Меню

Система впрыскивания цилиндра 5 активизация сторона высокого напряжения

Система впрыска топлива: как и что происходит?

Система впрыска топлива — это система , которая подает топливную жидкость в определенном количестве в цилиндры самого двигателя . Такая система используется на моторах и бензиновых , и дизельных , однако технология процесса работы отличается в этих двух случаях : в дизельном двигателе топливная жидкость подается под высоким давлением : соединяясь с раскаленным воздухом она возгорается практически за мгновение . В бензиновом двигателе дело обстоит немного иначе : при подаче топлива появляется топливно — воздушная смесь , возгорающегося в дальнейшем от искры свечи зажигания .

Историческая справка

Система впрыска топлива - инжектор

Сейчас в мире инжекторный ( впрысковый ) двигатель почти совсем вытеснил ставшую устаревшей карбюраторную систему . Но так было не всегда . Впервые систему впрыскивания топлива применяли еще в военной авиации середины прошлого века . Тогда она еще не получила достаточного распространения в автомобилестроении : лишь в 90х годах XX столетия , из — за ухудшившейся экологической ситуации в мире , стало понятно , что в выхлопах карбюратора остается слишком много не догоревшего топлива . Ситуация с экологией стала ухудшаться – объемы выбросов опасных веществ в атмосферу стало носить критический характер . Изменения в машиностроении стали необходимостью и конструкция топливных систем кардинально изменилась со временем . Первыми компаниями , выпустившими автомобили с инжекторной системой , были всем известные : Mercedes — Benz , Volkswagen , BMW , Mitsubishi . Новое решение казалось идеальным , если бы ни одно « но »: эволюционное решение имело один минус – высокие требования к качеству топливным смесям , а при использовании менее качественных смесей появилась опасность выделения оксида азота , что привело привело к значительному усложнению мотора .

Какие системы бывают

Систему можно классифицировать по точке ее установки , а также по количеству топливных форсунок ( инжекторов ):

  1. Моновпрыск ( представляет собой одноточечный впрыск ).

Здесь единственная форсунка обслуживает сразу все камеры сгорания . Располагается , чаще всего , на местах самого карбюратора . Надежность в работе и проста : удобно расположена под потоками прохладного воздуха . Однако из — за возросших требований к экологичности ( требуется индивидуальная дозировка топливной смеси к каждому цилиндру ) становится все менее популярна .

  1. Многоточечный впрыск ( он распределяет определенными траекториями ).

Это дна один цилиндр приходится одна изолированная форсунка . Есть подвиды этой установке :

  • Одновременный — Когда все форсунки срабатывают одновременно .
  • Параллельно — попарный – парное открывание : перед моментом впуска , осуществляется открывание одной пары .

На сегодняшний день , применяется принцип фазированного впрыска , а параллельно — попарный чаще применяется при запуске в аварийном состоянии , когда некорректно работают датчики фаз .

  • Фазированный — все форсунки контролируются под индивидуальным управлением они открывается в начале самого впуска .
  • Непосредственный — впрыскивание топливной жидкости производится напрямую в цилиндр .

Достоинства

Инжекторы имеют достаточно много плюсов :

За счет дозированной подачи топлива уменьшается его расход . Даже в системах первых серий автомобилей , расход топлива в сравнении с карбюраторными уменьшается в среднем на 30 — 40 %. В современном мире разница увеличивается до двух раз у автомобилей схожей массы и рабочего объема .

  1. Повышение мощности двигателя .

Происходит особенно сильно на низких оборотах . Общее повышение составляет 7 — 10 % за счет более качественного наполнения цилиндров и более оптимального угла опережения зажигания .

  1. Экологичность .

Благодаря появлению датчиков по параметрам выхлопов , контролируется снижение токсичности .

  1. Упрощение и автоматизация запуска двигателя .
  2. Повышение динамических свойств автомобиля .

Возможности управления двигателем расширяются за счет моментальной реакции системы впрыскивания на каждую изменившуюся нагрузку .

  1. Независимость от погодных условий .

Как известно , карбюратор зависит от уровня атмосферного давления ( например , в горах ), что совершенно отсутствует у инжектора . В том числе под сильным наклоном влияния на работу инжектора не ощущается , что нельзя сказать о карбюраторе ( при повороте 15 градусов могут появиться перебои в работе ).

