Меню

Схема регулятора полевыми транзисторами

Полевой транзистор схема управления нагрузкой постоянного тока

Полевой транзистор схема

Полевой транзистор схема: эффективная регулировка нагрузки постоянного тока

Полевой транзистор схема, которого представлена в этой публикации способна управлять мощной постоянной нагрузкой также эффективно как и сборки Дарлингтона или биполярные транзисторы.

Полевой транзистор схема, которого работает подобно обычному транзистору — слабым сигналом на затворе управляем мощным потоком через канал. Но, в отличии от биполярных транзисторов, тут управление идет не током, а напряжением. МОП (по буржуйски MOSFET) расшифровывается как Метал-Оксид-Полупроводник из этого сокращения становится понятна структура этого транзистора.

Если на пальцах, то в нем есть полупроводниковый канал который служит как бы одной обкладкой конденсатора и вторая обкладка — металлический электрод, расположенный через тонкий слой оксида кремния, который является диэлектриком. Когда на затвор подают напряжение, то этот конденсатор заряжается, а электрическое поле затвора подтягивает к каналу заряды, в результате чего в канале возникают подвижные заряды, способные образовать электрический ток и сопротивление сток — исток резко падает. Чем выше напряжение, тем больше зарядов и ниже сопротивление, в итоге, сопротивление может снизиться до мизерных значений — сотые доли ома, а если поднимать напряжение дальше, то произойдет пробой слоя оксида и транзистору хана.

Достоинство такого транзистора, по сравнению с биполярным очевидно — на затвор надо подавать напряжение, но так как там диэлектрик, то ток будет нулевым, а значит требуемая мощность на управление этим транзистором будет мизерной, по факту он потребляет только в момент переключения, когда идет заряд и разряд конденсатора.

Недостаток же вытекает из его емкостного свойства — наличие емкости на затворе требует большого зарядного тока при открытии. В теории, равного бесконечности на бесконечно малом промежутки времени. А если ток ограничить резистором, то конденсатор будет заряжаться медленно — от постоянной времени RC цепи никуда не денешься.

МОП Транзисторы бывают P и N канальные. Принцип у них один и тот же, разница лишь в полярности носителей тока в канале. Соответственно в разном направлении управляющего напряжения и включения в цепь. Очень часто транзисторы делают в виде комплиментарных пар. То есть есть две модели с совершенно одиннаковыми характеристиками, но одна из них N, а другая P канальные. Маркировка у них, как правило, отличается на одну цифру.

Нагрузка включается в цепь стока. Вообще, в теории, полевому транзистору совершенно без разницы что считать у него истоком, а что стоком — разницы между ними нет. Но на практике есть, дело в том, что для улучшения характеристик исток и сток делают разной величины и конструкции плюс ко всему, в мощных полевиках часто есть обратный диод (его еще называют паразитным, т.к. он образуется сам собой в силу особенности техпроцесса производства).

У меня самыми ходовыми МОП транзисторами являются IRF630 (n канальный) и IRF9630 (p канальный) в свое время я намутил их с полтора десятка каждого вида. Обладая не сильно габаритным корпусом TO-92 этот транзистор может лихо протащить через себя до 9А. Сопротивление в открытом состоянии у него всего 0.35 Ома.

Впрочем, это довольно старый транзистор, сейчас уже есть вещи и покруче, например IRF7314, способный протащить те же 9А, но при этом он умещается в корпус SO8 — размером с тетрадную клеточку.

Одной из проблем состыковки MOSFET транзистора и микроконтроллера (или цифровой схемы) является то, что для полноценного открытия до полного насыщения этому транзистору надо вкатить на затвор довольно больше напряжение. Обычно это около 10 вольт, а МК может выдать максимум 5.

Тут вариантов три:

  • На более мелких транзисторах соорудить цепочку, подающую питалово с высоковольтной цепи на затвор, чтобы прокачать его высоким напряжением
  • применить специальную микросхему драйвер, которая сама сформирует нужный управляющий сигнал и выровняет уровни между контроллером и транзистором. Типичные примеры драйверов это, например, IR2117.

Надо только не забывать, что есть драйверы верхнего и нижнего плеча (или совмещенные, полумостовые). Выбор драйвера зависит от схемы включения нагрузки и комутирующего транзистора. Если обратишь внимание, то увидишь что с драйвером и в верхнем и нижнем плече используются N канальные транзисторы. Просто у них лучше характеристики чем у P канальных.

