Меню

Схема регулятора частоты вращения дизеля

Устройство автомобилей

Система питания дизельного двигателя

Регуляторы частоты вращения

Работа дизелей, оснащенных ТНВД плунжерного типа, характеризуется крайне неустойчивой частотой вращения. Во время работы машины нагрузка постоянно меняется и соответственно меняется нагрузка на двигатель. Характер изменения нагрузки может быть достаточно интенсивным: от резкого увеличения, например, при разгоне или движении на подъем (наброс нагрузки), до резкого снижения, например, при движении на спуске (сброс нагрузки).
Так, при резком снижении внешней нагрузки дизеля частота вращения коленчатого вала увеличивается, что вызывает увеличение цикловой подачи топлива.

Это происходит вследствие сокращения времени прохождения плунжером окон втулки и соответственно сокращения количества вытесняемого топлива из надплунжерного пространства через эти окна.
Кроме того, регулятор опережения впрыска топлива при увеличении оборотов корректирует начало подачи и, таким образом, обороты двигателя прогрессирующе возрастают.
Данное явление тем более характерно, чем меньше активный ход плунжера. Возрастание цикловой подачи приводит к дальнейшему росту частоты вращения клеенчатого вала, и если нагрузка не увеличится, то это может привести к «разносу» двигателя (саморазрушению)

Увеличение внешней нагрузки двигателя и снижение вследствие этого частоты вращения коленчатого вала, наоборот, приводит к увеличению количества перетекающего топлива в окна втулки и соответственно к сокращению поданного количества топлива через штуцер к форсунке.
Поэтому дизели при возрастании внешней нагрузки склонны к останову.

Водитель не всегда может среагировать на колебания нагрузки, поэтому данную функцию выполняют специальные следящие устройства – регуляторы частоты вращения, предназначенные для автоматического поддержания частоты вращения коленчатого вала в заданных пределах.

Регуляторы частоты вращения классифицируют:

  • по воздействию на орган управления – прямого и непрямого действия;
  • по поддержанию заданного режима – одно-, двух- и всережимные.

Регуляторы прямого действия воздествуют непосредственно на орган управления подачей топлива (рейку ТНВД или дроссельную заслонку карбюратора). Регуляторы непрямого действия воздействуют на них через дополнительную систему – электрический или гидравлический усилитель.

Однорежимные регуляторы поддерживают только один скоростной режим, чаще всего максимальный, не позволяя двигателю превышать предельно допустимые обороты и работать вразнос.

На автомобильных двигателях регуляторы должны ограничивать, как минимум, максимальную и минимальную частоты вращения коленчатого вала. Такие регуляторы называются двухрежимными.
На отечественных дизелях используются всережимные регуляторы частоты вращения, которые автоматически поддерживают заданную водителем частоту вращения коленчатого вала на всем диапазоне нагрузок.

Всережимный регулятор частоты вращения

Всережимные регуляторы частоты вращения устанавливаются на двигателям марок «ЯМЗ», «КамАЗ», двигателе ММЗ Д-235.12 (автомобиль ЗИЛ-5301 «Бычок»).

На рисунке 1 приведена конструкция регулятора двигателя ЯМЗ-238 и схема его работы.

Данный регулятор устанавливается на заднем торце топливного насоса высокого давления (ТНВД). Ведущее зубчатое колесо 1 регулятора приводится во вращение от кулачкового вала топливного насоса через резиновые сухари 27, которые в ней установлены. Резиновые сухари поглощают ударные нагрузки при резком изменении частоты вращения. Ведомое зубчатое колесо 3 установлено в корпусе 4 на двух шариковых подшипниках.

Ведущее и ведомое зубчатые колеса образуют повышенную передачу с целью увеличения чувствительности регулятора. Ведомое зубчатое колесо изготовлено заодно с валиком, на который напрессована державка 5.
На осях державки шарнирно закреплены два грузика 29, которые своими роликами упираются в торец муфты 26, которая через радиально-упорный подшипник и пяту 25 передает усилие силовому рычагу 19, подвешенному на оси 13.

Пята регулятора с помощью рычага 20 и тяги 11 связана с рейкой 6 топливного насоса, которая при расхождении грузиков перемещается в сторону уменьшения подачи топлива. В верхней части к рычагу 20 присоединена пружина 8, а в нижней части рычага запрессован палец 23, который входит в паз кулисы 24. Кулиса соединяется со скобой 21 останова двигателя через распложенную внутри кулисы пружину, предохраняющую механизм регулятора от чрезмерных усилий при выключении подачи топлива.

