Меню

Схема стабилизатор напряжения тиристор

Тиристорные стабилизаторы напряжения

Тиристорные стабилизаторы напряжения — это электронные полупроводниковые устройства ступенчатого принципа работы; наиболее распространенные среди российских производителей стабилизаторов.
По схожему принципу работают и симисторные стабилизаторы. Они также относятся к электронным устройствам.
В СССР начали разрабатываться в 80-х годах после появления полупроводниковых компонентов (к тому моменту уже были феррорезонансные, севоприводные и релейные модели).

Отличия тиристорных стабилизаторов от релейных

Тиристорные и релейные стабилизаторы являются 2-мя самыми популярными типами стабилизаторов на российском рынке. Они относятся к группе электронных устройств преобразования напряжения, наряду с симисторными, инверторными и феррорезонансными моделями.

Принцип работы и тиристорного и релейного стабилизатора аналогичен. Эти полупроводниковые устройства используют для коммутации обмотки трансформатора различные ключи — тиристорные или релейные. Регулировка напряжения в обоих типах происходит ступенчато, что визуально заметно по морганию ламп накаливания. Вот только переключение симисторов и тиристоров происходит бесшумно, а реле немного пощелкивает.

Какие же основные отличия в работе этих двух типов между собой? Правда ли, что тиристорные модели дороже, но надёжнее релейных?

Релейный или тиристорный стабилизатор

Реле и тиристоры: в чём отличия?

Стабилизатор тиристорного типа

    Итак, разберём основные отличия между релейными и тиристорными стабилизаторами.
  • Реле работают шумнее, щелкают при переключении контактов. Тиристоры работают бесшумно, подходят для установки в любых помещениях.
  • При переключении реле более заметны изменения в освещении, моргание ламп накаливания.
  • Реле занимают в разы больше места, чем компактные тиристоры, но не нуждаются в радиаторах охлаждения.
  • Реле менее термостойки, а тиристоры чаще применяются в морозоустойчивых стабилизаторах для работы в неотапливаемых помещениях.
  • К перегрузкам реле относятся более лояльно, чем тиристоры, критичные к перегрузкам. Поэтому тиристоры ставят с большим запасом по характеристикам, разрабатывают разные схемотехнические ухищрения, чтобы режим их работы не нарушался и они массово не выгорали. Цена из-за этого на тиристорные стабилизаторы еще больше увеличивается.
  • Реле имеют открытую коммутацию, сопровождающуюся искрением и подгоранием контактов. Во многом по этой причине тиристоры многими считаются более надёжными, имеют длительную гарантию производителя.
  • Т.к. у тиристорных моделей ключи более компактные, то их можно больше разместить в одном стабилизаторе. С увеличением количества ключей повышается точность стабилизации напряжения. Например, стабилизатор с 36-ю ступенями регулировки позволяет снизить погрешность стабилизации до 1,5% — модели Энерготех TOP 12000 и Вольт ГЕРЦ Э 36-1/40.
    Есть даже тиристорные стабилизаторы LIDER серии «SQ-DeLUXe». Они имеют целых 120 ступеней стабилизации! Это позволяет достичь максимальной точности напряжения — 220В ± 0,5%.

Надёжнее ли тиристоры?

Можно ли сказать, что тиристорный тип стабилизаторов в целом надёжнее релейного?
Да, если имеются ввиду релейные стабилизаторы китайского производства.
Многое зависит от качества непосредственно релейных и тиристорных ключей, системы их охлаждения и продуманности микропроцессорного управления.
Например, если производитель тиристорной модели сэкономил на её защите от импульсных скачков, то тиристоры может пробить высокое напряжение и они выйдут из строя.
У релейных моделей частой проблемой является подгорание релейных контактов из-за частого переключения под напряжением. Для устранения указанной проблемы один производитель модернизировал конструкцию релейного стабилизатора, добавив в неё симисторы. Получилась такая гибридная модель, симбиоз релейного и симисторного стабилизатора — Вольт Гибрид Э 9-1/40А. В результате реле не искрят при переключении, а симисторным ключам не требуются радиаторы охлаждения, т.к. задействованы они лишь на доли секунд.

Гибридный стабилизатор

Итак, нельзя однозначно утверждать, что релейные ключи менее надёжны, чем тиристорные или симисторные.
Есть релейные стабилизаторы российского производства, которые не уступают в надёжности тиристорным аналогом. Кстати, стоимость их сравнима. Например, такие модели есть у производителя стабилизаторов Стабвольт и Штиль.
Например, релейные стабилизаторы Стабвольт имеют высокую перегрузочную способность, кратковременно — до 700%. Это дает возможность работы с импульсной нагрузкой, с нагрузкой в составе которой есть двигатели с большими пусковыми токами. К такой нагрузке относятся насосы, компрессоры, различные станки и т.п.

