Меню

Схема простой электрической цепи постоянного тока

Электрические цепи для чайников: определения, элементы, обозначения

Эта статья для тех, кто только начинает изучать теорию электрических цепей. Как всегда не будем лезть в дебри формул, но попытаемся объяснить основные понятия и суть вещей, важные для понимания. Итак, добро пожаловать в мир электрических цепей!

Хотите больше полезной информации и свежих новостей каждый день? Присоединяйтесь к нам в телеграм.

Электрические цепи

Электрическая цепь – это совокупность устройств, по которым течет электрический ток.

Рассмотрим самую простую электрическую цепь. Из чего она состоит? В ней есть генератор – источник тока, приемник (например, лампочка или электродвигатель), а также система передачи (провода). Чтобы цепь стала именно цепью, а не набором проводов и батареек, ее элементы должны быть соединены между собой проводниками. Ток может течь только по замкнутой цепи. Дадим еще одно определение:

Электрическая цепь – это соединенные между собой источник тока, линии передачи и приемник.

Конечно, источник, приемник и провода – самый простой вариант для элементарной электрической цепи. В реальности в разные цепи входит еще множество элементов и вспомогательного оборудования: резисторы, конденсаторы, рубильники, амперметры, вольтметры, выключатели, контактные соединения, трансформаторы и прочее.

Электрическая цепьЭлектрическая цепь

Кстати, о том, что такое трансформатор, читайте в отдельном материале нашего блога.

По какому фундаментальному признаку можно разделить все цепи электрического тока? По тому же, что и ток! Есть цепи постоянного тока, а есть – переменного. В цепи постоянного тока он не меняет своего направления, полярность источника постоянна. Переменный же ток периодически изменяется во времени как по направлению, так и по величине.

Сейчас переменный ток используется повсеместно. О том, что для этого сделал Никола Тесла, читайте в нашей статье.

Элементы электрических цепей

Все элементы электрических цепей можно разделить на активные и пассивные. Активные элементы цепи – это те элементы, которые индуцируют ЭДС. К ним относятся источники тока, аккумуляторы, электродвигатели. Пассивные элементы – соединительные провода и электроприемники.

Приемники и источники тока, с точки зрения топологии цепей, являются двухполюсными элементами (двухполюсниками). Для их работы необходимо два полюса, через которые они передают или принимают электрическую энергию. Устройства, по которым ток идет от источника к приемнику, являются четырехполюсниками. Чтобы передать энергию от одного двухполюсника к другому им необходимо минимум 4 контакта, соответственно для приема и передачи.

Резисторы – элементы электрической цепи, которые обладают сопротивлением. Вообще, все элементы реальных цепей, вплоть до самого маленького соединительного провода, имеют сопротивление. Однако в большинстве случаев этим можно пренебречь и при расчете считать элементы электрической цепи идеальными.

Существуют условные обозначения для изображения элементов цепи на схемах.

Обозначения элементов электрической цепи

Кстати, подробнее про силу тока, напряжение, сопротивление и закон Ома для элементов электрической цепи читайте в отдельной статье.

Вольт-амперная характеристика – фундаментальная характеристика элементов цепи. Это зависимость напряжения на зажимах элемента от тока, который проходит через него. Если вольт-амперная характеристика представляет собой прямую линию, то говорят, что элемент линейный. Цепь, состоящая из линейных элементов – линейная электрическая цепь. Нелинейная электрическая цепь – такая цепь, сопротивление участков которой зависит от значений и направления токов.

Какие есть способы соединения элементов электрической цепи? Какой бы сложной ни была схема, элементы в ней соединены либо последовательно, либо параллельно.

Способы соединения элементов электрической цепи

При решении задач и анализе схем используют следующие понятия:

  • Ветвь – такой участок цепи, вдоль которого течет один и тот же ток;
  • Узел – соединение ветвей цепи;
  • Контур – последовательность ветвей, которая образует замкнутый путь. При этом один из узлов является как началом, так и концом пути, а другие узлы встречаются в контуре только один раз.