Пружина 14 регулятора одним концом соединена с рычагом 12, который жестко связан с рычагом 9 управления регулятором, а вторым – с двуплечим рычагом 15. Усилие пружины передается с двуплечего рычага на винт 16.

Регулятор работает следующим образом.
При вращении кулачкового вала ТНВД и валика с державкой 5 центробежная сила грузиков 29 стремится развести их в стороны и через ролики 30 переместить муфту 26 с пятой 25 вправо. Этому препятствует пружина 14, которая тянет нижнее плечо рычага 15 вверх и через винт 16 и рычаг 19 отжимает пяту 25 влево.
Таким образом, на муфту 26 и пяту действует две силы: направленная вправо центробежная сила грузиков и направленная влево сила, создаваемая пружиной 14.

При определенном натяжении пружины развивается частота вращения, при которой эти две силы взаимно уравновешиваются. Тогда все подвижные детали регулятора (грузики, муфта, пята, рычаги 15, 19 и 20, тяга 11), а также рейка 6 и плунжеры занимают положение, обеспечивающее работу двигателя с заданной частотой вращения.

Если нагрузка на двигатель уменьшится (например, при движении автомобиля под уклон), частота вращения коленчатого вала начнет возрастать и увеличивающаяся сила грузиков передвигает муфту с пятой вправо (при этом пружина, натянутая водителем через рычаги 9 и 12, еще больше растянется). Пята повернет рычаг 20 по часовой стрелке, и тяга 11 выдвинет рейку из корпуса ТНВД, рейка повернет плунжеры, и подача топлива уменьшится, что приведет к уменьшению частоты вращения коленчатого вала двигателя.

Если нагрузка увеличится (автомобиль движется на подъем или по труднопроходимому участку местности), частота вращения коленчатого вала начнет падать и вместе с тем уменьшаться центробежная сила грузиков, а так как сила натяжения пружины заданная водителем остается неизменной, то ее усилия становится достаточно, чтобы передвинуть рейку ТНВД в сторону увеличения подачи топлива.
В результате увеличения подачи топлива частота вращения коленчатого вала сохраняется и будет таким образом поддерживаться постоянной при заданном водителем через педаль управления положении рейки насоса.

Водитель может по своему усмотрению изменить частоту вращения коленчатого вала, а значит, и скорость движения автомобиля с помощью педали управления подачей топлива, установленной в кабине. При нажатии на педаль система тяг и рычагов перемещает тягу 28 влево, рычаг 9 поворачивает валик с рычагом 12 против часовой стрелки и сильнее натягивает пружину 14.
Усилием пружины детали 15 и 19 перемещают пяту 25 и рычаг 20 влево, и рейка перемещается влево (в сторону увеличения подачи топлива), в результате чего частота вращения увеличивается.

Когда водитель освобождает педаль подачи топлива полностью, двигатель работает на режиме холостого хода. Натяжение пружины 14 регулятора на этом режиме регулируется винтами 16 и 17.

Чтобы заглушить двигатель, водитель должен вытянуть кнопку «стоп», расположенную в его кабине. Тогда трос, на конце которого закреплена кнопка, повернет скобу 21 с кулисой 24 в положение, показанное на рис. 2, б штрихпунктирной с двумя точками линией, а кулиса поворачивает рычаг 20 вокруг его оси, закрепленной в пяте 25. Нижний конец рычага 20 переместится влево, верхний конец его переместит рейку еще немного назад и подача топлива в цилиндры прекратится.

Регулятор ТНВД серии 33

Регулятор насоса серии 33 (двигатель КамАЗ-740) скомпонован в развале секций насоса (внешний вид регулятора КамАЗ-740 на рисунке в верху страницы).
Привод вала регулятора – от вала насоса через три шестерни, ведущая из которых соединена с валом насоса через резиновые сухари.
На валу регулятора отлита крестовина 2 ( рис. 3), на котором шарнирно закреплены двуплечие рычаги с грузами 3. Одни из плеч рычагов упираются в муфту 4, а она – в промежуточный рычаг 5, управляющий верхней рейкой 1. Этот рычаг установлен на одном шарнире с главным рычагом 6, на который воздействует главная пружина 9.
Рейка нижнего (левого) ряда перемещается коромыслом 18 в обратную сторону. Регулятор имеет корректор и пружину обогатителя.
Работа этого регулятора ( рис. 3, в) аналогична работе рассмотренного выше всережимного регулятора двигателя ЯМЗ-238.