Но тут возникает другая проблема. Для того, чтобы открыть N канальный транзистор в верхнем плече надо ему на затвор подать напряжение выше напряжения стока, а это, по сути дела, выше напряжения питания. Для этого в драйвере верхнего плеча используется накачка напряжения. Чем собственно и отличается драйвер нижнего плеча от драйвера верхнего плеча.

    • Применить транзистор с малым отпирающим напряжением. Например из серии IRL630A или им подобные. У них открывающие напряжения привязаны к логическим уровням. У них правда есть один недостаток — их порой сложно достать. Если обычные мощные полевики уже не являются проблемой, то управляемые логическим уровнем бывают далеко не всегда.

Но вообще, правильней все же ставить драйвер, ведь кроме основных функций формирования управляющих сигналов он в качестве дополнительной фенечки обеспечивает и токовую защиту, защиту от пробоя, перенапряжения, оптимизирует скорость открытия на максимум, в общем, жрет свой ток не напрасно.

Читайте также:  Схема регулятора оборотов вентилятора автомобиля

Выбор транзистора тоже не очень сложен, особенно если не заморачиваться на предельные режимы. В первую очередь тебя должно волновать значение тока стока — I Drain или ID выбираешь транзистор по максимальному току для твоей нагрузки, лучше с запасом процентов так на 10.

Следующий важный для тебя параметр это VGS — напряжение насыщения Исток-Затвор или, проще говоря, управляющее напряжение. Иногда его пишут, но чаще приходится выглядывать из графиков. Ищешь график выходной характеристики Зависимость ID от VDS при разных значениях VGS. И прикидыываешь какой у тебя будет режим.

Вот, например, надо тебе запитать двигатель на 12 вольт, с током 8А. На драйвер пожмотился и имеешь только 5 вольтовый управляющий сигнал. Первое что пришло на ум после этой статьи — IRF630. По току подходит с запасом 9А против требуемых 8. Но глянем на выходную характеристику:

Видишь, на 5 вольтах на затворе и токе в 8А падение напряжения на транзисторе составит около 4.5В По закону Ома тогда выходит, что сопротивление этого транзистора в данный момент 4.5/8=0.56Ом. А теперь посчитаем потери мощности — твой движок жрет 5А. P=I*U или, если применить тот же закон Ома, P=I 2 R. При 8 амперах и 0.56Оме потери составят 35Вт. Больно дофига, не кажется? Вот и мне тоже кажется что слишком. Посмотрим тогда на IRL630.

При 8 амперах и 5 вольтах на Gate напряжение на транзисторе составит около 3 вольт. Что даст нам 0.37Ом и 23Вт потерь, что заметно меньше.

Если собираешься загнать на этот ключ ШИМ, то надо поинтересоваться временем открытия и закрытия транзистора, выбрать наибольшее и относительно времени посчитать предельную частоту на которую он способен. Зовется эта величина Switch Delay или ton,toff, в общем, как то так. Ну, а частота это 1/t. Также не лишней будет посмотреть на емкость затвора Ciss исходя из нее, а также ограничительного резистора в затворной цепи, можно рассчитать постоянную времени заряда затворной RC цепи и прикинуть быстродействие.

Если постоянная времени будет больше чем период ШИМ, то транзистор будет не открыватся/закрываться, а повиснет в некотором промежуточном состоянии, так как напряжение на его затворе будет проинтегрировано этой RC цепью в постоянное напряжение.

При обращении с этими транзисторами учитывай тот факт, что статического электричества они боятся не просто сильно, а ОЧЕНЬ СИЛЬНО. Пробить затвор статическим зарядом более чем реально. Так что как купил, сразу же в фольгу и не доставай пока не будешь запаивать. Предварительно заземлись за батарею и надень шапочку из фольги :).

А в процессе проектирования схемы запомни еще одно простое правило — ни в коем случае нельзя оставлять висеть затвор полевика просто так — иначе он нажрет помех из воздуха и сам откроется. Поэтому обязательно надо поставить резистор килоом на 10 от Gate до GND для N канального или на +V для P канального, чтобы паразитный заряд стекал. Вот вроде бы все, в следующий раз накатаю про мостовые схемы для управления движков

Источник



Схема регулятора полевыми транзисторами

И. НЕЧАЕВ, г. Курск

Этот регулятор позволяет управлять количеством тепла, выделяемого электронагревательным прибором. Принцип его работы основан на изменении числа периодов сетевого напряжения, поступающих на нагреватель, причем включение и отключение происходят в моменты, близкие к переходу мгновенного значения сетевого напряжения через ноль. Поэтому регулятор практически не создает коммутационных помех. К сожалению, он не годится для регулировки яркости ламп накаливания, которые будут заметно мигать.

Схема прибора показана на рис. 1.