  1. Отсутствие необходимости в периодическом обслуживании .

Удобство инжекторной подаче топлива состоит в том , что имеются достаточно много возможностей для настройки параметров собственноручно , владельцем транспорта . По этой причине , единственное , что может потребоваться – это замена элементов , вышедших из строя .

  1. Повышенная защита от угона .

Блок электрических систем двигателем настроен так , что подача топливной смеси в мотор не будет осуществляться без полученного позволения от иммобилайзера .

  1. Нет сбора горючей смеси в выпускном тракте . Нет опасности попадания пламени во впускной тракт и последующего его возгорания при некорректной работе системы зажигания ( звук , похожий на хлопки , а в дальнейшем пожар или нарушение систем питания ). Благодаря тому , что в инжекторах горючее поступает лишь в момент открывания форсунки нужного цилиндра , топливо не может накопиться в каллекторе .
  2. Способность изменить высоту капота . В результате того , что система впрыска располагается не поверх двигателем , а по его бокам , появляется возможность понижения уровня капота , чего не скажешь о карбюраторной системе .

Недостатки

Конечно , и у инжекторной системы есть некоторые недостатки . Но с течением времени многие из них стали неактуальны , например высокая стоимость деталей , пониженная ремонтоспособность , необходимость в специализированном персонале при обслуживании . С развитием массового машиностроения , повышением надежности , а также возможность диагностики через мобильные устройства , эти проблемы уже в прошлом . Однако некоторые все же остались :

  1. К составу топлива все также остаются высокие требования .
  2. Зависимость от электропитания ( у вариантов автомобилей , контролируемых электроникой ).
  3. Повышенная вероятность пожара при ДТП . За счет подачи топлива под давлением . Для таких случаев работает контроллер , который отключает бензонасос в аварийных ситуациях .

Датчики топливной системы

При разной комплектации автомобиля может отличаться количество датчиков . Устанавливать их все , для нормальной работы , необязательна .

  1. Датчик кислорода . Он рассчитывает данные по содержанию кислорода в общем объеме отработанных газов .
  2. Датчик положения коленвала . Автомобиль не заведется при поломки данного датчика . Вы не сможете добраться до сервиса без помощи эвакуатора при неполадках с ДПКВ .
  3. Датчик массового расхода воздуха Поступающий объем воздуха и его расход двигателем рассчитывается именно этим датчиком .
  4. Датчик температуры охлаждающей жидкости . Для контроля температурного уровня охлаждающей жидкости , устанавливается данный датчик . Сигнал отправляется на блок управления , но на панели применяется другой датчик .
  5. Датчик скорости . Подает на приборную панель количество пробега .
  6. Датчик положения дроссельной заслонки Нагрузка , оказываемая на мотор , рассчитывается этим датчиком .
  7. Датчик детонации . При определении детонации в автомобиле , включается система ее гашения .
  8. Датчик фазы . Синхронизирует впрыск топлива . В аварийной ситуации , переводит двигатель на параллельно — попарную подачу горючего .
Читайте также:  Конденсаторы высоковольтные постоянного напряжения

В итоге можно сказать , что система впрыска топлива сильно продвинулась за последние пятьдесят лет в своем технологическом совершенстве . Конечно , недостатки все еще остались , но однозначно , массовость в машиностроении , экология — все это непосредственно влияет на развитие двигателей автомобилей . Сейчас невероятно актуальна экологическая составляющая нашей планеты , поэтому разработчики автомобильных двигателей не имеют шансов остаться на том же уровне , что и сейчас , не вводя все новые и новые усовершенствованные методы переработки горючей смеси в двигателе .