Чтобы понять, что есть что, взглянем на рисунок:

Кстати! Для наших читателей сейчас действует скидка 10% на любой вид работы

Схема электрической цепи

Классификация электрических цепей

По назначению электрические цепи бывают:

  • Силовые электрические цепи;
  • Электрические цепи управления;
  • Электрические цепи измерения;

Силовые цепи предназначены для передачи и распределения электрической энергии. Именно силовые цепи ведут ток к потребителю.

Также цепи разделяют по силе тока в них. Например, если ток в цепи превышает 5 ампер, то цепь силовая. Когда вы щелкаете чайник, включенный в розетку, Вы замыкаете силовую электрическую цепь.

Электрические цепи управления не являются силовыми и предназначены для приведения в действие или изменения параметров работы электрических устройств и оборудования. Пример цепи управления – аппаратура контроля, управления и сигнализации.

Электрические цепи измерения предназначены для фиксации изменений параметров работы электрического оборудования.

Расчет электрических цепей

Рассчитать цепь – значит найти все токи в ней. Существуют разные методы расчета электрических цепей: законы Кирхгофа, метод контурных токов, метод узловых потенциалов и другие. Рассмотрим применение метода контурных токов на примере конкретной цепи.

Электрическая цепь

Сначала выделим контуры и обозначим ток в них. Направление тока можно выбирать произвольно. В нашем случае – по часовой стрелке. Затем для каждого контура составим уравнения по 2 закону Кирхгофа. Уравнения составляются так: Ток контура умножается на сопротивление контура, к полученному выражению добавляются произведения тока других контуров и общих сопротивлений этих контуров. Для нашей схемы:

решение электрических цепей

Полученная система решается с подставкой исходных данных задачи. Токи в ветвях исходной цепи находим как алгебраическую сумму контурных токов

решение электрических цепей

Какую бы цепь Вам ни понадобилось рассчитать, наши специалисты всегда помогут справится с заданиями. Мы найдем все токи по правилу Кирхгофа и решим любой пример на переходные процессы в электрических цепях. Получайте удовольствие от учебы вместе с нами!

Источник

Схемы Электрических Цепей Постоянного Тока

При расчете электрических цепей в большинстве случаев известны параметры источников ЭДС или напряжения, сопротивления элементов электрической цепи, и задача сводится к определению токов в ветвях цепи. Таким образом, электрическая цепь на рис.


Точка Н определяет номинальный режим, если напряжение и ток соответствуют их номинальным значениям Uном и Iном, приведенным в паспорте источника электрической энергии.

Элемент электрической цепи, параметры которого сопротивление и др.
Электрические цепи (часть 1)

Элементы цепи Электрическая цепь содержит в себе такие составляющие, как источники энергии, потребители, а также соединяющие их провода. По закону Ома токи в каждой ветви: По первому закону Кирхгофа общий ток Смешанное соединение — комбинация первых двух соединений, где параллельное соединение может быть преобразовано к последовательному.

Для их составления необходимо задать условные направления токов в ветвях номер введем в соответствии с порядковым номером сопротивлений.

Метод узловых потенциалов Вторым методом, которым пользуются для решения сложных цепей, является метод узловых потенциалов. Тогда из выражения 1.

Внешняя вольт-амперная характеристика источника электрической энергии Точка X вольт-амперной характеристики источника электрической энергии отвечает режиму холостого хода х.

Подключение цепи к источнику постоянной ЭДС 5. Существуют дополнительные приборы цепи, например, выключатели, измерители тока и защитные аппараты.

КОНДЕНСАТОР В ЦЕПИ ПОСТОЯННОГО И ПЕРЕМЕННОГО ТОКА [РадиолюбительTV 89]

Электрическая цепь постоянного тока

Алгебраическая сумма падений напряжений на резистивных элементах в любом замкнутом контуре равно алгебраической сумме ЭДС. Нелинейный элемент, например лампа накаливания, имеет сопротивление, величина которого увеличивается при повышении напряжения, а следовательно и тока, подводимого к лампочке.