Регулятор мощности на полевых транзисторах. Симисторный регулятор мощности. Ступенчатый регулятор мощности.

В качестве коммутирующих элементов в нем применены полевые транзисторы IRF840 с допустимым напряжением сток-исток 500 В, током стока 8 А при температуре корпуса 25 °С и 5 А при температуре 100 °С, импульсным током 32 А, сопротивлением открытого канала 0,85 Ом и рассеиваемой мощностью 125 Вт. Каждый транзистор содержит внутренний защитный диод, включенный параллельно каналу в обратной полярности (катодом к стоку). Это позволяет, соединив два транзистора встречно-последовательно, коммутировать переменное напряжение.

На элементах DD1.1, DD1.2 собран генератор импульсов регулируемой скважности, следующих с частотой приблизительно 1 Гц. На DD1.3, DD1.4 — компаратор напряжения. DD2.1 — D-триггер, a DD1.5, DD1.6 — буферные каскады. Гасящий резистор R2, диоды VD3 и VD4, стабилитрон VD6, конденсатор С2 образуют параметрический стабилизатор напряжения. Диоды VD5, VD7 гасят выбросы напряжения на затворах транзисторов VT1, VT2.

Временные диаграммы сигналов в различных точках регулятора показаны на рис. 2.

Регулятор мощности на полевых транзисторах. Симисторный регулятор мощности. Ступенчатый регулятор мощности.

Положительная полуволна сетевого напряжения, пройдя через диоды VD3, VD4 и резистор R2, заряжает конденсатор С2 до напряжения стабилизации стабилитрона VD6. Напряжение на аноде диода VD4 представляет собой синусоиду, ограниченную снизу нулевым значением, а сверху — напряжением стабилизации стабилитрона VD6 плюс прямое падение напряжения на самом диоде. Компаратор на элементах DD1.3, DD1.4 делает перепады напряжения более крутыми. Сформированные им импульсы поступают на вход синхронизации (выв. 11) триггера DD2.1, а на его вход D (выв. 9) — импульсы частотой приблизительно 1 Гц с выхода генератора на элементах DD1.1, DD1.2.

Читайте также:  Реле регулятора камаз евро

Выходные импульсы триггера поданы через соединенные параллельно (для уменьшения выходного сопротивления) элементы DD1.5 и DD1.6 на затворы транзисторов VT1 и VT2. Они отличаются от импульсов генератора «привязкой» перепадов по времени к пересечениям сетевым напряжением уровня, близкого к нулевому, в направлении от плюса к минусу. Поэтому открывание и закрывание транзисторов происходят только в моменты таких пересечений (что и гарантирует низкий уровень помех) и всегда на целое число периодов сетевого напряжения. С изменением переменным резистором R1 скважности импульсов генератора изменяется и отношение длительности включенного и выключенного состояния нагревателя, а следовательно, и среднее количество выделяемого им тепла.

Полевые транзисторы можно заменить другими, подходящими по допустимым напряжению и току, но обязательно с защитными диодами. Микросхемы серии К561 при необходимости заменяют функциональными аналогами серии 564 или импортными. Стабилитрон Д814Д — любым средней мощности с напряжением стабилизации 10. 15 В.

Большинство деталей прибора размещено на печатной плате из односторонне фольгированного стеклотекстолита, показанной на рис. 3.

Регулятор мощности на полевых транзисторах. Симисторный регулятор мощности. Ступенчатый регулятор мощности.

При мощности нагревателя более 500 Вт транзисторы VT1 и VT2 необходимо снабдить теплоотводами.

Плату устанавливают в корпус из изоляционного материала, на стенке которого монтируют розетку XS1 и переменный резистор R1. На ось резистора обязательно насаживают ручку из изоляционного материала.

При налаживании регулятора проверяют напряжение на конденсаторе С2 во всем интервале регулировки мощности. Если оно заметно меняется, номинал резистора R2 придется уменьшить.
Радио №4 2005 год.

Симисторный регулятор мощности.

Дроссель L1 — любой помехоподавляющий, применяемый в подобного рода устройствах, соответствующий нагрузке. Можно, в принципе, обойтись и без него, особенно если нагрузка носит индуктивный характер. Конденсаторы CI, С2 — на напряжение не ниже 250 В. Диоды VD1. VD4 — любые кремниевые на обратное напряжение не менее 300 В.

Регулятор мощности на полевых транзисторах. Симисторный регулятор мощности. Ступенчатый регулятор мощности.

Транзисторы VT1, VT2 — тоже, в принципе, любые кремниевые с соответствующим типом проводимости.