Симисторные ключи

Отличие тиристорных стабилизаторов от симисторных

    Тиристорные и симисторные модели стабилизаторов во многом схожи, в некоторых случаях их даже обобщают, называя оба варианта «тиристорными». Однако есть некоторые различия между ними. Рассмотрим их подробнее.
  • основное отличие симисторных стабилизаторов — способность пропускать ток в обоих направлениях (как 2 тиристора с общим управлением, подключённые встречно-параллельно). Симистор — симметричный тиристор (или триак — от англ. TRIAC — triode for alternating current).
  • симисторы занимают больше места (примерно в 4 раза), поэтому конструкция симисторных стабилизаторов более габаритная
  • симисторы менее устойчивы к резким всплескам входного тока, перегрузкам (например, при стартовых токах электромоторов в индуктивной нагрузке). Для снижения риска выхода из строя электронных ключей нужно делать соответствующий запас по мощности при покупке симисторной модели (хотя бы на треть от номинальной мощности нагрузки). Схема тиристора и симистора
  • симисторы нагреваются сильнее тиристоров, больше нуждаются в радиаторах охлаждения
  • симисторные стабилизаторы имеют более сложное микропроцессорное управление. При плохой работе вентилятора охлаждения или чрезмерных импульсах напряжения контроллер может выйти из строя, а его прошивка «слететь».
  • симисторы из-за своих особенностей обычно применяются в стабилизаторах небольшой мощности — до 10 кВт
Читайте также:  Чему равна сила тока при параллельном соединении проводников для напряжения

Схема тиристорного стабилизатораСхема симисторного стабилизатора

Производители тиристорных стабилизаторов

На нашем рынке в основном присутствуют российские производители тиристорных стабилизаторов напряжения. Реже встречаются украинские (из Донецка и Одессы) и китайские аппараты.
Средняя цена стабилизатора на 10 кВт составляет 30-40 тыс. руб. Более высокой стоимостью отличаются многоступенчатые тиристорные аппараты, рассчитанные на работу с высокоточной техникой.

    Некоторые производители тиристорных и симисторных стабилизаторов:
  • Вольт Инжиниринг — модели до 40А включительно — на симисторах, от 50А — на тиристорах
  • Энерготех — модели до 12 кВА включительно — на симисторах, от 15 кВА — на тиристорах
  • Лидер — все стабилизаторы выпускаются на тиристорах
  • Бастион — от 5 до 20 кВА — симисторные (9 и 16 ступеней регулировки)

Краткие выводы

Теперь давайте обобщим вышесказанное.
В целом, тиристорные стабилизаторы российского производства обладают хорошим соотношением цены и надёжности в работе.
На аппараты такого типа часто даётся 5-ти летняя гарантия, как подтверждение их высокого качества.
Наибольшей популярностью пользуются тиристорные модели мощностью от 10 кВт. Одна из причин — меньшая разница в цене (в сравнении с маломощными аппаратами) с китайскими релейными аналогами при несравнимо более высоком качестве и характеристиках.
Желание многих потребителей купить один раз надёжный стабилизатор и забыть о нём на долгие годы и определяет стремительно растущую популярность тиристорных аппаратов.

Тиристорный стабилизатор

Если вам необходима подробная консультация по выбору стабилизатора напряжения, то можете позвонить по телефону (495) 972-00-90 и получить ответы на интересующие вопросы.

Источник



Мощный стабилизатор напряжения своими руками: принципиальные схемы + поэтапная инструкция сборки

Изготовление самодельных стабилизаторов напряжения – практика довольно частая. Однако по большей части создаются стабилизирующие электронные схемы, рассчитанные на относительно малые выходные напряжения (5-36 вольт) и относительно невысокие мощности. Устройства используются в составе бытовой аппаратуры, не более того.

Мы расскажем, как сделать мощный стабилизатор напряжения своими руками. В предложенной нами статье описан процесс изготовления устройства для работы с напряжением сети 220 вольт. С учетом наших советов вы без проблем самостоятельно справитесь со сборкой.

Стабилизация напряжения бытовой сети

Стремления обеспечить стабилизированное напряжение бытовой сети – явление очевидное. Такой подход обеспечивает сохранность эксплуатируемой техники, зачастую дорогостоящей, постоянно необходимой в хозяйстве. Да и в целом, фактор стабилизации – это залог повышенной безопасности эксплуатации электрических сетей.

