Меню

Схема преобразователя напряжения для компьютера

Как работает VRM на материнской плате и видеокарте компьютера

Как работает VRM на материнской плате и видеокарте компьютера

Аватар пользователя

Содержание

Содержание

Преобразователи напряжения используются везде и всюду. Будь то огромные многотонные трансформаторы на электроподстанциях, обычные 50-герцовые трансформаторы в домашней аппаратуре или сложные импульсные схемы с умными микроконтроллерами. Любой электроприбор имеет собственные требования к питанию, да и отдельные узлы в этом приборе тоже привередливы к значениям напряжений. Вопрос — почему? Из статьи вы узнаете, зачем вообще нужны преобразователи и как работает DC-DC регулятор напряжения VRM на материнских платах и видеокартах. А еще можно посмотреть материнские платы с мощными схемами питания в каталоге.

Никакого единства…

В розетке 220 вольт, у блока питания 12 вольт, у зарядки телефона 5 вольт. Может сложиться впечатление, что инженерам нравится играть с напряжением, сначала повышая его до миллионов вольт на линиях электропередач, а потом до единиц вольт для питания центрального процессора. Почему люди не придумали какое-то единое значение напряжения и не используют его везде?

Определенно, центральный процессор — да и вообще любой другой микрочип — питать высоким напряжением прямо из розетки нельзя. Двенадцать вольт после блока питания тоже не подойдут. Во-первых, на микроскопическом уровне даже лишние пара десятых вольта могут привести к утечкам тока и повлиять на стабильность схемы. Во-вторых, чем выше напряжение, тем большее энергии расходуется на работу процессора. Поэтому с уменьшением техпроцесса разработчики стараются снизить и рабочий вольтаж. Когда-то процессоры, например, древний Intel 8086 выпуска 70-х годов, питались от 5 вольт, а современные работают всего от 1-1,4 вольта.

Блоки питания с напряжением 1 вольт на выходе — тоже не вариант, так как сила тока будет чрезмерно высокой — от нескольких десятков до сотен ампер. Ведь, снижая напряжение, растет сила тока при той же мощности. Вычислить силу тока можно, поделив мощность на напряжение.

Большая сила тока вставляет палки в колеса при подборе проводников из-за их сопротивления. Сопротивление — эффект, когда структура проводника мешает беспрепятственному протеканию тока по нему. Заряженные частицы врезаются на полной скорости в атомы проводника, чем и вызывают сопутствующий нагрев, а сами частицы теряют энергию. Это как бег с препятствиями. Вы тоже потеряете энергию, если во время бега по густому лесу будете влетать в деревья.

Сопротивление любого провода не нулевое, причем оно увеличивается с ростом его длины. Толщина провода также влияет на сопротивление. Поэтому, чтобы передать большую мощность при низком значении напряжения и высокой силе тока, придется использовать довольно толстые провода.

К примеру, напряжение на ЛЭП специально увеличивают до сотен тысяч вольт после электростанции, чтобы передавать мегаватты электрической мощности на значительные расстояния с помощью относительно тонких проводов.

И последнее. У любой электроники свое значение рабочего напряжения, а у процессора оно еще и регулируется в зависимости от нагрузки и условий работы. Так что договориться и сделать единую энергосистему с одинаковым значением напряжения попросту нереально.

Нет, без преобразователей ну никак не обойтись.

Устройство DC-DC преобразователя

Для питания микроэлектроники от постоянного напряжения используются DC-DC преобразователи, основанные на принципах широтно-импульсной модуляции — ШИМ. Их еще называют регуляторами напряжения — VRM.

Как это работает? Возьмите обычный вентилятор. Что будет, если вы его включите? Правильно, он будет дуть с одинаковой силой.