Данная схема работает с любыми типами симисторов на соответствующее напряжение. Самый мощный, что удалось испытать, был ТС142-80-10.

Ступенчатый регулятор мощности.

К. МОВСУМ-ЗАДЕ, г. Тюмень

Предлагаемое устройство отличается доступными деталями при небольшом их числе и некритичности номиналов. Регулирование ступенчатое: 2/2, 2/3, 2/4, 3/7, 3/8, 3/9 и 3/10 полной мощности нагрузки.

Схема регулятора изображена на рис. 1.

Регулятор мощности на полевых транзисторах. Симисторный регулятор мощности. Ступенчатый регулятор мощности.

Он состоит из узла питания (диоды VD2, VD6, стабилитрон VD1, резистор R3, конденсатор С1), узла управления (резисторы R1, R2, R4, R5, переключатель SA1, десятичный счетчик DD1, диоды VD3—VD5) и силового узла на полевом транзисторе VT1 и диодном мосте VD7—VD10, в него же входит резистор R6.

Предположим, переключатель SA1 установлен в положение 2/3. Во время первого положительного полупериода сетевого напряжения диоды VD2 и VD6 открыты. Ток, протекающий через стабилитрон VD1, формирует на нем импульс амплитудой 15 В с крутыми фронтом и спадом. Этот импульс через диод VD2 заряжает конденсатор С1, а через резистор R1 поступает на вход CN счетчика DD1. По фронту этого импульса на выходе 1 счетчика будет установлен высокий уровень, который через диод VD4 и резистор R4 поступит на затвор полевого транзистора VT1 и откроет его. В результате через нагрузку протекает положительная полуволна тока.

Во время отрицательного полупериода диоды VD2 и VD6 закрыты, но напряжение заряженного конденсатора С1 (далее его подзаряжает каждый положительный полупериод) продолжает питать счетчик DD1, состояние которого не изменяется. Транзистор VT1 остается открытым, и ток через нагрузку продолжает течь.

С началом следующего положительного полупериода уровень на выходе 1 счетчика станет низким, а на выходе 2 — высоким. Транзистор VT2, напряжение затвор—исток которого стало нулевым, будет закрыт, а нагрузка отключена от сети на весь период.

В третьем положительном полупериоде высокий уровень, установленный на выходе 3, поступит через переключатель SA1 на вход R счетчика, который немедленно перейдет в исходное состояние с высоким уровнем на выходе 0 и низким на всех остальных выходах. Напряжение, поступившее через диод VD3 и резистор R4 на затвор транзистора VT1, откроет его. По окончании этого периода цикл повторится. В других положениях переключателя SA1 прибор работает аналогично, изменяется лишь число периодов, в течение которых нагрузка подключена к сети и отключена от нее.

Регулятор почти не создает радиопомех, так как переключение счетчика, а с ним открывание и закрывание транзистора VT1 происходят в моменты, когда мгновенное значение сетевого напряжения очень близко к нулевому — оно не превышает напряжения стабилизации стабилитрона VD1. Резистор R6 подавляет выбросы напряжения, возникающие при коммутации индуктивной нагрузки, что уменьшает вероятность пробоя транзистора VT1.

Регулятор собран на печатной плате из односторонне фольгированного текстолита (рис. 2).

Регулятор мощности на полевых транзисторах. Симисторный регулятор мощности. Ступенчатый регулятор мощности.

Она рассчитана на резисторы МЛТ и им подобные указанной на схеме мощности, причем номиналы резисторов могут в несколько раз отличаться от указанных. Конденсатор С1 — К50-35 или другой оксидный. Стабилитрон КС515Г можно заменить КС515Ж или КС508Б, диоды КД257Б — импортными 1N5404, а транзистор КП740 — IRF740.

Читайте также:  Схема регулятора частоты вращения асинхронных двигателей

Переключатель SA1 — галетный П2Г-3 11П1Н, из одиннадцати положений которого использовано только семь. Выводы переключателя соединяют гибкими проводами с не имеющими обозначений контактными площадками, расположенными на печатной плате вокруг микросхемы DD1.

Собранный прибор желательно проверить, подключив к сети через разделительный трансформатор с напряжением на вторичной обмотке 20. 30 В и заменив реальную нагрузку резистором 1,5. 3 кОм. Только убедившись в правильной работе, подключайте его к сети напрямую. После этого прикасаться к каким-либо элементам устройства (кроме изолированной ручки переключателя) опасно — они находятся под сетевым напряжением.

Регулятор проверен с нагрузкой мощностью до 600 Вт. Полевой транзистор VT1 благодаря малому сопротивлению открытого канала нагревается очень незначительно, тем не менее желательно снабдить его небольшим теплоотводом.