Для бытовых целей чаще всего приобретают стабилизатор для газового котла, автоматика которого требует подключения к электропитанию, для холодильника, насосного оборудования, сплит систем и подобных потребителей.

Мощный стабилизатор промышленного исполнения

Решить подобную задачу можно разными способами, самый простой из которых – купить мощный стабилизатор напряжения, изготовленный промышленным способом.

Предложений стабилизаторов напряжения на коммерческом рынке масса. Однако нередко возможности приобретения ограничиваются стоимостью устройств или другими моментами. Соответственно, альтернативой покупке становится сборка стабилизатора напряжения своими руками из доступных электронных компонентов.

При условии обладания соответствующими навыками и знаниями электромонтажа, теории электротехники (электроники), разводки схем и пайки элементов самодельный стабилизатор напряжения можно реализовать и успешно применять на практике. Такие примеры есть.

Самодельный стабилизатор напряжения

Схемные решения стабилизации электросети 220В

Рассматривая возможные схемные решения под стабилизацию напряжения с учётом относительно высокой мощности (не менее 1-2 кВт), следует иметь в виду разнообразие технологий.

Существует несколько схемных решений, которыми определяются технологические способности приборов:

  • феррорезонансные;
  • сервоприводные;
  • электронные;
  • инверторные.

Какой вариант выбрать, зависит от ваших предпочтения, имеющихся материалов для сборки и навыков работы с электротехническим оборудованием.

Вариант #1 – феррорезонансная схема

Для самостоятельного изготовления самым простым вариантом схемы видится первый пункт списка – феррорезонансная схема. Она работает на использовании эффекта магнитного резонанса.

Схема простого стабилизатора

Конструкцию достаточно мощного феррорезонансного стабилизатора допустимо собрать всего на трёх элементах:

  1. Дроссель 1.
  2. Дроссель 2.
  3. Конденсатор.

Однако простота в данном варианте сопровождается массой неудобств. Конструкция мощного стабилизатора, собранная по феррорезонансной схеме, получается массивной, громоздкой, тяжелой.

Вариант #2 – автотрансформатор или сервопривод

Фактически речь идет о схеме, где используется принцип автотрансформатора. Трансформация напряжения автоматически осуществляется за счет управления реостатом, ползунок которого перемещает сервопривод.

В свою очередь сервопривод управляется сигналом, получаемым, к примеру, от датчика уровня напряжения.

Схема сервоприводного стабилизатора напряжения

Примерно по такой же схеме действует устройство релейного типа с той лишь разницей, что коэффициент трансформации меняется, в случае надобности, подключением или отключением соответствующих обмоток с помощью реле.

Схемы подобного рода выглядят уже более сложными технически, но при этом не обеспечивают достаточной линейности изменения напряжения. Собрать вручную прибор релейный или на сервоприводе допустимо. Однако разумнее выбрать электронный вариант. Затраты сил и средств практически одинаковые.

Читайте также:  Стабилизаторы напряжения est 10000

Вариант #3 – электронная схема

Сборка мощного стабилизатора по схеме электронного управления при обширном ассортименте радиодеталей в продаже становится вполне возможной. Как правило, такие схемы собираются на электронных компонентах – симисторах (тиристорах, транзисторах).

Также разработан целый ряд схем стабилизаторов напряжения, где в качестве ключей используются силовые полевые транзисторы.

Структурная схема электронного стабилизатора

Изготовить мощный аппарат полностью под электронным управлением руками неспециалиста достаточно сложно, лучше купить готовое устройство. В этом деле без опыта и знаний в сфере электротехники не обойтись.

Под самостоятельное производство рассматривать этот вариант целесообразно, если имеется сильное желание построить стабилизатор, плюс наработанный опыт электронщика. Далее в статье рассмотрим конструкцию электронного исполнения, пригодную для изготовления своими руками.

Подробные инструкции по сборке

Рассматриваемая под самостоятельное изготовление схема, скорее является гибридным вариантом, так как предполагает использование силового трансформатора совместно с электроникой. Трансформатор в данном случае применяется из числа тех, что устанавливались в телевизорах старых моделей.

Силовой трансформатор ТС-180 для стабилизатора

Правда в ТВ приёмниках, как правило, ставились трансформаторы ТС-180, тогда как для стабилизатора требуется как минимум ТС-320 чтобы обеспечить выходную нагрузку до 2 кВт.

Шаг #1 – изготовление корпуса стабилизатора

Для изготовления корпуса аппарата подойдёт любой подходящий короб на основе изолирующего материала – пластмассы, текстолита и т.п. Главный критерий – достаточность места под размещение силового трансформатора, электронной платы и других компонентов.

