Меню

Схема стабилизатора напряжения igbt

Схема стабилизатора напряжения igbt

Всем здравствуйте. Прошу помощи опытных котов по выбору радиодеталей для схемы.( возможно и более удачной схемы.)
Что буду питать 12 ламп по 2квт.(для начала 1 канал на 4 квт), ранее была собрана схема регулятора на симисторах+ управление МК(ФИУ).
Решил от нее отказаться так как очень большие помехи в сеть от симистора, в следствие чего пр питании от 3х фазной сети фазы оказывают влияния друг на друга ((.
Пока что нашел на просторах интернета Пару схем:

Что касается диодного моста, я думаю на канал хватит KBPC5010.
А вот с IGBT Чуть запутался. Какой мне больше подойдет?
Если их в конечном итоге будет 6 шт(общий радиатор с водным охлаждением наверно).

Добавлено after 3 hours 2 minutes 42 seconds:
Нашел еще одну интересную схему. тут походу тоже управление через (ФИУ).
Как думаете как она будет устойчива или нет к межфазным помехам ?

_________________
Хоть оптика и увеличивает изображения но, глядя через оптический прицел, все проблемы мельчают.

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

_________________
Хоть оптика и увеличивает изображения но, глядя через оптический прицел, все проблемы мельчают.

Обобщив богатый опыт и ноу-хау в сфере силовой электроники, компания Infineon представляет CoolSiC™ MOSFET. Мы сделали подборку статей о технологии CoolSiC™, которая поможет вам вывести КПД и надёжность ваших устройств силовой электроники на высочайший уровень!

SoC BlueNRG-LP — новая микросхема от STMicroelectronics со встроенным микроконтроллером Cortex®-M0+ и приемопередатчиком BLE. В данной статье мы рассмотрели режимы пониженного потребления и программную поддержку пониженного энергопотребления в программном пакете BlueNRG-LP DK, процедуру обновления прошивки по эфиру с помощью специального BLE-сервиса, особенности работы UART-загрузчика с функцией защиты памяти, и другое.

_________________
Хоть оптика и увеличивает изображения но, глядя через оптический прицел, все проблемы мельчают.

ПРИСТ расширяет ассортимент

Схема будет ближе к 3 сейчас ее рисую, диодный мост. детектировать 0 и через мк уже управление.
мк потому что будет индикация+ память+кнопки.

IGB думаю взять HGTG20N60B3 (как думаете хватит ?)

Добавлено after 2 hours 24 minutes 56 seconds:
Еще одна интересная схемка.
Изображение

Добавлено after 58 minutes 17 seconds:
Можно ли вместо поливика сюда установить игбт ?
https://3.bp.blogspot.com/-Q2KfHxn_uaQ/ . PWM_01.JPG

Последний раз редактировалось Starichok51 Ср май 31, 2017 21:05:51, всего редактировалось 1 раз.
убрал из текста слишком большой рисунок.

_________________
Хоть оптика и увеличивает изображения но, глядя через оптический прицел, все проблемы мельчают.

220в напрямую(без понижения) и «завязывать» его через триггер на паре транзисторов. который управляется от двух встречно включенных оптопар(выходами-параллельно) входы(светодиоды ОП)-через резюк на 1кОм(5-10Вт) и два встречно включенных стабилитрона на 2,7в. после них через резюк на 5-10 ом-на светодиоды(встречно включенные) оптопар.
Так удастся получить четкий импульс на выходе триггера с лог. уровнем для МК(+5в. при условии питания триггера от 5в) с «отбегом» не более 1-2% от начала «горба»,что обеспечит плавное включение(введение) ламп в цепь.
Полезно так-же последовательно с нагрузкой включить дроссель с падением напряжения порядка 5-10в(на реактивке) при максимальной нагрузочной мощности гирлянды ламп. он позвольт исключить ударные токи(их превышение) в первоначальный момент времени(первых 3-5 импульсов,пока спираль успеет прогреться).

_________________
Ом намо Бха га ва-тэ,Васу дэва -йа.

Регулятор на симисторе собран полностью рабочая модель.
Схема, код + причины отказа описаны мной в соседней теме.
viewtopic.php?f=57&t=145454
Да и хочется все таки шагать в ногу со временем.Вот и хочу пробнуть собрать регулятор на IGBT транзюках.

Добавлено after 7 minutes 51 second:
С миганием и сильными помехами вроде там исправил ситуацию.

_________________
Хоть оптика и увеличивает изображения но, глядя через оптический прицел, все проблемы мельчают.

Всем здравствуйте, решил все таки добраться до IGBT.
Может кто подсказать хватит ли мощи у выбранного мной IGBT?
IRG4PC50FDPBF 70A 600V.
Включать ей буду ГКТ лампу на 230V 1800W

Добавлено after 9 minutes 33 seconds:
Схемка примерно такая( естественно еще все будет дорабатываться) Управление наверно ШИМ на МК. хотя мб и ФИУ.