Источник электрической энергии характеризуется понятием ЭДС Е , под которой понимают величину, численно равную энергии, получаемой внутри источника единицей электрического заряда.

При расчете в схеме электрической цепи выделяют несколько основных элементов. Этот метод основан на составлении уравнений по первому закону Кирхгофа: Схема сложной электрической цепи с двумя узлами.

Для разных электротехнических устройств указывают свои номинальные параметры.

Электрическая цепь в режиме короткого замыкания имеет сопротивление, которое равно нулю. В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают.

Читайте также:  Величина тока холостого хода асинхронного двигателя

Как видно, при параллельном соединении источников ток и мощность внешней цепи равны соответственно сумме токов и мощностей источников.

В случае последовательного соединения сопротивлений в ветви В общем виде уравнения узловых потенциалов имеют вид: Если в схеме имеются источники тока, то слагаемое в правой части будет равно сумме источников тока: Метод узловых потенциалов имеет преимущество, если число независимых узлов меньше числа контуров. Желательно во всех контурах положительные направления обхода выбирать одинаковыми, например, по часовой стрелке, как показано на рис.
Устройство и принцип работы двигателя постоянного тока. Схема двигателя постоянного тока.

Похожие статьи

Такая система известна, как электрическая цепь. Схема электрической цепи.

Ознакомившись с основными характеристиками и видами такой системы, как электрическая цепь, становится возможным понять принцип функционирования любого электрооборудования.

Отключение цепи от источника постоянной ЭДС 5. В противном случае это слагаемое отрицательно. При анализе электрической цепи рассматривают следующие режимы работы: холостого хода, номинальный, короткого замыкания и согласованный.

Электрическая цепь и электрический ток, протекающий по ней, характеризуют электромагнитные процессы при помощи напряжения и силы тока. Для электрической цепи на рис.

Для контура. Это произойдет, если к зажимам аb двухполюсника присоединена внешняя цепь с источниками питания. Точка К характеризует режим короткого замыкания к. Первый закон Кирхгофа: сумма токов в узле равна нулю 1.

Elektrotechnik fuer Grundlagen der Elektronik


Эта вольт-амперная характеристика строится по двум точкам 1 и 2 рис. Активный двухполюсник содержит источники электрической энергии, а пассивный двухполюсник их не содержит.

Мощность цепи несинусоидального тока 4. Для расчета цепей с двухполюсниками реальные активные и пассивные элементы цепи представляются схемами замещения. По этой причине для расчета сложных электрических цепей разработаны более рациональные методы расчета, основные из них рассмотрены ниже. За направление электрического тока в электротехнике принято направление, противоположное направлению движения электронов. Сложной электрической цепью называется цепь, содержащая несколько источников и которую нельзя свернуть до простой цепи последовательного или параллельного соединения.

Зная токи, можно найти напряжения на элементах цепи, мощность отдельных элементов и электрической цепи в целом, мощность источников и др. Контур — любой замкнутый путь, проходящий по нескольким ветвям.
как решать задачи со сложными схемами

Элементы цепи

При сравнении внешних характеристик источника ЭДС рис. Мощность трёхфазной цепи 3.

Классический метод расчёта переходных процессов 5. В зависимости от электропроводности все вещества подразделяют на: 1.

Последовательное соединение в цепи Большое количество электрических цепей состоят из нескольких приемников тока.

Согласованный режим Согласованный режим электрической цепи обеспечивает максимальную передачу активной мощности от источника питания к потребителю. На схеме этот элемент выглядит следующим образом. В этой схеме реальные элементы цепи изображаются условными обозначениями, причем вспомогательные элементы цепи обычно не изображаются, а если сопротивление соединительных проводов намного меньше сопротивления других элементов цепи, его не учитывают.

Метод узловых потенциалов

Идеальному источнику тока приписывают внутреннее сопротивление, стремящееся к бесконечно большому значению, и неизменный ток Iк не зависящий от напряжения на его зажимах, равный току коротного замыкания, вследствие чего неограниченное увеличение присоединенной к источнику нагрузки сопровождается теоретически неограниченным возрастанием напряжения и мощности. Электрическая цепь и электрический ток, протекающий по ней, характеризуют электромагнитные процессы при помощи напряжения и силы тока.