Также корпус допустимо изготовить из листового стеклотекстолита, скрепив отдельные листы с помощью уголков или иным способом.

Корпус под стабилизатор напряжения

Короб стабилизатора необходимо оснастить пазами под установку выключателя, входного и выходного интерфейсов, а также других аксессуаров, предусмотренных схемой в качестве контрольных или коммутационных элементов.

Под изготовленный корпус нужна плита-основание, на которую «ляжет» электронная плата и будет закреплён трансформатор. Плиту можно сделать из алюминия, но следует предусмотреть изоляторы под крепёж электронной платы.

Шаг #2 – изготовление печатной платы

Здесь потребуется изначально спроектировать макет на размещение и связку всех электронных деталей согласно принципиальной схеме, кроме трансформатора. Затем по макету размечают лист фольгированного текстолита и рисуют (отпечатывают) на стороне фольги созданную трассировку.

Далее вытравливают плату при помощи соответствующего раствора (электронщикам метод травления плат должен быть знаком).

Изготовление печатной платы

Полученный таким способом печатный экземпляр разводки зачищают, облуживают оловом и производят монтаж всех радиодеталей схемы с последующей пайкой. Так выполняется изготовление электронной платы мощного стабилизатора напряжения.

В принципе, можно воспользоваться сторонними услугами по травлению печатных плат. Этот сервис вполне приемлем по цене, а качество изготовления «печатки» существенно выше, чем в домашнем варианте.

Шаг #3 – сборка стабилизатора напряжения

Укомплектованная радиодеталями плата подготавливается для внешней обвязки. В частности, от платы выводятся линии внешней связи (проводники) с другими элементами – трансформатором, выключателем, интерфейсами и т.д.

На опорную плиту корпуса устанавливают трансформатор, соединяют с трансформатором цепи электронной платы, закрепляют плату на изоляторах.

Пример самодельного стабилизатора

Останется только подключить к схеме внешние элементы, смонтированные на корпусе, установить ключевой транзистор на радиатор, после чего корпусом закрывают собранную электронную конструкцию. Стабилизатор напряжения готов. Можно приступать к настройке с дальнейшими испытаниями.

Принцип работы и тест самоделки

Регулирующим элементом электронной схемы стабилизации выступает мощный полевой транзистор типа IRF840. Напряжение для обработки (220-250В) проходит первичную обмотку силового трансформатора, выпрямляется диодным мостом VD1 и поступает на сток транзистора IRF840. Исток этого же компонента соединен с минусовым потенциалом диодного моста.

Схема устройства стабилизации

Часть схемы, в которую включена одна из двух вторичных обмоток трансформатора, образуется диодным выпрямителем (VD2), потенциометром (R5) и другими элементами электронного регулятора. Этой частью схемы формируется управляющий сигнал, который поступает на затвор полевого транзистора IRF840.

На случай повышения напряжения питающей сети управляющим сигналом понижается напряжение затвора полевого транзистора, что приводит к закрытию ключа. Соответственно, на контактах подключения нагрузки (XT3, XT4) возможное повышение напряжения ограничивается. Обратным вариантом работает схема на случай понижения сетевого напряжения.

Настройка прибора особой сложностью не отличается. Здесь потребуется обычная лампа накаливания (200-250 Вт), которую следует включить на клеммы выхода прибора (X3, X4). Далее вращением потенциометра (R5) напряжение на отмеченных клеммах доводят до уровня 220-225 вольт.

Выключают стабилизатор, отключают лампу накаливания и включают прибор уже с полноценной нагрузкой (не выше 2 кВт).

После 15-20 минут работы вновь отключают аппарат и производят контроль температуры радиатора ключевого транзистора (IRF840). Если нагрев радиатора существенный (более 75º), следует подобрать более мощный теплоотводящий радиатор.

Читайте также:  Регулятор напряжения генератора сузуки лиана

Если процесс изготовления стабилизатора показался вам слишком сложным и нерациональным с практической точки зрения, без особых проблем можно найти и приобрести устройство заводского исполнения. Правила и критерии выбора стабилизатора на 220 В приведены в рекомендуемой нами статье.

Выводы и полезное видео по теме

В видеоролике ниже рассматривается одна из возможных конструкций стабилизатора домашнего изготовления.

В принципе, можно взять на заметку этот вариант самодельного аппарата стабилизации:

Сборка блока, стабилизирующего сетевое напряжение, своими руками возможна. Это подтверждается многочисленными примерами, когда радиолюбители с небольшим опытом вполне успешно разрабатывают (или применяют существующую), готовят и собирают схему электроники.