Источник



IGBT транзистор

Биполярный транзистор с изолированным затвором

IGBT транзистор

В современной силовой электронике широкое распространение получили так называемые транзисторы IGBT. Данная аббревиатура заимствована из зарубежной терминологии и расшифровывается как Insulated Gate Bipolar Transistor, а на русский манер звучит как Биполярный Транзистор с Изолированным Затвором. Поэтому IGBT транзисторы ещё называют БТИЗ.

БТИЗ представляет собой электронный силовой прибор, который используется в качестве мощного электронного ключа, устанавливаемого в импульсные источники питания, инверторы, а также системы управления электроприводами.

IGBT транзистор — это довольно хитроумный прибор, который представляет собой гибрид полевого и биполярного транзистора. Данное сочетание привело к тому, что он унаследовал положительные качества, как полевого транзистора, так и биполярного.

Суть его работы заключается в том, что полевой транзистор управляет мощным биполярным. В результате переключение мощной нагрузки становиться возможным при малой мощности, так как управляющий сигнал поступает на затвор полевого транзистора.

Вот так выглядят современные IGBT FGH40N60SFD фирмы Fairchild. Их можно обнаружить в сварочных инверторах марки «Ресанта» и других аналогичных аппаратах.

Читайте также:  Защита асинхронных электродвигателей напряжением выше 1 кв

Современные IGBT транзисторы FGH40N60SFD

Внутренняя структура БТИЗ – это каскадное подключение двух электронных входных ключей, которые управляют оконечным плюсом. Далее на рисунке показана упрощённая эквивалентная схема биполярного транзистора с изолированным затвором.

Упрощённая эквивалентная схема БТИЗ
Упрощённая эквивалентная схема БТИЗ

Весь процесс работы БТИЗ может быть представлен двумя этапами: как только подается положительное напряжение, между затвором и истоком открывается полевой транзистор, то есть образуется n — канал между истоком и стоком. При этом начинает происходить движение зарядов из области n в область p, что влечет за собой открытие биполярного транзистора, в результате чего от эмиттера к коллектору устремляется ток.

История появления БТИЗ.

Впервые мощные полевые транзисторы появились в 1973 году, а уже в 1979 году была предложена схема составного транзистора, оснащенного управляемым биполярным транзистором при помощи полевого с изолированным затвором. В ходе тестов было установлено, что при использовании биполярного транзистора в качестве ключа на основном транзисторе насыщение отсутствует, а это значительно снижает задержку в случае выключения ключа.

Несколько позже, в 1985 году был представлен БТИЗ, отличительной особенностью которого была плоская структура, диапазон рабочих напряжений стал больше. Так, при высоких напряжениях и больших токах потери в открытом состоянии очень малы. При этом устройство имеет похожие характеристики переключения и проводимости, как у биполярного транзистора, а управление осуществляется за счет напряжения.

Первое поколение устройств имело некоторые недостатки: переключение происходило медленно, да и надежностью они не отличались. Второе поколение увидело свет в 90-х годах, а третье поколение выпускается по настоящее время: в них устранены подобнее недостатки, они имеют высокое сопротивление на входе, управляемая мощность отличается низким уровнем, а во включенном состоянии остаточное напряжение также имеет низкие показатели.

Уже сейчас в магазинах электронных компонентов доступны IGBT транзисторы, которые могут коммутировать токи в диапазоне от нескольких десятков до сотен ампер (Iкэ max), а рабочее напряжение (Uкэ max) может варьироваться от нескольких сотен до тысячи и более вольт.

Условное обозначение БТИЗ (IGBT) на принципиальных схемах.

Поскольку БТИЗ имеет комбинированную структуру из полевого и биполярного транзистора, то и его выводы получили названия затвор — З (управляющий электрод), эмиттер (Э) и коллектор (К). На зарубежный манер вывод затвора обозначается буквой G, вывод эмиттера – E, а вывод коллектора – C.

Условное обозначение IGBT


Условное обозначение БТИЗ (IGBT)

На рисунке показано условное графическое обозначение биполярного транзистора с изолированным затвором. Также он может изображаться со встроенным быстродействующим диодом.

Изображение БТИЗ

Особенности и сферы применения БТИЗ.

Отличительные качества IGBT:

Управляется напряжением (как любой полевой транзистор);

Имеют низкие потери в открытом состоянии;

Могут работать при температуре более 100 0 C;

Способны работать с напряжением более 1000 Вольт и мощностями свыше 5 киловатт.

Перечисленные качества позволили применять IGBT транзисторы в инверторах, частотно-регулируемых приводах и в импульсных регуляторах тока. Кроме того, они часто применяются в источниках сварочного тока (подробнее об устройстве сварочного инвертора), в системах управления мощными электроприводами, которые устанавливаются, например, на электротранспорт: электровозы, трамваи, троллейбусы. Такое решение значительно увеличивает КПД и обеспечивает высокую плавность хода.