Источник



Электронные системы непосредственного впрыска бензиновых двигателей

Система непосредственного впрыска бензина в цилиндры двигателя до настоящего времени не находила широкого распространения. Это обуславливалось тремя основными причинами:

  • во-первых, потому, что общепринятый в настоящее время впрыск топлива во впускной трубопровод упрощает конструкцию самой форсунки
  • во-вторых, потому, что больше времени отводится на приготов­ление топливно-воздушной смеси
  • в-третьих, потому, что при этом упрощается конструкция головки блока

Обычная форсунка располагается вне камеры сгорания, защищенная от всего того, что происходит во время воспла­менения и после закрытия впускного клапана. Форсунка, входящая в камеру сгорания, должна выдержать все те изменения температур и давления, которые там происходят, а это усложняет ее. Она также должна впрыскивать топливо быстрее и лучше распылять его. Когда двига­тель работает на максимальных нагрузках, другими словами, когда он требует больше топлива, время, от­веденное на впрыскивание, уменьшается.

Если необходимо, обычная форсунка может подавать топливо в течение большинства циклов, в то время как форсунка непосредственного впрыска не может подавать топливо, когда открыт выпускной клапан, потому что топливо будет удаляться вместе с отработавшими газами. При непосредственном впрыске время, отводимое на процесс впрыскивания, гораздо меньше, поэтому форсунка должна подавать топливо быстрее, а это требует достаточно высокого давления топлива.

Смешивание – потенциальная проблема непосредствен­ного впрыска. В обычной системе топливо начинает смеши­ваться с воздухом, когда они проходят через впускной клапан, и продолжают перемешиваться, при тактах впуска и сжатия. Форсунка непосредственного впрыска заполняет топ­ливом центральную часть камеры сгорания за короткое время и должна лучше распылить топливо, чтобы гарантировать одно­родный состав смеси.

Сложность представляет и расположение форсунки непосредственного впрыска в го­ловке цилиндров. Форсунки обычного типа являются со­ставной частью впускного трубопровода, а форсунка непос­редственного впрыска должна располагаться вверху камеры сгорания, где уже размещаются клапаны и, особенно, свеча зажигания. Кроме того, остается мало места для прохода охлаждающей жидкости вокруг жизненно важ­ных зон головки цилиндров.

Несмотря на вышеуказанные проблемы, ряд автомобилестроительных фирм Европы и Японии начали разработку и производство бензиновых двигателей с непосредственным впрыском топлива, в целях снижения расхода топлива.

Впервые автомобильный двигатель GDI «Gasoline Direkt Injektion» с непосредственным впрыском бензина был продемонстрирован японской фирмой «Mitsubishi» на проходившей в 1997 году Международной автомобильной выставке, затем последова­ли другие производители, включая Toyota, Renault и Pegeot-Citrojen.

Общая схема системы топливоподачи системы непосредственного впрыска показана на рисунке. Топливо от топливоподкачивающего насоса 6 подается к топливному насосу высокого давления 1, оснащенному датчиком давления топлива для его точного дозирования. ТНВД заключен в герметичный кожух и вал насоса приводится во вращения с помощью электромагнитной муфты. Подача топлива к форсункам цилиндров осуществляется насосом высокого давления 1 развивающим давление 40…100 кгс/см2. При этом давление топлива, впрыскиваемое в цилиндры двигателя может быть постоянным (системы впрыска CDI – Мицубиси, FSI – Фольксваген) или изменяться: на холостом ходу 70 кгс/см2, при полной нагрузке 100 кгс/см2, на переходных режимах 30 кгс/см2 (система впрыска HPI французский концерн Пежо-Ситроен). Топливо накапливается в аккумуляторе давления 3 и из него по трубопроводам передается к форсункам. Форсунки 5, в отличие от традиционных систем впрыска, установлены не во впускном трубопроводе, а непосредственно в камере сгорания двигателя. Необходимое давление в системе поддерживается предохранительным клапаном 4. При подаче напряжения из блока управления открываются соленоидные клапана и топливо впрыскивается в камеру сгорания.

Общая схема системы топливоподачи системы непосредственного впрыска

Рис. Общая схема системы топливоподачи системы непосредственного впрыска

Расширенная схема системы топливоподачи системы непосредственного впрыска на примере двигателя Фольксваген показана на рисунке.