Читайте также:  Купер котел регулятор тяги для

Двухрежимный регулятор частоты вращения

Особенностью двухрежимного регулятора частоты вращения ( рис. 2) заключается в том, что при работе дизеля на малых частотах вращения коленчатого вала грузики 6 уравновешиваются только внешней пружиной 2. Любое изменение частоты вращения нарушит равновесие между центробежной силой грузиков 6 и усилием пружины 2, что приведет к перемещению муфты 5 и рейки 4 в сторону увеличения или уменьшения подачи топлива.
В результате частота вращения будет удерживаться в заданном диапазоне.

При переходе на режим частичных нагрузок водитель, воздействуя на педаль управления подачей топлива, увеличивает частоту вращения коленчатого вала. При этом грузики расходятся и, преодолевая сопротивление внешней пружины, доводят муфту 5 до соприкосновения с внутренней пружиной 3.
Однако пружина 3 имеет значительную жесткость и установлена с предварительной деформацией, поэтому в дальнейшем регулятор исключается из работы, так как грузики не могут преодолеть совместное сопротивление двух пружин, а перемещение рейки ТНВД происходит непосредственно под воздействием водителя на педаль, систему тяг, рычага 1 и рейки 4.
При достижении предельной частоты вращения центробежной силы грузиков становится достаточно для преодоления сопротивления пружин, и регулятор снова включается в работу.
В результате муфта 5 и рейка 4 перемещаются в сторону уменьшения цикловой подачи топлива.

На рис. 4 показан двухрежимный регулятор частоты вращения, устанавливаемый на двигателе ЗИЛ-645. Регулятор обеспечивает устойчивую работу на холостом ходу при частоте вращения коленчатого вала 600…650 об/мин.

Регулятор имеет два цилиндрических пустотелых грузика 13, установленных на крестовине 14. Внутри каждого грузика находятся пружины: наружная пружина для ограничения частоты вращения холостого хода и внутренняя для ограничения максимальной частоты вращения; тарелки 20 пружин с регулировочной гайкой.

При неподвижном коленчатом вале грузики прижаты пружинами к крестовине. Во время вращения коленчатого вала грузики под действием центробежных сил расходятся, сжимая наружную пружину. При этом угловой рычаг 10 перемещает ползун 9 углового рычага влево, который при помощи оси 8 кулисы выдвинет рейку насоса вправо, уменьшая подачу топлива и ограничивая частоту вращения коленчатого вала.

Если частота вращения коленчатого вала станет меньше 650 об/мин, регулятор начнет задвигать рейку, увеличивая подачу топлива. Таким образом, на холостом ходу ползун непрерывно перемещается, вследствие чего изменяется подача топлива и поддерживается заданная частота вращения.

При достижении частоты вращения 2850 об/мин центробежная сила грузиков начнет преодолевать сопротивление пружин, под действием системы рычагов рейка перемещается, уменьшая подачу топлива и частоту вращения коленчатого вала. На этом режиме ползун также перемещается, в результате чего частота вращения составляет 2850…2950 об/мин.
Между минимальным и максимальным значениями частоты вращения изменение подачи топлива осуществляется рычагом управления подачей топлива, связанным с педалью подачи топлива.

Источник



Регуляторы частоты вращения — однорежимный , всережимный и др

Рис. 139. Регулятор двигателя 6ДР 30/50

Однорежимный регулятор двигателя 6 ДР 30/50 (рис. 139)—прямого действия — состоит из двух грузов 2, шарнирно закрепленных с помощью шарниров 3 на шестерне 1 распределительного вала и стянутых пружиной 5. Внутренние плечи грузов через штыри 4 воздействуют на муфту 15 и через упорный шарикоподшипник 14—на обойму 13. С другой стороны, обойма испытывает усилие сжатой пружины 12. Через рычаг 9 перемещение обоймы передается на пружинную связь 8. Тяга 6 топливных насосов связана через ролик с сектором рукоятки поста управления (на рис. 139 не показано).