Различают два рода тока: 1. Ветвь электрической цепи схемы — участок цепи с одним и тем же током. Последовательное включение источников питания источников ЭДС применяется тогда, когда требуется создать напряжение требуемой величины, а рабочий ток в цепи меньше или равен номинальному току одного источника ЭДС рис. Между узлами 1 и 3 имеются две параллельные ветви с источниками ЭДС Е1 и Е2 , между узлами 2 и 3 также имеются две параллельные ветви с резисторами R1 и R2. Данное устройство работы системы применяется к любому электрическому бытовому прибору.

По этой причине для расчета сложных электрических цепей разработаны более рациональные методы расчета, основные из них рассмотрены ниже. Сопротивление в этой электрической цепи приравнивается к сумме сопротивлений всех проводников системы. При сравнении внешних характеристик источника ЭДС рис. В случае когда у одного приемника энергии сопротивление меньше, через него может пройти больше тока, чем через другие элементы системы.

Классический метод расчёта переходных процессов 5. Стрелка в кружке указывает направление возрастания потенциала внутри источника ЭДС. Электрический ток в такой электрической системе имеет несколько вариантов пути прохождения. Это уравнение является линейным. В состав цепи входят: 1.
Законы Кирхгофа — Теория и задача

Источник

Электрические цепи постоянного тока. Электрические цепи и ее элементы

Электрические цепи и ее элементы

Электрической цепью постоянного тока называют совокупность устройств и объектов: источников электрической энергии, преобразователей, потребителей, коммутационной, защитной и измерительной аппаратуры, соединительных проводов или линии электропередачи.

Электрические и электромагнитные процессы в этих объектах описываются с помощью понятий об электродвижущей силе (ЭДС — E), токе (I) и напряжении (U).

Элементы цепи можно разделить на три группы:

1) элементы, предназначенные для генерирования электроэнергии (источники энергии, источники ЭДС);

2) элементы, преобразующие электроэнергию в другие виды энергии: механическую, тепловую, световую, химическую и т.д. (эти элементы называются приемниками электрической энергии или потребителями);

3) элементы, предназначенные для передачи электрической энергии от источника к приемникам (линии электропередачи, соединительные провода); элементы, обеспечивающие уровень и качество напряжения и т.д.

Источники питания цепи постоянного тока – это гальванические элементы, электрические аккумуляторы, электромеханические генераторы, термо- и фотоэлементы и др.

Электрическими приемниками или потребителями постоянного тока являются электродвигатели, преобразующие электрическую энергию в механическую, нагревательные и осветительные приборы, электролизные установки и др. Все электоприемники характеризуются электрическими параметрами, среди которых основные – напряжение и мощность. Для нормальной работы электроприемника на его зажимах необходимо поддерживать номинальное напряжение. По ГОСТ 721-77 напряжение равно 27, 110, 220, 440 В, так же 6, 12, 24, 36 В.

Коммутационная аппаратура служит для подключения потребителей к источникам, то есть для замыкания и размыкания источников электроцепи.

Защитная аппаратура предназначена для размыкания цепи в аварийных ситуациях.

Измерительная аппаратура предназначена для замера тока, напряжения и других электрических величин.

Линии электропередачи используются, когда источники и потребители удалены друг от друга на большие расстояния. Соединительные провода предназначены для соединения между собой зажимов или электродов элементов электрической цепи.

Активные и пассивные элементы

Элемент называется пассивным, если он не может вызывать протекание тока, то есть если он не создает тока или ЭДС. Если собрать несколько пассивных элементов (резисторы, конденсаторы, катушки индуктивности) в электрическую цепь, то ток в цепи не потечет.

Элемент, который создает ЭДС и вызывает протекание тока, называется активным (источники электроэнергии).