Что произойдет, если с равной периодичностью дергать рубильник — включать вентилятор всего на полсекунды, а на следующие полсекунды выключать? Двигатель вентилятора не может мгновенно набрать максимальную скорость вращения, поэтому за такой небольшой промежуток времени он как следует не разгонится. Но и остановиться за то же время он не успеет, так как продолжит крутиться по инерции. Так что вентилятор продолжит дуть, но с гораздо меньшей мощностью. Попробуйте поэкспериментировать со своим домашним вентилятором.

Выходит, если включать и выключать питание вентилятора, то вместо постоянного напряжения мы получим прерывистые импульсы той же амплитуды.

Так и работает простейший ШИМ-регулятор. Но вместо человека с выключателем используется транзистор — он то открывается на некоторое время (ВКЛ), то закрывается (ВЫКЛ). Только делает это с частотой не два раза в секунду (2 Гц), а десятки тысяч раз (10 кГц). Вы так точно не сможете. Такой транзистор называется «ключевым».

Кто-то может возмутиться: «Но, погодите, нам нужно получить напряжение в 1 вольт, а тут хоть и прерывистые, но те же 12 вольт, что и на входе! Кажется, нас обманывают!»

Действительно, таким образом питать процессор по-прежнему нельзя. Так что к ключевому транзистору (VT1) понадобятся еще несколько элементов: катушка индуктивности (L), конденсатор (C) и синхронный транзистор (VT2). Катушка и конденсатор образуют LC-фильтр.

Технически можно разделить цикл преобразования на две стадии: накачка энергии в катушку с конденсатором и стадию разряда.

Первая стадия — накачиваем энергию

Когда транзистор VT1 открыт, его собрат — синхронный транзистор VT2 — закрыт. В катушке L накапливается энергия, плавно нарастает ток и заряжается конденсатор C.

Читайте также:  Стабилизатор напряжения подключить компрессор

Вторая стадия — стадия разряда

Транзистор VT1 закрывается, открывается синхронный VT2 — он нужен, чтобы соединить вход катушки с отрицательным выводом нагрузки, создавая замкнутую цепь питания. Пусть мы и разорвали на этот краткий миг связь с источником питания, но катушка никуда не делась. Накопленная в катушке энергия теперь играет роль источника питания и поддерживает силу и направление тока, а конденсатор разряжается и питает нагрузку.

Затем транзистор VT1 снова открывается, а VT2 закрывается, и цикл начинается заново. Причем для наибольшей эффективности циклы повторяются с довольно высокой частотой — у современных компьютерных комплектующих миллионы раз в секунду (измеряется в мегагерцах, МГц).

Благодаря этому процессу мы получаем постоянное напряжение на нагрузке ниже, чем входное до ключевого транзистора. Импульсы как бы сглаживаются, образую близкую к прямой линию напряжения.

То, что линия напряжения не совсем прямая — это нормально. В реальных условиях идеальных LC-фильтров не бывает, и всегда присутствуют небольшие пульсации напряжения. И главное, подобрать параметры катушки и конденсатора таким образом, чтобы они не успевали разрядиться полностью к концу цикла. Тогда ток становится неразрывным.

К слову, ток на всей цепи примерно равен. А так как синхронный транзистор VT2 открыт несоизмеримо дольше — работать ему приходиться, что называется, за троих.

Как настраивается преобразователь

Уровень напряжения на нагрузке будет зависеть от длительности первой и второй стадий в рамках одного цикла. Ведь чем дольше открыт транзистор VT1, тем больше энергии успевает накопить катушка и тем выше будет по итогу напряжение после LC-фильтра.

Если мы поделим время первой стадии на длительность полного цикла, то получим коэффициент заполнения (D) от 0 до 100 %.

Чтобы узнать выходное напряжение (U out), нужно коэффициент заполнения умножить на входное напряжение (U in).

А чтобы узнать коэффициент заполнения, делим U out на U in.

Простой пример: чтобы получить типичное для центрального процессора напряжение в 1,2 вольта, то, поделив на входные 12 вольт (напряжение на выходе блока питания), получим D=0,1.