Трудностей с приобретением деталей для изготовления стабилизатора-самоделки обычно не отмечается. Расходы на производство невысоки и естественным образом окупаются, когда стабилизатор вводят в эксплуатацию.

Оставляйте, пожалуйста, комментарии, задавайте вопросы, публикуйте фото по теме статьи в находящемся ниже блоке. Расскажите о том, как собрали стабилизатор напряжения собственными руками. Поделитесь полезной информацией, которая может пригодиться посещающим сайт начинающим электротехникам.

Источник

Тиристорные стабилизаторы

Тиристорные стабилизаторы напряжения дороже релейных и сервоприводных, но при этом набирают все большую популярность, в чем их плюсы разберемся вместе со СтабЭксперт.ру.

Принцип работы

Тиристорные стабилизаторы работают по тому же ступенчатому принципу, что и релейные, рассмотренные ранее. Отличие заключается в том, что роль контактов электромеханических реле играют электронные управляемые ключи — тиристоры.

Тиристор представляет собой полупроводниковый прибор, имеющий три электрода — анод, катод и электрод управления. И в зависимости от наличия сигнала управления, он может находиться в закрытом или открытом состоянии. Проводимость в данной схеме имеет односторонний характер. В открытом состоянии движение электрического тока происходит от анода к катоду. Для использования этих электронных ключей в схемах переменного тока обычно поступают следующим образом. Два тиристора соединяют по так называемой встречно-параллельной схеме, то есть, анод одного прибора соединяют с катодом другого и наоборот.

В результате получается комбинированный ключ, обеспечивающий проводимость в обоих направлениях. Аналогично релейным приборам, каждый тиристорный ключ управляет только одной отпайкой вторичной обмотки автотрансформатора и одновременное открытие нескольких ключей не допускается.

Управление тиристорными ключами осуществляется электронным блоком. Алгоритм работы системы управления аналогичен тому, что применяется в релейных стабилизаторах. Система осуществляет постоянный контроль уровня напряжения и при его отклонении подаёт сигнал на открывание соответствующего ключа.

Топ-3 популярных марок

Плюсы и минусы

Тиристорные стабилизаторы напряжения обладают рядом преимуществ по сравнению с устройствами релейного типа, основными из которых являются:

  • более высокая скорость переключения ступеней, т.е. тиристоров по сравнению с электромеханическими реле. Благодаря этому качеству тиристорные приборы быстрее реагируют на изменение напряжения;
  • стабилизаторы с электронными ключами не имеют механических контактов и движущихся частей, что обеспечивает их бОльшую искробезопасность (не абсолютную!) и более длительный эксплуатационный ресурс.

Общим недостатком всех регуляторов ступенчатого типа, переключающих отводы вторичной обмотки автотрансформатора (и релейных в том числе), является неизбежность наличия определённой погрешности регулирования. Проблема заключается в следующем. СтабЭксперт.ру напоминает, что проектировщики при создании оборудования этого типа всегда ищут компромисс между пределами регулирования напряжения и погрешностью этого самого регулирования.

Предел регулирования зависит от количества витков между крайними выводами обмотки, подключаемыми к нагрузке контактами реле или электронными ключами. Точность же стабилизации определяется числом витков одной секции, составляющей ступень регулирования. Таким образом, при большом диапазоне регулирования получить низкую погрешность можно, если разделить этот диапазон на большое количество ступеней с малым числом витков. Однако стабилизатор с большим числом отводов обмотки автотрансформатора и ключевых элементов становится тяжёлым, громоздким и дорогим.

Для дома

Нужно понимать, что для дома даже погрешность релейных моделей в 8-10% является приемлемой и большинство приборов «переваривают» такие отклонения спокойно. У тиристорных точность работы выше, она обычно 3-5%, казалось бы, зачем это в быту? Но наряду с этим они реагирует быстрее, как писали ранее и перегрузки, в моменте, терпят гораздо бОльшие, а это важно при пусковых токах насосов, станков и пр. Ну и дорогая аудио- и видео-техника тяготеет к хорошему питанию.

Пример

В качестве примера, рассмотрим стабилизаторы от одного производителя: тиристорные Энергия Classic и Энергия Ultra имеют точность работы 5 и 3% соответственно, а перегрузку терпят в 180%. Представители релейного сегмента Энергия Voltron работают с точностью 5% и способны вытерпеть кратковременную перегрузку в 110%.

Тиристорные трехфазные стабилизаторы

Тиристорные стабилизаторы, на данный момент, выпускают только однофазные, но для сети 380 В приобретается модульный комплект из 3-х однофазных приборов, а если появляется прибор требующий ровно 380 В, то докупается блок контроля сети.

Источник

Adblock
detector