Линейные и нелинейные цепи

Электрическая цепь называется линейной, если электрическое сопротивление или другие параметры участков, не зависят от значений и направлений токов и напряжений. Электрические процессы линейной цепи описываются линейными алгебраическими и дифференциальными уравнениями.

Читайте также:  Электрический ток течет по двум последовательно соединенным проводникам разного сечения

Если электрическая цепь содержит хотя бы один нелинейный элемент, то она является нелинейной.

Топологические элементы электрической цепи.

Графическое изображение электрической цепи называется электрической схемой. Электрическая схема включает: узлы, ветви, контуры.

Ветвь – совокупность элементов, соединенных последовательно. По ветви протекает один и тот же ток.

Узел – точка соединения трех или более ветвей.

Контур – совокупность ветвей, при обходе которых осуществляется замкнутый путь.

Простейшая электроцепь имеет один контур с одной ветвью и не имеет узлов. Сложные электроцепи имеют несколько контуров.

Положительные направления тока, напряжения и ЭДС.

Чтобы правильно записать уравнения, описывающие процессы в электрических цепях, и произвести анализ этих процессов, необходимо задать условные положительные направления ЭДС источников питания, тока в элементах или ветвях цепи и напряжения на зажимах элементов цепи или между узлами цепи.

Внутри источника ЭДС постоянного тока положительным является направление ЭДС от отрицательного полюса к положительному полюсу. Это соответствует определению ЭДС как величины, характеризующей способность сторонних сил вызывать электрический ток.

По отношению к источнику ЭДС все элементы цепи составляют внешний участок цепи.

За положительное направление тока в цепи принимают направление, совпадающее с направлением ЭДС. Во внешней цепи положительным является направление от положительного полюса источника к отрицательному полюсу. В электронной теории – направление совпадает с направлением положительно заряженных частиц.

Условным положительным направлением падения напряжения (или просто напряжения) на элементах цепи или между двумя узлами цепи принимают направление, совпадающее с условно положительным направлением тока в этом элементе или в этой ветви. Положительное направление напряжения на зажимах источника ЭДС всегда противоположно положительному направлению ЭДС.

Действительные направления электрических величин, определяемые расчетом, могут совпадать или не совпадать с условными направлениями. При расчетах если определено, что ток, ЭДС и напряжения положительны, то их действительные направления совпадают с условно принятыми положительными направлениями, если отрицательны, то не совпадают.

Основные законы электрической цепи

Условное обозначение параметров в цепях постоянного и переменного тока.

i – переменный ток; I – постоянный ток;

u – переменное напряжение; U – постоянное напряжение;

e – переменная ЭДС; E – постоянная ЭДС;

Напряжение U на зажимах потребителя прямо пропорционально сопротивлению R и току I , проходящему через него

Но выражение не является следствием закона Ома, так как сопротивление R=const и не зависит от тока и напряжения, протекающего через сопротивление.

Если ввести понятие проводимость G,то , .

Размерность сопротивления R – Ом (Ом), проводимости G – сименс (См).

Первый закон Кирхгофа

Алгебраическая сумма токов сходящихся в узле равно нулю.

где n – число ветвей, сходящихся в узле.

До написания уравнения необходимо задать условные положительные направления токов в ветвях, обозначив эти направления на схеме стрелками. Токи, направленные к узлу, записываются со знаком плюс, а токи, направленные от узла, со знаком минус.

Например: I1=5 A

Иначе первый закон Кирхгофа может быть сформулирован: сумма токов, втекающих в узел, равна сумме токов, вытекающих из узла:

Второй закон Кирхгофа

Отражает физическое положение, состоящее в том, что изменение потенциала во всех элементах контура в сумме равно нулю.

Алгебраическая сумма ЭДС в любом контуре электрической цепи постоянного тока равна алгебраической сумме падений напряжений на всех сопротивлениях, входящих в этот контур.

где n – число ЭДС в контуре; m – число сопротивлений в контуре.