Блок управления двигателем 23 рассчитывает оптимальное соотношение топлива и воздуха для следующих способов смесеобразования

  • послойное распределение смеси
  • образования бедной гомогенной смеси
  • образование гомогенной смеси стехиометрического состава
  • двойной впрыск топлива для разогрева нейтрализатора
  • двойной впрыск топлива при работе двигателя на полной нагрузке

Расход воздуха в системах непосредственного впрыска может определяться как с помощью расходомеров, так и без них. В приведенной системе он рассчитывается блоком управления двигателем с использованием сигналов датчика температуры воздуха на впуске в двигатель 24, датчика давления во впускном трубопроводе 18, датчика частоты вращения коленчатого вала 14, датчика положения дроссельной заслонки, датчика фаз 5 и датчика атмосферного давления, расположенного в корпусе блока управления.

Читайте также:  Инвертор преобразователь напряжения частотный преобразователь

Расширенная схема топливоподачи системы непосредственного впрыска

Рис. Расширенная схема топливоподачи системы непосредственного впрыска:
1 – адсорбер с активированным углем; 2 – клапан продувки адсорбера; 3 – устройство изменения фаз газораспределения; 4 – катушка и свеча зажигания; 5 – датчик фаз; 6,8 – кислородный датчик (лямда-зонд); 7 – предварительный нейтрализатор; 9 – датчик оксидов азота; 10 – нейтрализатор оксидов азота; 11 – датчик температуры отработавших газов; 12 – датчик температуры; 13 – датчик детонации; 14 – датчик частоты вращения коленчатого вала двигателя; 15 – топливный бак; 16 – форсунка с датчиком давления; 17 – датчик давления топлива; 18 – датчик давления воздуха на впуске; 19 – клапан перепуска отработавших газов; 20 – клапан продувки адсорбера; 21 – электропривод дроссельной заслонки; 22 – модуль педали акселератора; 23 – блок управления двигателем; 24 – датчик температуры поступающего воздуха

Для снижения выбросов оксидов азота, в двигателях с непосредственным впрыском применяется рециркуляция отработавших газов. Чтобы обеспечить перепуск отработавших газов на границе бесперебойной работы двигателя рассчитывается их количество. Для расчета количества перепускаемых газов используются:

  • сигнал датчика давления во впускном трубопроводе 18
  • сигнал датчика температуры воздуха во впускном трубопроводе 24
  • сигнал датчика атмосферного давления в блоке управления двигателем (для определения противодавления в выпускной системе)
  • сигнал датчика температуры выпускных газов
  • рассчитанная нагрузка двигателя

При перепуске отработавших газов происходит повышение давления воздуха во впускном трубопроводе. Датчик давления воздуха во впускной системе измеряет его величину и направляет сигнал соответствующего напряжения в блок управления двигателем. Этот сигнал используется для определения суммарной массы воздуха и отработавших газов, поступающей в двигатель. Из этой массы вычитывается масса свежего воздуха, соответствующую нагрузке двигателя, для получения массы перепускаемых газов.

Чтобы повысить крутящий момент при низких частотах вращения коленчатого вала, систему выпуска раздваивается в ее передней части. При этом на каждой приемной трубе установлен отдельный предварительный нейтрализатор 7.

Предварительные нейтрализаторы образуют с приемными трубами неразъемные конструкции. Перед нейтрализаторами установлены широкополосные датчики кислорода 6, которые служат для определения состава бензовоздушной смеси. После нейтрализаторов расположены датчики кислорода 8 со скачкообразной характеристикой, которые позволяют определить эффективность очистки отработавших газов. Приемные трубы соединяются перед общим нейтрализатором NОx 10 накопительного типа. В накопительном нейтрализаторе собираются оксиды азота, образуемые в избыточном количестве при работе двигателя на бедной смеси.

Установленный за нейтрализатором датчик NОx 9 служит для определения степени его насыщения. По сигналу этого датчика запускается процесс регенерации накопительного нейтрализатора.

Для подачи топлива к насосу высокого давления внутри топливного бака установлен электрический подкачивающий насос. Он подает к насосу высокого давления только то количество топлива, которое необходимо впрыснуть в цилиндры двигателя в зависимости от его мощности, вследствие чего снижается расход электроэнергии на привод насоса. Блок управления электронасосом в зависимости от нагрузки двигателя изменяет подачу топлива в систему низкого давления в пределах от 30 до 180 л/ч при постоянном давлении 4 кгс/см2. При пуске холодного или горячего двигателя производительность насоса кратковременно повышается, а давление в системе увеличивается с 4 до 5 кгс/см2. Подкачивающий электронасос включается блоком управления бортовой сетью при открывании двери водителя, благодаря этому происходит своевременное повышение давление в топливной системе.