Источник

Регулятор мощности на полевых транзисторах с ШИ-управлением + устройство для питания 110-вольтовой аппаратуры от 220 Вольт

Недостатки тиристорных и симисторных схем

От схем тиристорных регуляторов, изготавливаемых ранее мною неоднократно, решил отказаться по многим причинам, не устраивающим меня:
а) трудноустраняемые помехи; б) большой ток управления;
в) полное открывание тиристоров (симисторов) без принятия специальных мер с усложнением схемы;
г) значительное падение напряжения, увеличивающее значение, рассеиваемой прибором мощности;
д) невозможность нормальной работы мощного триака на малых токах.

На самом деле проблему, указанную в пункте «а» можно решить глухой экранировкой и фильтрацией цепей питания, синхронизировать схему управления триаком с нулевым значением сетевой синусоиды, но эти меры неизбежно приведут к ухудшению массогабаритных показателей устройства, к его удорожанию.

Так же невозможно использование симисторной схемы в качестве балласта из-за полного открывания симистора в момент коммутации (без усложнения схемы), что может привести к выходу из строя питаемого через такой балласт устройства.

И, конечно, универсальный регулятор должен нормально работать в широком диапазоне токов нагрузки.

Схема регулятора мощности на полевых транзисторах

Впрочем, как бы там ни было, я решил собрать регулятор на полевых транзисторах (далее ПТ) с ШИ-управлением. В отличие от схем на ПТ с фазоимпульсным управлением, где существует привязка схемы к частоте сетевого напряжения, при ШИ-управлении схемой управления генерируются собственная последовательность импульсов, модулируя сетевую частоту.
Изменением ширины этих импульсов достигается изменение значения выходного напряжения.

Схема регулятора получается достаточно простой, малошумящей и работоспособной при любых значениях тока в нагрузке.
Начну, пожалуй, с эксплуатационных характеристик. До 200 Вт полевые транзисторы практически не греются (для этого обеспечено их полное открывание импульсами схемы управления).
При эксплуатации регулятора с нагрузкой, имеющей большую, чем 200 Вт мощность, на ПТ следует установить радиаторы.
Так, например, при мощности нагрузки 1 кВт, на открытом канале ПТ, имеющем, предположим, сопротивление 0,1 Ом, падение напряжения составит около 0,45 В, а рассеиваемая мощность превысит 2 Вт, что неизбежно вызовет разогрев кристалла транзистора. При длительной работе на мощную нагрузку (от 500 Вт и выше) может потребоваться обдув радиатора. При работе с мощным трансформатором (от UPS — в понижающем включении), вторичная обмотка трансформатора была нагружена 12-вольтовой автомобильной галогенной лампой мощностью 190 Вт.

Особенности схемы, применённые детали

Схема управления выполнена на

В схеме использованы самые доступные детали. Так, например, полевые транзисторы — от компьютерных БП (напряжения и токи указаны на схеме), но могут быть использованы любые другие с учётом работы на конкретную нагрузку.
При мощности нагрузки до 200 Вт регулятор может иметь очень малые (со спичечный коробок) габариты.

Результаты испытаний

Регулятор был собран на самопальной макетной плате моим другом и был опробован в работе с различными нагрузками:
1) галогенный прожектор (200 Вт);
2) тепловентилятор;
3) светодиодная группа от ТВ матрицы (150 В);
3) электродрель (360 Вт);
4) различные трансформаторы (от адаптеров питания старых модемов до трансформаторов от старых телевизионных приёмников).

Результаты оказались ожидаемыми. А это значит, что связку «регулятор-трансформатор» можно использовать в качестве автотрансформатора и получить на выходе регулируемое от 0 до максимального значения переменное напряжение.

Получилась также очень плавная регулировка светового потока, как галогенных ламп, так и светодиодной группы.

Регулировка оборотов/мощности двигателей (тепловентилятора и электродрели) так же — удалась, несмотря на то, что эта функция не имела для меня особого значения и была исследована ради интереса.

Регулировка мощности 2-киловаттной секции ТЭНов — успешно. Регулятор стабильно работает в широком диапазоне токов (от десятых долей миллиампер) и не имеет выбросов напряжения при коммутации.

Рекомендации

При работе на мощную нагрузку с частотой выше 5-7 кГц для некоторых экземпляров таймеров и ПТ с большой ёмкостью затвора, может потребоваться включение При этом убирается VD1, R1, и один из ПТ, а нагрузка включается между стоком ПТ и плюсом питающего напряжения, который подаётся и на вывод 8 микросхемы таймера.

Источник