При составлении уравнений по второму закону Кирхгофа предварительно задают условные положительные направления токов во всех ветвях электрической цепи и для каждого контура выбирают направление обхода. Если при этом направление ЭДС совпадает с направлением обхода контура, то такую ЭДС берут со знаком плюс, если не совпадает – со знаком минус. Падение напряжения со знаком плюс, если положительное направление тока в данном элементе цепи совпадает с положительным направление обхода контура, а со знаком минус, если такого совпадения нет.

Иная формулировка второго закона Кирхгофа – сумма падений напряжений на всех элементах контура, включая источник ЭДС, равна нулю:

Если в ветви имеется n последовательно соединенных элементов с сопротивлением Rk, то

То есть падение напряжения на участке цепи или напряжение между зажимами ветви, состоящей из последовательно соединенных элементов, равно сумме падений напряжений на этих элемента.

Режимы работы электрической цепи

Элементами цепи являются конкретные электрические устройства, которые могут работать в различных режимах. Режимы работы как отдельных элементов, так и всей цепи характеризуются значениями тока и напряжения, следовательно, таких режимов может быть множество.

Идеальные и реальные источники ЭДС и тока

Идеальным называется источник ЭДС, напряжение, на зажимах которого не зависит от тока протекающего через него. Внутреннее сопротивление такого источника (R=0) равно нулю. Во всех практических случаях реальные источники ЭДС (или источники питания) не являются идеальными, так как обладают внутренним сопротивлением ( ).

Пусть источник характеризуется постоянными ЭДС ( E=const) и внутренним сопротивлением (R=const). По второму закону Кирхгофа можно записать:

где RI=U – напряжение на зажимах внешней цепи; RI – падение напряжения внутри источника ЭДС. Одновременно напряжение U является напряжением на зажимах источника, следовательно:

Это уравнение, описывающее напряжение во внешней цепи от тока в ней (U=f(I)), является уравнением внешней характеристики источника ЭДС. Это уравнение является линейным.

Различают следующие режимы: режим холостого хода, режим короткого замыкания и номинальный режим.

Режим холостого хода – это режим, при котором ток в цепи равен нулю I=0, что имеет место при разрыве цепи. В режиме холостого хода U=E. Вольтметр при этом измеряет ЭДС источника.

Режим короткого замыкания – это режим, когда сопротивление приемника равно нулю:

Номинальный режим — расчетный режим, при котором потребитель работает в условиях указанных в паспорте. Номинальные значения тока напряжения и мощности соответствуют выгодным условиям работы устройства с точки зрения экономичности, надежности, долговечности и т.д.

Ток короткого замыкания может достигать больших величин, во много раз превышая номинальный ток. Поэтому режим короткого замыкания для большинства электроустановок является аварийным режимом.

Согласованный режим источника ЭДС и внешней цепи имеет место, когда сопротивление внешней цепи равно внутреннему сопротивлению источника (R=R0). В этом случае

Идеальный источник тока – тот источник, у которого создаваемый ток не зависит от напряжения на его зажимах, то есть его внутреннее сопротивление или его внутренняя проводимость . У реального источника проводимость не равна нулю . Расчет такой цепи ведется с учетом внутренней проводимости источника тока: I=I-GU, I=f(U).

Источник



Простая электрическая цепь и её основные составные части

Что такое электрическая цепь

Физика

Для того чтобы электроток мог протекать длительное время, необходимо выполнение нескольких условий. Одним из них является замкнутость электрической цепи. Её составные части обеспечивают создание контура, позволяющего протекать носителям зарядов. Минимальное количество необходимых для этого элементов равняется трём. Но реальная цепочка может быть сколь угодно большой, хотя некоторые части должны в ней быть обязательно.

  1. Общие сведения
  2. Элементы электрической цепи
  3. Графическое изображение
  4. Пример реальной цепи

Общие сведения

Под электрической цепью понимают объединение различных радиоэлектронных устройств, соединённых между собой проводниками. Задача такой совокупности заключается в обеспечении протекания электрического тока заданных характеристик. Параметры такой системы описывают с помощью трёх основных величин:

Читайте также:  Получение переменного тока короткого

Электрическая цепь закрытая

  • тока — упорядоченного движения носителей заряда, вызванного под действием внешних сил, например, электромагнитным полем;
  • напряжения — работой, выполняемой для перемещения заряженной частицы из одной точки тела в другую;
  • сопротивления — величины, зависящей от импеданса каждого элемента цепи.