При вращении за счет центробежной силы грузы расходятся и, преодолевая силу упругости пружины 12, перемещают обойму 13 вправо. Если частота вращения двигателя ниже предельной, то благодаря зазору h между внутренним торцом пружинной связи 8 и упором тяги 7 регулятор не оказывает влияния на положение тяги 6 топливных насосов. Когда частота вращения достигнет предельной, зазор h будет выбран и регулятор начнет воздействовать на топливную тягу, перемещая ее влево в направлении уменьшения подачи топлива.

Предельную частоту вращения, ограничиваемую регулятором, можно изменять величиной затяга пружины 12, что достигается поворотом маховика 11, перемещающего шпиндель 10.

Рис. 140. Регулятор двигателя 6Ч 24/36

Всережимный регулятор двигателя 6Ч24/36 (рис. 140) — прямого действия. В корпусе 12 в подшипниках вращается вертикальный вал 1, приводимый в движение через передаточные шестерни 20 и 2 от распределительного вала. Два груза 18 закреплены в крестовине на осях 19 и внутренними плечами, при помощи упоров 5, нажимают на втулку 4, свободно перемещающуюся вдоль вертикального вала 1. Перемещение втулки 4 через радиально-упорный подшипник 17 передается на муфту 5. С противоположной стороны муфта воспринимает усилие пружин 6, верхние концы которых упираются в тарелку 14. Закрепленный на муфте 5 направляющий стакан 16 через вилку и валик связан с рычагом 15, конец которого воздействует на тягу топливных насосов.

При возрастании частоты вращения грузы через втулку 4 и муфту 5 действуют на пружины 6, сжимая их. Направляющий стакан 16 поднимается и через рычаг 15 перемещает топливную тягу в направлении уменьшения подачи топлива. При повышении нагрузки, и, следовательно, понижении частоты вращения сила упругости пружин преодолевает центробежную силу грузов, направляющий стакан 16 опускается и рычаг 15 воздействует на рейку топливных насосов, увеличивая подачу топлива.

Частота вращения, которую регулятор должен поддерживать, задается изменением затяга пружин 6. Это достигается поворотом маховика 11 и с ним шестерни 13, которая поворачивает шестерню 7 с удлиненной втулкой. Шестерня 7 зафиксирована в корпусе и осевого перемещения не имеет. Расположенный внутри нее на резьбе шпиндель 10 при вращении шестерни 7 получает осевое перемещение, что изменяет затяг пружин 6.

Максимальная частота вращения, на которую можно настроить регулятор, ограничивается закрепленным на шпинделе установочным кольцом 9, минимальная частота вращения—регулировочным болтом 8.

Всережимно-предельный регулятор двигателя 7ДКРН 70/120 (рис. 141) — непрямого действия — приводится в движение через шестерню 6 вала топливных насосов. Шестерня 6 соединена со ступицей 5 регулятора через эластичную муфту 4. На ступице расположены грузы 7, внутренние плечи которых соединены с чекой 1 шпинделя 2. Под действием центробежных сил грузы 7 через чеку 1, шпиндель 2 и упорный шарикоподшипник 3 могут передвигать поршень 18 вправо. Давление на поршень уравновешивается пружинами, натяжение которых регулируется маховиком 17. При своем движении поршень 18 через ушко 16 и двуплечий угловой рычаг перемещает золотник 15, имеющий две отсечные кромки 11 и 12 (на рисунке поле золотника зачернено). Золотник 15 плотно входит в центральное отверстие поршня сервомотора 13 с удлиненной ступицей, который имеет окна, перекрывающиеся кромками 11 и 12 золотника. Через маслоподводящую трубу 14, кольцевой канал а и отверстия в ступице поршня 13 масло подводится под нижнюю отсечную кромку 12 золотника 15.

Рис. 141. Регулятор двигателя 7ДКРН 70/120

При возрастании частоты вращения двигателя центробежная сила грузов преодолевает силу упругости пружины и поршень 18, перемещаясь вправо, поднимает золотник 15. Через образующуюся щель между нижней кромкой 12 золотника и нижними кромками окон поршня 13 масло поступает в полость «в» и перемещает поршень 13 вверх. Масло из пространства над поршнем сливается по трубе 8. Поршень остановится, когда нижние кромки его окон совпадут с нижней кромкой 12 золотника, и поступление масла в полость «в» прекратится. При снижении частоты вращения золотник перемещается вниз, открывая щель между своей верхней кромкой 11 и верхними кромками окон поршня. Масло из полости «в» перетекает в пространство над поршнем, и он опускается. Движение поршня вниз прекратится, когда верхние кромки его окон совпадут с верхними кромками золотника. Таким образом, перемещение поршня сервомотора равно величине перемещения золотника, или, как говорят, поршень «следит» за золотником.

