима.

В заключение рассмотрим кратко современное состояние регулирования частоты и мощности в Единой энергетической системе России. Анализируется и исследуется возможность создания энергообъединения «Восток — Запад» на основе использования уже существующих линий электропередачи переменного тока 400—750 кВ между Украиной и странами Центральной Европы. В связи с этим проведены исследования качества регулирования частоты в Западной и Восточной зонах будущего энергообъединения. Исследования показали более низкую стабильность частоты в Восточной зоне (среднесуточные отклонения частоты на Западе 10—20 мГц, а на Востоке — большие значения). Особенно большие отклонения на Востоке происходят весной и во второй половине ночи, что говорит об отсутствии гибкости средств регулирования, особенно энергоблоков ТЭС, о трудностях разгрузки энергоблоков и о недостаточности средств краткосрочного регулирования, что объясняется в основном следующими причинами:

· величина и характеристики вращающегося резерва не являются жестко регламентированными;

· крупные тепловые и тем более атомные электростанции в регулировании частоты практически не участвуют из-за их низкой маневренности и неготовности к этому оборудования и технологической автоматики;

· вследствие неудовлетворительной структуры генерирующих мощностей (недостаточная мощность ГЭС, одна ГАЭС на всю Россию, отсутствие на ТЭС энергоблоков с хорошей маневренностью и т. п.) нет возмож­ности поддерживать баланс мощности при нормальной частоте в отдельные ночные часы и в период паводка из-за недостаточного регулировочного диапазона ТЭС. Энергоблоки мощностью 300 и 800 МВт в первичном и вторичном регулировании частоты недоиспользуются. Одной из причин этого является отсутствие материальной заинтересованности электростанций в активном участии в регулировании частоты в энергосистеме.

В настоящее время прорабатываются мероприятия, которые позволят повысить качество регулирования частоты в ЕЭС России, что важно не только в связи с перспективой создания энергообъединения «Восток — Запад», но и для самой ЕЭС России.

Источник

Adblock
detector