Электрические насосы для системы непосредственного впрыска могут быть как одноступенчатыми, аналогичные описанным выше, так и двухступенчатыми.

Электрический гидродинамический топливный насос

Рис. Электрический гидродинамический топливный насос:
1 – сторона впуска главной ступени; 2 – сторона нагнетания предварительной ступени; 3 – колодец; 4 – перелив топлива; 5 – возврат топлива; 6 – сторона нагнетания главной ступени; 7 – сторона впуска главной ступени; 8 – насосное колесо главной ступени; 9 – насосное колесо предварительной ступени; 10 – сторона впуска предварительной ступени; 11 – топливный бак

Насосное колесо первой (предварительной) ступени 9 всасывает топливо из придонной зоны бака и нагнетает его в колодец насоса 3, что позволяет использовать практически все топливо из бака. На насосное колесо второй (главной) 8 ступени топливо поступает непосредственно из колодца 3. Колодец с насосными колесами и погружным датчиком уровня топлива опирается на днище бака, с которым он соединен посредством фиксаторов. Доступ ко всем деталям осуществляется после снятия крышки колодца.

Источник

Несовершенство непосредственности: надежность и проблемы моторов с прямым впрыском

«В новый век – с новой системой питания!». Похоже, с таким девизом европейские производители стали внедрять технологию. А что им оставалось? Требования по снижению расхода топлива заставляли делать моторы сложнее, к тому же непосредственный впрыск (особенно в сочетании с наддувом) позволял увеличить мощность. И при этом оставлял мотор вполне экономичным на малой нагрузке. Начал входить в моду и даунсайз – постепенно для машины С-класса стало вполне нормальным иметь мотор объемом в литр, а мощные авто начинаются с объема в 1,4. Даже седаны D+ и Е классов не брезгуют моторами 1,4 и 1,6 с турбонаддувом.

Снова те же грабли, но в XXI веке

Собственно о минусах подобной системы питания было известно с самого начала. Сложность и высокая стоимость сюрпризом не были – опыт внедрения непосредственного впрыска накопился изрядный. Надежность сложных систем честно постарались увеличить. Правда, цену особенно опустить не пытались.

Как известно, для подачи топлива непосредственно в цилиндры нужен насос высокого давления. Вообще-то и в системах «обычного» распределенного впрыска в системе питания давление немаленькое, но у прямого впрыска оно примерно в 10 раз больше.

Читайте также:  Стабилизаторы напряжения analog devices

Современные мембранные ТНВД не так зависят от смазки, как поршневые, но, тем не менее, нуждаются в ней. Да и в целом насос высокого давления – штука довольно хрупкая, любые загрязнения выведут его из строя. Улучшить ситуацию смогли введением стандарта на смазывающие присадки в топливе. Конечно, 15% масла, как в двухтактные моторы, добавлять не стали, но топливо Евро-4 и выше обязательно содержит небольшое количество специальных смазок. Не в последнюю очередь – именно для ТНВД на бензиновых машинах. Учитывая, что официальный запрет на продажу топлива Евро-3 вступил в России в силу лишь 1 января 2015 года, неудивительно, что «непосредственные» машины у нас жили так недолго и несчастливо.

1432677484_112147939

С форсунками ситуация аналогичная, они дороже и менее надежны, чем на системах распределенного впрыска. Требования к их работе тоже намного выше. Небольшое изменение факела распыла, даже без изменения общего расхода подачи, ведет к серьезным нарушением работы мотора. В результате для сохранения работоспособности резко растут требования по чистоте топлива и рабочей температуре.

Пьезофорсунки еще и имеют ограниченное количество циклов срабатывания, чувствительны к перегреву, а также обладают склонностью при выходе из строя «лить» бензин, что может вызвать гидроудар при запуске. Особенно это характерно для очень распространенных «высокоточных» пьезофорсунок Bosch, которые имеют ограниченный ресурс, а компания на протяжении последних десяти лет не может создать действительно хорошо работающий вариант.