Читайте также:  Регулятор температуры с алиэкспресс как настроить

При своем движении вверх (в случае возрастания частоты вращения) поршень сервомотора 13 через толкатель 9 может воздействовать на ролик 19, сидящий на пальце 10 рычага 20, и поворачивать его по часовой стрелке. Это приведет к перемещению тяги 21 вниз и через поворотный валик и систему рычагов (на рисунке не показаны) — к уменьшению подачи топлива.

При нормальных условиях эксплуатации регулятор действует как предельный и управление подачей топлива производится маховиком, с поста управления. Если частота вращения меньше предельной, то между толкателем 9 и роликом 19 имеется зазор. По мере увеличения частоты вращения двигателя этот зазор уменьшается, и при достижении предельной частоты вращения толкатель упрется в ролик. Дальнейшее увеличение частоты вращения происходить не будет, так как поршень 13, поднимаясь вверх, станет опускать через рычаг 20 тягу 21 в сторону нулевой подачи.

При плавании судна на волнении регулятор включают по схеме всережимного. Для этого сначала уменьшают маховиком с поста управления количество подаваемого топлива и устанавливают между толкателем 9 и роликом 19 специальную проставку. Затем на посту управления увеличивают подачу топлива до номинального значения (по нагрузке) и несколько ослабляют маховиком 17 затяг пружин регулятора. Этим устанавливается пониженная частота вращения двигателя, которая поддерживается регулятором при плавании судна в штормовых условиях.

Рис. 142. Регулятор Р13М-2КЕ

Всережимный регулятор с ограничением по нагрузке и по задаваемым и фактическим оборотам Р13М-2КЕ (рис. 142) — непрямого действия разработан Центральным научно-исследовательским дизельным институтом (ЦНИДИ) и применяется в судовых установках с главными дизелями типа ДР 43/61-1 и ДР 30/50-3. Этот регулятор отвечает- всем требованиям, предъявляемым к регуляторам, используемым в системах дистанционного автоматизированного управления двигателями.

Основные узлы регулятора

Привод регулятора осуществляется посредством приводного валика 1, который передает вращение через шестеренную пару 2, упругую муфту 5 и верхнюю шестеренную пару чашке измерителя 6. Упругая муфта 5 служит для гашения резких колебаний частоты вращения, благодаря чему второй зубчатой шестерне верхней пары, выполненной заодно с чашкой 6, они не передаются.

Измерительное устройство представляет собой два груза 7, шарнирно закрепленных в чашке 6. Внутренние плечи грузов через упорную тарелку и упорный шарикоподшипник воздействуют на нижнюю тарелку пружины измерителя 8. Нижняя тарелка пружины соединена со шпинделем, проходящим свободно через сухарь 18. На верхнем конце шпинделя закреплена упорная тарелка 34, с помощью которой действует механизм ограничения нагрузки. К упорному шарикоподшипнику присоединен золотник 9 с двумя рабочими полями, проходящий через отверстие в ступице чашки 6.

Задающее устройство — пружина 8. При задании нового режима изменение затяга пружины осуществляется поворотом валика управления 24 через каретку 23 и сухарь 18.

Источник вспомогательной энергии — масляный насос, состоящий из шестеренной пары 2 и двух всасывающих и двух нагнетательных шариковых клапанов 3. Наличие двух пар клапанов обеспечивает работу регулятора при реверсе двигателя. Масло засасывается из ванны и подается по каналам в полость над поршнем сервомотора 10 к верхнему полю золотника 9 и в два аккумулятора 4 (на рисунке показан один). Каждый аккумулятор представляет собой цилиндр с подпружиненным поршнем, который при повышении давления масла выше 8 бар открывает сливное отверстие «а».