Существует два способа анализа электроцепи — энергетический и информационный. Под первым понимается изучение процессов, связанных с преобразованием и передачей энергии. Нахождением токов и напряжений в различных местах схемы. Второй же предполагает выяснение реакции при изменении внешнего воздействия.

Существует два состояния электрической схемы — замкнутая и разомкнутая. Если имеется разрыв в каком-то месте, через него ток течь не будет. Значит, между двумя точками разомкнутого участка не появится разность потенциалов (напряжение). Замкнутый же контур обеспечивает возможность циркулирования электрических зарядов. Связь между элементами цепи выполняется с помощью проводников. То есть тел, обладающих незначительным сопротивлением.

Открытая электрическая цепь

Для того чтобы возникло движение электронов необходим источник силы — энергии. Это генератор вырабатывающий ток или напряжение. Называют его источником. Различие между генераторами в том, что токовый умеет поддерживать постоянную силу тока на своём выходе, вне зависимости от остальной части схемы. Источник же напряжения выдаёт постоянную электродвижущую силу (ЭДС), на величину которой не влияет ток в цепи.

Вырабатываемая энергия должна куда-то направляться, то есть где-то использоваться. Устройство, забирающее себе электроэнергию, называют потребителем. В качестве его может быть любой элемент схемы, не являющийся генератором и обладающий сопротивлением.

Таким образом, простейшая электрическая цепь состоит из трёх элементов — источника энергии, проводников, потребителя. Реальная электроцепь может содержать сколь угодное количество потребителей. Одни из них могут накапливать энергию, а после отдавать, другие же только потребляют, преобразовывая её в другой вид.

Элементы электрической цепи

Источники тока и напряжения относятся к активным элементам электрической схемы. К ним же причисляют полупроводниковые приборы, например, транзисторы, диоды. Индуктивность, конденсатор, сопротивление, напротив, считают пассивными элементами.

В зависимости от частей, входящих в схему она может быть пассивной или активной. В первом случае она состоит только из электрически независимых элементов, если же в ней есть хотя бы один активный, то цепь считается энергозависимой.

Электрическая цепь элементы

Каждый прибор в электрической схеме можно охарактеризовать с двух сторон:

  • качественной — зависит от физических параметров, определяет назначение и функцию элемента;
  • количественной — характеризует величину прибора.

Источники питания разделяют на первичные и вторичные. К первым относят генераторы, то есть устройства, преобразующие энергию различного вида в электричество. Ими могут быть аккумуляторы, электромашины, гальванические батареи. Вторичные же источники преобразуют электричество из одного вида в другой. К ним можно отнести блоки выпрямления, инвертирования, трансформирования.

Вспомогательные элементы — это те, что обеспечивают правильную работу электрической схемы. Это всевозможные проводники, коммутационные устройства, измерительная и защитная аппаратура. Потребителем же является оборудование преобразующее электричество в полезную работу. Например, устройство нагрева, вентилирования, двигатели, различная бытовая и промышленная техника.

Другими словами, от источника ток начинает течь по проводникам через ряд электронных устройств, приводящих его характеристику к нужному виду. Затем он подаётся на нагрузку оказывающую сопротивление и выполняющую работу. Далее через потребитель ток возвращается к источнику. Замкнутость линии, вне зависимости от используемых элементов необходима, так как в ином случае не возникает разность потенциалов.

Электрическая цепь это

Подключение элементов в цепи может быть реализована тремя способами:

  • параллельным — начало различных устройств соединены в одной точке, а концы в другой;
  • последовательным — все части цепи подключаются поочерёдно друг к другу;
  • смешанным — комбинация двух предыдущих видов.

Перечислить все радиоэлементы довольно сложно, так как их много. Но из основных можно выделить: резистор, индуктивность, конденсатор, транзистор, диод, интегральную микросхему, светоизлучатели и фотоприемники.