1,2 / 12 = 0,1 * 100 % = 10 %

Это значит, что первая стадия (накачки энергии) займет всего 10 % времени от общей длительности цикла, а оставшиеся 90 % времени уйдут на стадию разряда.

Когда одной фазы недостаточно

В мощных преобразователях часто используется не один канал с парой транзисторов, одной катушкой и одним конденсатором, а несколько параллельно подключенных каналов.

Как мы уже выяснили, любой проводник имеет ненулевое сопротивление и нагревается. Транзистор в ключевом режиме — тоже проводник, как обычный выключатель. И сопротивление (Rds) между его входом и выходом (сток-исток) не равно нулю. Значит, чем выше ток, тем сложнее будет электронам пробиться через него, что приведет к потерям энергии и нагреву. Чтобы минимизировать этот эффект и применяются несколько фаз — нагрузка распределяется между ними поровну.

Еще один интересный способ повысить эффективность: синхронный транзистор VT2 открыт примерно в семь-восемь раз дольше чем VT1, поэтому VT2 часто дублируют и стараются подобрать более продвинутую и дорогую модель с низким Rds.

Но это еще не все. Такие каналы не просто так называют «фазами». Процесс переключения транзисторов в разных каналах происходит не одновременно, а с небольшим сдвигом по фазе.

На выходе после LC-фильтров все фазы объединяются в одну, и амплитуда пульсаций становится значительно ниже, чем было бы у каждой фазы в отдельности.

Так что даже несколько десятков каналов в преобразователе на материнской плате неправильно называть «избытком». Ведь это не только меньшие потери, но и лучшее качество напряжения. Меньше пульсаций напряжения — меньше выбросов во внутренние узлы процессора — выше стабильность всей схемы, особенно при разгоне.

Те же принципы справедливы и для графического чипа видеокарты, процессора смартфона и любой другой «тонкой» электроники. Но в этом случае разработчики уже за нас рассчитали потребляемую мощность и количество необходимых узлов. А вот при выборе материнской платы пользователь должен сам определить, что ему нужно, учесть потребляемую мощность процессора. Тем более, если в планах серьезный разгон.

Источник



Преобразователь 12В – 220В из деталей компьютерного БП.

Инверторы

Схема, рассматриваемая в статье, разработана для ознакомительных целей. Это простая схема без ШИМ контроллера, который усложняет ее. При правильной сборке она не нуждается в настройке и заработает сразу. Но простота имеет и минусы: напряжение на выходе не стабилизировано, схема не имеет никаких защит, выходной ток постоянный.

power inverter

Т.е. этим преобразователем нельзя питать электродвигатели переменного тока и устройства с сетевым трансформатором. Можно подключать паяльник, лампу накаливания и эконом лампу. Но все же использовать такую схему в бытовых целях не стоит.

Читайте также:  Определить фазное напряжение если симметричная нагрузка соединена треугольником

DSCN1179

Донором деталей станет неисправный блок питания компьютера. Разбираем корпус и снимаем плату, открутив 4 винта по углам. Отпаиваем силовой импульсный трансформатор, тороидальный дроссель групповой стабилизации, 2 электролитических конденсатора 330мкФ х 200В (емкость у них в разных моделях БП может отличаться), неполярный конденсатор 1 мкФ. Далее снимаем радиаторы на которых стоят силовые транзисторы, могут понадобиться также прокладки и шайбы из под этих транзисторов.

DSCN1179

Кроме этого нужны:

• 2 резистора номиналом от 270 до 470 Ом и мощностью 2Вт,
• 2 диода UF5408 или другие ультрафаст (UF) с током не менее 1А и напряжением не менее 400В,
• 2 стабилитрона на 6.8В, мощностью не менее 1Вт,
• 2 N-канальных транзистора IRF840 или IRFP460 или IRFP250 или 18N60 (18А, 600В).