Гидравлический сервомотор состоит из цилиндра с поршнем 10, перемещение которого управляется золотником 9. (вверху на кольцевую площадь поршня непрерывно воздействует давление масла. При подъеме золотника 9 масло от насоса направляется под поршень 10 и поднимает его. При опускании золотника масло из-под поршня сливается в ванну, и за счет давления масла на верхнюю кольцевую площадь поршень опускается. Перемещение поршня 10 через продольный вал 11, пару конических полушестерен и поперечный вал 12 передается тяге 13, управляющей топливными насосами.

Жесткая обратная связь состоит из рычага на продольном валу 11, шатуна 15, ролика с валиком 16 и вильчатого рычага 17, который связан с сухарем 18, воздействующим на затяг пружины 8. Положение профильной части шатуна 15, соприкасающейся с роликом, можно изменять, чем достигается необходимая степень неравномерности (статическая ошибка) — от 0 до 6%. Регулируется степень неравномерности винтом с указателем 35, который при повороте червячной шестерни разворачивает эксцентрично сидящий на ее ступице правый конец шатуна 15. В результате этого под ролик подводится другой участок профиля шатуна.

Гибкая обратная связь состоит из цилиндра с поршнем изодрома 20, иглы 21, корректора 22 и масляной полости, образуемой каналами между поршнем 20, корректором 22 и золотником 9. Поршень 20 при помощи подпоршневой пружины постоянно прижат к пальцу 19 продольного вала 11. Игольчатым клапаном 21 регулируется время изодрома. В случае значительного возрастания давления (или разрежения) в полости изодрома корректор 22 сообщает ее с масляной ванной.

Механизм, ограничения нагрузки состоит из: углового рычага с плечами 32 и 33, толкателя 31, шестерен 28, 29, 30 и находящихся с ними в зацеплении секторов с указателями 25, 26, 27, а также сектора 14.

Каждое положение сектора 14, насаженного на продольный вал 11, соответствует определенной подаче топлива. Одновременно с изменением регулятором подачи топлива через сектор 14 поворачивается шестерня с указателем нагрузки 25. Эта шестерня посредством закрепленного на ней зубчатого сектора разворачивает шестерню 30, в ступицу которой упирается кольцевой бурт толкателя 31. Положение шестерни 30 всегда соответствует количеству подаваемого насосами топлива.

При изменении скоростного режима валиком 24 поворачивается каретка 23. Закрепленный на ней зубчатый сектор через валик с шестернями поворачивает вертикальный сектор с указателем 26. Одновременно через другой зубчатый сектор поворачивается шестерня 29, положение которой соответствует подаче топлива, допускаемой для данного скоростного режима. Стрелка указателя 26 показывает величину этой подачи.

Максимальная нагрузка, выше которой при любом скоростном режиме работа дизеля не допускается, задается определенным положением шестерни 28. Величину этой нагрузки показывает указатель 27, который закреплен на секторе, находящемся в зацеплении с шестерней 28.

Шестерня 29 свободно насажена на ступицу шестерни 28. У обоих этих шестерен на торцах, обращенных к шестерне 30, имеются выступы. Подобный выступ имеется на торце шестерни 30.

Работа регулятора при увеличении частоты вращения происходит следующим образом.

Грузы 7, преодолевая силу упругости пружины 8, поднимают золотник 9. Масло от насоса поступает в полость под поршнем сервомотора 10 и перемещает его вверх, за счет чего тяга 13 передвигается в направлении уменьшения подачи топлива. Одновременно поднимается поршень изодрома 20. В полости под этим поршнем, а значит и под золотником 9, создается разрежение, препятствующее перемещению золотника вверх. Этому может способствовать также и жесткая обратная связь (при степени неравномерности более 0%), которая через рычаг 17 несколько увеличивает затяг пружины 8. По истечении не которого времени (время изодрома) за счет перетекания масла через игольчатый клапан 21 давление в полости изодрома сравняется с атмосферным, и гибкая связь перестанет воздействовать на золотник 9.

К концу переходного режима золотник 9 займет исходное положение и перемещение поршня 10 прекратится. При нулевой степени неравномерности частота вращения восстановится до первоначального значения, при степени неравномерности более 0% — соответственно повысится .