Склонность к закоксовке впускных клапанов и худшие условия их работы проявились на моторах Мицубиси довольно быстро. Обычно форсунки подают бензин на впускной клапан и охлаждают его. И заодно смывают с него отложения. У непосредственного мотора такой возможности нет, клапан греется сильнее, больше нагревает воздух, а масло из системы вентиляции картера и из сальника клапана постепенно образует «шубу», которая затрудняет газообмен и приводит к зависанию клапанов и его перегреву. Особенно тяжело приходится моторам с повышенным расходом масла, а в самой критической группе риска – моторы, которые часто работают с малой нагрузкой, то есть в пробках.

Плохие пусковые качества из-за неудовлетворительного испарения топлива при пуске тоже проявились давно. Оказалось, что оптимизация формы факела впрыска на холодном и горячем моторе должна производиться более тщательно. Любое попадание топлива на стенки цилиндра приводит к резкому увеличению количества несгоревшего топлива и попаданию его в масло. А при запуске при отрицательных температурах большое значение приобретает качество распыла бензина: оно должно оказаться намного выше, чем при обычной работе, и давление топлива на пуске должно быть очень высоким. Поначалу этого не учли.

Повышенное количество твердых частиц в выхлопе проявилось позже, когда непосредственный впрыск на европейских машинах уже стал мэйнстримом. Более точные исследования показали, что эта особенность смесеобразования роднит такой бензиновый мотор с дизелем. Действительно, в процессе работы образуются частички сажи, которые необходимо тоже как-то задерживать. Например, вводя сажевый фильтр, как на дизельных моторах. Компания Mercedes уже анонсировала подобную опцию для своих машин.

Попадание топлива в масло из-за неисправностей топливного насоса высокого давления – в общем-то чисто конструктивный недостаток насосов Bosch, но в силу их широкого распространения и общности конструкций насосов свойственен почти всем моторам с непосредственным впрыском. Бензин в масле не так уж и страшен, но в больших количествах ведет к снижению вязкости масла до критической, что приводит к повреждениям моторов. И, к тому же, дает повод многим «экспертам» говорить о том, что топливо является причиной «масляной чумы».

Что же делать?

Почти у всех проблем есть пути решения. Например, двойной впрыск, когда топливо подается и в цилиндры, и во впускной трубопровод – это справляется сразу со сложностью с закоксовкой клапанов, экологичностью и плохим запуском в холода. Такая схема применялась на некоторых двигателях Volkswagen EA888, но продавались они исключительно в США и были заточены под жесткие экологические нормы Калифорнии. Но в конце 2014-го комбинированный впрыск появился и у нас – на моторе 6AR-FE (2 литра, 150 л. с.) Toyota Camry последнего поколения. Пока сложно судить о надежности, ибо пробеги машин пока небольшие в основной массе, однако предпосылки хорошие.

Под капотом 2015–н.в. Toyota Camry XLE

Под капотом 2015–н.в. Toyota Camry XLE

С поршневыми кольцами и топливными насосами приходится разбираться чисто конструктивными методами, экспериментируя с формой – часто «дизайн» поршневой группы производители дорабатывают уже после того, как машина вышла на рынок и поразила всех угаром масла. Так, скажем, делала Toyota в 2005 году, доводя до ума моторы серии ZZ (еще без непосредственно впрыска), а позже – Volkswagen с уже упомянутыми выше EA888. Насосы высокого давления тоже стараются сделать надежнее – эта задача технически выполнима.

Но все непросто: система очень сложная и дорогая – накладным для производителей выходит не только себестоимость конечной продукции, но и исследования с экспериментами. А маркетологи не дают возможности по 10 лет заниматься испытаниями, требуют все более новых моторов с еще более привлекательными характеристиками.

Рискнуть в сегодняшнем автобизнесе репутацией производителя ненадежных машин считается делом благородным. Если что, всегда выручит отзывная кампания. Куда хуже – показаться производителем консервативным или, не дай бог, незацикленным на идее спасения планеты от выхлопных газов. Вот это, как мы видимо по примеру Volkswagen и Mitsubishi – действительно страшно. Тут можно и самостоятельность компании потерять, и топ-менеджмента лишиться.

Источник