Дроссель намотанный на торе имеет несколько обмоток, нам понадобится только силовая обмотка, которая будет ограничителем тока. Остальные можно отмотать или просто перекусить выводы, чтобы не мешали. Если такой дроссель наматывается с нуля, то следует намотать от 7 до 15 витков проводом 1.2-1.5мм.

DSCN1180

Сборка будет производиться навесным монтажом, без печатной платы, для максимальной простоты. Рассмотрим силовой трансформатор.С одной стороны находятся 2 вывода, это будет вторичная обмотка. На другой стороне, где так называемая “коса”, несколько выводов. Мы используем 2 вывода слева, к которым будем соединять силовые выводы транзисторов. Также параллельно этой обмотке соединяем конденсатор 1 мкФ.

DSCN1183

Устанавливаем транзисторы на теплоотвод. В зависимости от типа корпуса транзисторов (изолированные стоки или нет) могут понадобиться изолирующие прокладки и шайбы под крепежными винтами. Затем сгибаем выводы стоков и припаиваем к двум крайним выводам трансформатора. Припаиваем стабилитроны и резисторы.

DSCN1185

Теперь для проверки работоспособности собранной части схемы надо присоединить лампу накаливания к вторичной обмотке и подать на вход напряжение от аккумулятора. Если все собрано верно, то лампочка загорится, но с неполной яркостью.
Это оттого, что выходное напряжение на вторичной обмотке около 100В, нам же нужно 220В. Поэтому добавляем удвоитель напряжения из 2 электролитических конденсаторов и 2 диодов UF5408. Также ставим параллельно шунтирующие резисторы 330кОм.

Теперь лампочка в 60Вт горит с полной яркостью.
На входе схемы рекомендуется поставить предохранитель на 15-20А.
В заключение отмечу, что схема работает в широком диапазоне питающих напряжений, начиная с 6В.

Источник

Самодельный преобразователь напряжения с 12 на 220В своими руками

Самодельный преобразователь напряжения с 12 на 220В своими руками

Преобразователь напряжения очень полезный и иногда незаменимый прибор. Если вы часто выезжаете на природу или рыбалку с ночёвкой, то свет вам просто необходим, решить эту проблему поможет преобразователь напряжения с 12 на 220В, с его помощью можно подключить и освещение и другие приборы. Конечно можно его просто купить, но куда приятней собрать своими руками!

Недавно у меня появилась идея самостоятельно разработать и собрать компактный и очень экономичный коммутационный инвертор от 12 до 220 В для питания светодиодной лампы 220 В с минимальным количеством радиокомпонентов, способных работать до 14 часов от небольшой 7 А h 12В аккумулятор и имеющий защиту от полной разрядки аккумулятора. После долгих бессонных ночей мне все же удалось создать инвертор, который потребляет всего 0,5 А / ч и способен питать сверхъяркую светодиодную лампу 220 В.

На этом рисунке изображена схема импульсного однотактного преобразователя напряжения с 12 на 220В. Генератор импульсов собран на широко используемой микросхеме NE555 или советском аналоге KR1006VI1.

Стабилизатор напряжения L7809CV поддерживает постоянное напряжение на 9В микросхеме, и, следовательно, разряд батареи не влияет на рабочую частоту микросхемы. Благодаря тщательно подобранному сопротивлению резисторов R2 и R3 микросхема выдает идеально прямоугольные импульсы, режим работы микросхемы составляет 50%, рабочая частота составляет 11,6 кГц. Когда генератор работает в этом режиме, транзистор T2 MJE13009 практически не нагревается; достаточно разместить его на маленьком радиаторе размером 30х50х10 мм.