Читайте также:  Ремонт реле регулятора джили

В случае понижения частоты вращения регулятор будет действовать в обратном направлении, увеличивая подачу топлива. Если при этом нагрузка возрастет до значения, заданного механизмом ограничения, то шестерня 30, упираясь своим выступом в выступ соответствующей шестерни (28 или 29), начнет перемещаться вдоль своей оси влево и передвигать толкатель 31. Толкатель 31 через рычаг 32 и вильчатый рычаг 33 поднимет упорную тарелку 34. Это позволит грузам 7 поднять золотник 9 и направить масло под поршень сервомотора 10, который, перемещаясь вверх, будет передвигать тягу 13 в направлении уменьшения подачи топлива.

Источник

Регулятор частоты вращения дизель-генератора

Полезная модель направлена на улучшение качества регулирования частоты вращения вала дизель-генератора в режиме стабилизации технологического параметра частотно-регулируемой нагрузки, повышение надежности работы регулятора и упрощение его конструкции. Указанный технический результат достигается тем, что регулятор частоты вращения дизель — генератора содержит топливодозирующую систему и электрический исполнительный механизм, выполненный в виде шагового двигателя, вход которого через усилитель соединен с выходом управляющего микропроцессора, а выход механически соединен через согласующий редуктор с топливодозирую-щей системой, связанную с дизель-генератором, на валу которого расположен датчик частоты вращения. Один из входов управляющего микропроцессора соединен с выходом датчика давления, а другой его вход через согласующее устройство соединен с датчиком частоты вращения. Дизель-генератор электрически связан с асинхронным электроприводом насоса, выход которого соединен с датчиком давления.

Полезная модель относится к области машиностроения, а именно к регуляторам частоты вращения дизель-генераторов и может быть использована в системах автоматического регулирования частоты вращения мощных дизельных генераторов.

Известен регулятор частоты вращения дизель-генератора, содержащий источник электрического сигнала задания, соединенный с электрическим исполнительным механизмом, выполненным в виде поворотного электромагнита с ротором, а также топливоподающую систему (см. SU 1168740, МПК — 4 F 02 D 1/12, опубл. 23.07.85).

Недостатком известного устройства является следующее: при набросе и сбросе нагрузки удается уменьшить продолжительность переходного процесса, тем не менее не удается уменьшить перерегулирование.

Технический результат заключается в улучшении качества регулирования частоты вращения вала дизель-генератора в режиме стабилизации технологического параметра частотно-регулируемой нагрузки, повышении надежности регулятора и упрощении его конструкции.

Технический результат достигается тем, что регулятор частоты вращения дизель — генератора содержит топливодозирующую системы и электрический исполнительный механизм, выполненный в виде шагового двигателя, вход которого через усилитель соединен с выходом управляющего микропроцессора, а выход механически соединен через согласующий редуктор с топливодозирующей системой, связанную с дизель-генератором, на валу которого расположен датчик частоты вращения. Один из входов управляющего микропроцессора соединен с выходом датчика давления, а другой его вход через согласующее устройство соединен с датчиком частоты вращения. Дизель-генератор электрически связан с асинхронным

электроприводом насоса, выход которого соединен с датчиком давления.

На фиг.1 изображена структурная схема предлагаемого регулятора частоты вращения дизельного генератора, который содержит электрический исполнительный механизм, выполненный в виде шагового двигателя 1, вход которого через усилитель 2 соединен с выходом управляющего микропроцессора 3, а выход механически соединен через согласующий редуктор 4 с топливодозирующей системой 5, связанную с дизель-генератором 6, на валу которого расположен датчик частоты вращения 7. Один из входов управляющего микропроцессора 3 соединен с выходом датчика давления 8, а другой его вход через согласующее устройство 9 соединен с датчиком частоты вращения 7. Дизель-генератор 6 электрически связан с асинхронным электроприводом насоса 10, выход которого соединен с датчиком давления 8.

Регулятор частоты вращения дизель-генератора работает следующим образом.