Графическое изображение

Реальную или виртуальную электрическую цепь можно изобразить на рисунке. Называется она принципиальной или электрической схемой. Различие между ними в том, что на первой чертят основные блоки и их соединение, а на второй — указывают расположение и подключение.

По сути, схема является графическим изображение электрической цепи. Для обозначения тех или иных элементов используют специальные условные символы. Их рисунок имеет свой стандарт, так что любой разбирающийся в электронике или электрике сможет понять для чего предназначена та или иная схема.

Электрическая цепь

В России черчение всех типов электронных узлов выполняют согласно ГОСТ 2 .702−2011.

Например, простейшее обозначение имеют проводники — прямая линия. С их помощью показывают, как соединяются элементы. Они являются основой для любой электрической схемы. Кроме проводников и непосредственно самих элементов, в схеме всегда есть ещё два условных параметра:

  • ветвь — участок по которому протекает одинаковый ток;
  • узел — точка в которой присоединяются более двух ветвей.

Исходя из этой терминологии, можно сказать, что ветви, подключаемые к одной паре точек, будут параллельными, а замкнутый путь, проходящий по ним, образует контур. Простейшая электрическая цепь состоит из одноконтурной схемы, сложные же включают несколько контуров.

Электрическая цепь и ее составные части

Часто в условно-графическом обозначении общий провод, то есть проводник, по которому ток возвращается к генератору, обозначают специальным символом. Называют его «минус». Рисуют такое соединение с помощью двух перпендикулярных линий, подключённых к выводу блока. Направление тока на схемах не указывают, но возле некоторых элементов ставят знак плюс или используют другое обозначение положительного вывода.

Отдельно следует отметить схемы замещения. Их используют для удобства, заменяя реальное устройство эквивалентными пассивными радиоэлементами. Такой подход применяют, когда нужно выполнить расчёт параметров полной электросхемы или какой-то её части. Отдельные блоки на схемах очерчивают пунктирными линиями. С их помощью объединяют части цепи по функциональному признаку. Например, разделяют силовую часть от вторичной, логическую от преобразовательной.

Пример реальной цепи

Самую простую электрическую цепь можно сделать самостоятельно. Её часто собирают на уроке физики. При этом не стоит опасаться поражения током, так как в ней будет использоваться низковольтный источник напряжения. Но всё же перед тем как приступить к сборке, следует знать о коротком замыкании. Под ним понимают состояние, при котором происходит закорачивание выхода.

Другими словами, вся энергия источника тока оказывается приложенной к нему же. В результате разность потенциалов снижается до нуля, а в цепи возникает максимальная сила тока. Непреднамеренное короткое замыкание может привести к выходу из строя генератор и радиодетали. Именно для защиты от этого пагубного воздействия в цепи ставят предохранитель.

Электрическая цепь пример

Схема для самостоятельного повторения будет представлять собой узел управления освещением. Для её сборки необходимо подготовить:

  1. Источник питания на 12 вольт. Это может быть аккумулятор, регулируемый лабораторный блок, батарейки. Главное, чтобы источник смог выдавать нужное напряжение. Например, нужную величину можно получить соединив последовательно несколько батареек со стандартным номиналом 1,5 В (1,5 * 4 = 12 В).
  2. Лампочка. Подойдёт накаливания. Здесь важно обратить внимание на её характеристики. Она должна быть рассчитанной на нужное напряжение.
  3. Ключ. Это обыкновенный выключатель, имеющий два устойчивых состояния — разомкнутое и замкнутое.
  4. Провода. В сборке можно использовать любые медные проводники сечением от 0,25 мм 2 .

Сборка конструкции выполняют следующим образом. К плюсу батарейки подсоединяют провод, подключённый другим концом к выключателю. Затем свободный конец ключа подпаивают к любому из выводов лампы. Другой электрод осветительного устройства подсоединяют к минусу источника. Схема готова. Если теперь перевести ключ в положение «вкл» появится свет.

Источник