Самодельный преобразователь напряжения с 12 на 220В своими руками

Защита от разрядки аккумулятора собрана на транзисторе T1 BD139, подстроечном резисторе P1, резисторе R1 и реле Rel1 SRD-12VDC-SL-C. Как работает защита? Включив переключатель S1, нажмите кнопку S2. Через резистор R1 и подстроечный P1 питание подается на базу транзистора T1 и реле Rel1, контакты реле блокируются. Подстроечный резистор P1 ограничивает ток, протекающий через транзистор T1. Как только напряжение батареи падает до 10 В, ток на базе транзистора Т1 уменьшается, и транзистор замыкается, контакты реле Rel1 размыкаются, и инвертор выключается.

Настройка защиты заключается в правильной установке тока удержания реле. Подключите инвертор к регулируемому источнику питания с фиксированным напряжением 12 В. Понизив напряжение питания до 9,5 — 10 В резистором подстройки P1, выберите момент срабатывания защиты от разрядки аккумулятора.

На рисунке ниже, изображена печатная плата импульсного преобразователя напряжения с 12 на 220В. Размер платы 52х24 мм. Скачайте плату в формате lay, распечатайте и перенесите на текстолит с помощью лазерно утюжной технологии. Ничего зеркалить не нужно, все нарисовано как, надо.

Читайте также:  Способы создания предварительного напряжения железобетона

Печатная плата импульсного преобразователя напряжения с 12 на 220В с защитой от разряда аккумулятора

Самодельный преобразователь напряжения с 12 на 220В своими руками

А, теперь я расскажу о самой важной и трудоемкой в изготовлении для начинающих радиолюбителей детали, импульсном трансформаторе, который вам, дорогие друзья, придется наматывать самостоятельно. На самом деле ничего сложного в этом деле нет, стоит только начать, а дальше все пойдет, как по маслу.

И так . Вам понадобится импульсный трансформатор от блока питания компьютера или от импортного цветного телевизора. Размер каждой половины «W» -образной магнитопровода 35х21х11мм, размер собранного магнитопровода 35х42х11мм. У вас есть трансформатор, но перед перемоткой, прочитайте здесь о том, как разобрать импульсный трансформатор от блока питания компьютера или импортированного цветного телевизора.

Самодельный преобразователь напряжения с 12 на 220В своими руками

Для намотки импульсного трансформатора я использую самодельный станок, его можно заводить вручную, но это занимает очень много времени. Мы наматываем обмотки в одном направлении, поворачиваемся к повороту, концы обмоток тщательно полируются лезвием строительного ножа.

Самодельный преобразователь напряжения с 12 на 220В своими руками

Каждый слой провода во избежание пробоя изолируем тремя слоями канцелярского скотча. Сначала наматывается выходная обмотка, содержащая 220 витков медного провода в лаковой изоляции d = 0,5 мм. Вторая обмотка — обмотка коллектора, содержащая 50 витков медной проволоки в лаковой изоляции d = 0,5 мм. Да, да, это именно первые 220 витков, вторые 50 витков. Как показала практика и многочисленные эксперименты с количеством витков и последовательностью обмоток, это лучший вариант и, соответственно, максимальная мощность импульсного преобразователя напряжения.

Самодельный преобразователь напряжения с 12 на 220В своими руками

Да, еще одна важная деталь для несимметричного инвертора, которым является это устройство, — это необходимость установить немагнитный зазор между двумя частями ферритовой магнитной цепи 1,2 мм. Заметка! На этом рисунке показаны две разные магнитные цепи с немагнитным зазором и без него.

Самодельный преобразователь напряжения с 12 на 220В своими руками

Почему они такие разные?
Это потому, что слева есть магнитная цепь от трансформатора от блока питания импортированного цветного телевизора, построенного по однотактной схеме, а справа — от магнитной цепи от трансформатора блока питания компьютера, построенного с использованием двухтактная схема. Поэтому, если у вас есть трансформатор от импортного цветного телевизора с немагнитным зазором 1,2 мм, смело промазывайте половинки магнитопровода клеем и соберите трансформатор.