Нажатием кнопки «Пуск» перед запуском дизель-генератора 6 управляющий микропроцессор 3 устанавливает пусковую подачу топлива, превышающую номинальную в два раза. В качестве настроечной частоты вращения принимается номинальная частота дизель-генератора 9. После этого управляющий микропроцессор 3 находится в режиме ожидания, пока будет осуществлен запуск дизель-генератора 6 и частота вращения его вала превысит значение 0,638 от номинального. Далее в работу вступает первый контур регулирования, образованный датчиком частоты вращения 7, согласующим устройством 9, управляющим микропроцессором 3, усилителем 2, шаговым двигателем 1, согласующим редуктором 4, топливодозирующей системой 5 и дизель-генератором 6. При этом сигнал, пропорциональный частоте вращения вала дизель-генератора б с датчика частоты вращения 7 через согласующее устройство 9 поступает на управляющий микропроцессорное 3, где вычисляется отклонение частоты вращения от настроечного значения. В зависимости от величины отклонения и скорости изменения частоты вращения вала дизель-генератора 6 вычисляется количество управляющих импульсов,

которые управляющий микропроцессор 3 подает на обмотки шагового двигателя 1, связанного с топливодозирующим устройством 8 перемещения в положение, устанавливающее цикловую подачу топлива, соответствующую настроечной частоте вращения вала дизель-генератора 6. После подачи управляющих импульсов управляющий микропроцессор 3 осуществляет выдержку времени, пропорциональную их количеству, и цикл регулирования частоты вращения повторяется.

При нажатии кнопки «Пуск насоса» управляющий микропроцессор 3 устанавливает настроечную частоту вращения равной минимальному значению, при которой дизель-генератор 6 работает устойчиво. В этом режиме производится включение контактора асинхронного электродвигателя насоса 10. В результате чего происходит провал частоты вращения, который расценивается управляющим микропроцессором 3 как команда к частотному пуску асинхронного электродвигателя насоса и в работу вступает второй контур регулирования, образованный датчиком давления 8, управляющим микропроцессором 3, усилителем 2, шаговым двигателем 1, согласующим редуктором 4, топливодозирующей системой 5, дизель-генератором 6 и насосом 10. Токовый сигнал с датчика давления 8 в контрольной точке водопроводной сети, поступает на вход управляющего микропроцессора 3, где вычисляется отклонение давления от настроечного значения. В зависимости от величины отклонения и скорости его изменения вычисляется настроечное значение частоты вращения вала дизель-генератора 6 для первого контура, при котором асинхронный электродвигатель насоса 10 будет вращаться с такой скоростью, чтобы насос 10 создавал требуемое давление. После этого управляющий микропроцессор 3 осуществляет выдержку времени, пропорциональную изменению частоты вращения дизель-генератора 6, и цикл регулирования давления повторяется.

После нажатия кнопки «Останов насоса» отключается второй контур регулирования, настроечная частота вращения дизель-генератора 6 устанавливается равной минимальному значению, при которой дизель-генератор 6

работает устойчиво. При ее достижении отключается контактор асинхронного электродвигателя насоса 10 и настроечная частота вращения дизель-генератора 6 устанавливается равной номинальной.

На фиг.2 представлены переходные процессы работы регулятора частоты вращения дизель-генератора 6, где в качестве параметра технологической нагрузки выступает давление в системе водоснабжения.

На графиках, представленных на фиг.2, можно выделить четыре режима работы:

1. пуск дизель-генератора 6 (период времени от 0 с до 17 с);

2. снижение частоты дизель-генератора 6 перед частотным пуском насоса 10 (от 17 с до 29 с);

3. пуск насоса 10 и стабилизация давления в системе водоснабжения (от 29 с до 92 с);

4. остановка насоса 10.

По сравнению с известным решением предлагаемый регулятор частоты позволяет улучшить качество регулирования частоты вращения вала дизель-генератора в режиме стабилизации технологического параметра частотно-регулируемой нагрузки за счет выполнения регулятора двухконтурным: первый обеспечивает заданную частоту вращения коленчатого вала дизель-генератора путем изменения величины топливоподачи; второй обеспечивает поддержание заданного значения параметра технологической нагрузки. Кроме того, повышается надежность работы регулятора и упрощается его конструкция.

Регулятор частоты вращения дизель-генератора, содержащий электрический исполнительный механизм и топливодозирующую систему, отличающийся тем, что электрический исполнительный механизм выполнен в виде шагового двигателя, вход которого через усилитель соединен с выходом управляющего микропроцессора, а выход механически соединен через согласующий редуктор с топливодозирующей системой, связанной с дизель-генератором, на валу которого расположен датчик частоты вращения, один из входов управляющего микропроцессора соединен с выходом датчика давления, а другой его вход через согласующее устройство соединен с датчиком частоты вращения, при этом дизель-генератор электрически связан с асинхронным электроприводом насоса, выход которого соединен с датчиком давления.

Источник