Причем, тут нужно повозиться с трансформатором от блока питания компьютера. Необходимо вырезать два круга из толстого картона и приклеить ферритовый магнитопровод к центральному пальцу, зазор между половинками должен составлять 1,2 мм.

Какие лампы можно подключать к инвертору?
Преобразователь импульсного напряжения предназначен для питания одной светодиодной лампы Feron 230 В 7 Вт E14 6400K, он также отлично работает с другими лампами, такими как Saffit 230 В 7 Вт E14 6400K, Onlight 230 В 7 Вт E14 6400K и аналогичными лампами с потребляемой мощностью не более 7 Вт. Помимо лампочек навигатора, эти лампы во время эксперимента отказывались работать на частоте 11,6 кГц, похоже, у них есть защита. Я не рекламирую производителей светодиодных ламп, а просто пишу о результатах своего эксперимента.

Самодельный преобразователь напряжения с 12 на 220В своими руками

Категорически запрещено подключать к инвертору другие бытовые приборы, телевизоры, компьютеры, пылесосы, так как из-за высокой частоты генератора они могут выйти из строя!

Сколько потребляет этот чудо инвертор?
Из-за очень низкого энергопотребления всего 0,5 А / ч, инвертор может работать от батареи 12 В 7 А / ч до 14 часов. Автомобильная аккумуляторная батарея 12 В емкостью 60 А / ч будет работать около 120 часов непрерывной работы преобразователя напряжения. Если после сборки инвертор потребляет более или менее 0,5 А / ч, то необходимо выбрать сопротивление резистора R2.

Самодельный преобразователь напряжения с 12 на 220В своими руками

Рабочая частота импульсного инвертора 11,6 кГц, duty 50%, в таком режиме микросхема NE555 генерирует идеально прямоугольные импульсы.

Самодельный преобразователь напряжения с 12 на 220В своими руками

Все детали инвертора легко помещаются в небольшой пластиковой распределительной коробке размером 75х75х45 мм.

Самодельный преобразователь напряжения с 12 на 220В своими руками

Яркости лампы достаточно, для комфортного чтения интересной книги.

Самодельный преобразователь напряжения с 12 на 220В своими руками

Импульсный преобразователь незаменимый помощник для автомобилистов. Заменить колесо, выполнить мелкий ремонт двигателя, все это легко сделать ночью или в гараже без электричества.

Самодельный преобразователь напряжения с 12 на 220В своими руками

Самодельный преобразователь напряжения с 12 на 220В своими руками

Список радиодеталей необходимых для сборки импульсного инвертора

  • Микросхема NE555 или КР1006ВИ1
  • Стабилизатор напряжения L7809CV
  • Резисторы R1 10К, R2 1K, R3 5.1K, R4 100R, P1 10K
  • Конденсатор C1 10nf, C2 1mf
  • Транзисторы T1 BD139, T2 MJE13009, КТ819
  • Реле Rel1 SRD-12VDS-SL-C
  • Трансформатор Tr1 от импортного цветного телевизора или компьютерного блока питания с ферритовым магнитопроводом 35х42х11мм
  • Медный провод в лаковой изоляции d=0.5 мм
  • Светодиодная лампа Feron 230V 7W E14 6400K, Saffit 230V 7W E14 6400K, Онлайт 230V 7W E14 6400K и другие, кроме лампочек фирмы Navigator
  • Провод медный, многожильный, в двойной изоляции 2х0.5 мм
  • Патрон E14
  • Выключатель S1
  • Кнопка с нормально разомкнутыми контактами S2
  • Кусок текстолита 52х24 мм
  • Коробка пластиковая распределительная 75х75х45 мм
  • Радиатор для транзистора Т2 30х50х10 мм
  • Провода соединительные
  • Комплект прямых рук для сборки

Спасибо что заглянули, подпишитесь на канал и поставьте лайк!

Предлагаю посмотреть видео о том, как работает этот преобразователь напряжения.

Источник