Кроме того, устанавливают данные устройства в источниках бесперебойного питания и в сетях с высоким напряжением. Их можно обнаружить в составе электронных схем стиральных, швейных и посудомоечных машин, инверторных кондиционеров, насосов, системах электронного зажигания автомобилей, системах электропитания серверного и телекоммуникационного оборудования. Как видим, сфера применения БТИЗ довольно велика.

IGBT-модули.

IGBT-транзисторы выпускаются не только в виде отдельных компонентов, но и в виде сборок и модулей. На фото показан мощный IGBT-модуль BSM 50GB 120DN2 из частотного преобразователя (так называемого «частотника») для управления трёхфазным двигателем.

IGBT модуль BSM 50GB 120DN2

IGBT модуль

Схемотехника частотника такова, что технологичнее применять сборку или модуль, в котором установлено несколько IGBT-транзисторов. Так, например, в данном модуле два IGBT-транзистора (полумост).

Стоит отметить, что IGBT и MOSFET в некоторых случаях являются взаимозаменяемыми, но для высокочастотных низковольтных каскадов предпочтение отдают транзисторам MOSFET, а для мощных высоковольтных – IGBT.

Так, например, IGBT транзисторы прекрасно выполняют свои функции при рабочих частотах до 20-50 килогерц. При более высоких частотах у данного типа транзисторов увеличиваются потери. Также наиболее полно возможности IGBT транзисторов проявляются при рабочем напряжении более 300-400 вольт. Поэтому биполярные транзисторы с изолированным затвором легче всего обнаружить в высоковольтных и мощных электроприборах, промышленном оборудовании.

Источник

Управление изолированным затвором IGBT. Основные положения, Часть 1

М. Хермвиль, А. Колпаков
Новсоти Электроники 2008, 11

Любому разработчику электроники знаком термин «драйвер». В силовой электронике так называют микросхему или устройство, управляющее полупроводниковым модулем (MOSFET, IGBT, тиристор и т.д.) и выполняющее защитные и сервисные функции. Главной задачей, решаемой схемой управления затвором, является согласование уровней импульсов, вырабатываемых контроллером, с сигналами управления входами силовых ключей. В статье рассматриваются базовые принципы управления изолированным затвором, даются рекомендации по расчету характеристик и выбору устройств управления.

Характеристика затвора и динамические свойства IGBT

Драйвер изолированного затвора MOSFET/IGBT, как связующее звено между контроллером и силовым каскадом, является одним из ключевых компонентов преобразовательного устройства. Характеристики схемы управления во многом определяют параметры самого преобразователя — величину статических и динамических потерь, скорость переключения, уровень электромагнитных помех. С этой точки зрения расчету режимов управления и выбору драйвера следует уделять самое пристальное внимание.

Читайте также:  Стабилизаторы напряжения энергия ультра

Поведение IGBT в динамических режимах в первую очередь зависит от значения емкостей затвора, а также внутреннего и внешнего импеданса цепи управления.

Рис. 1. Паразитные емкости IGBT

На рисунке 1 показаны основные паразитные емкости переходов, нормируемые в технических характеристиках:

CGE — емкость «затвор — эмиттер»;

CCE — емкость «коллектор — эмиттер»;

CGC — емкость «затвор — коллектор» (или емкость Миллера).

Емкости затвора не изменяются с температурой, а их зависимость от напряжения «коллектор-эмиттер» становится более выраженной при снижении значения VCE. Заряд затвора QG, определяемый значениями CGC и CGE, является ключевым параметром при расчете мощности, рассеиваемой схемой управления.

Поведение IGBT при его открывании полностью определяется характеристикой заряда затвора. Упрощенные эпюры напряжения «затвор-эмиттер» VGE, тока затвора IG, тока коллектора IC и напряжения «коллектор-эмиттер» VCE в процессе перехода транзистора в насыщенное состояние представлены на рисунке 2.

Рис. 2. Упрощенные эпюры процесса включения IGBT

Процесс включения IGBT условно можно разделить на три этапа, которые связаны с первичным зарядом входной емкости CGE, зарядом емкости Миллера CGС и, наконец, полным зарядом CGE, идущим до насыщения транзистора.

Рассмотрим более подробно процесс включения транзистора, эпюры которого представлены на рисунке 2. На отрезке времени t0 происходит начальный заряд входной емкости затвора CGE. Для упрощения будем считать, что заряд производится постоянным током, поэтому данному этапу соответствует первый линейный участок нарастания напряжения VGE, который продолжается до момента времени t1. В этой точке напряжение затвора достигает порогового значения отпирания транзистора VGE(th). В зависимости от свойств транзистора и импеданса цепи управления, ток затвора IG на данном участке может достигать значения в несколько десятков Ампер. Поскольку до точки t1 напряжение затвора находится ниже порога отпирания, отсутствует ток коллектора IC, а напряжение «коллектор-эмиттер» VCЕ остается равным напряжению питания VCC.

Как только сигнал управления становится выше порогового значения, начинается включение IGBT, характеризующееся ростом тока коллектора до значения, ограничиваемого нагрузкой (ICload). Сказанное справедливо при использовании идеального оппозитного диода, в реальных схемах амплитуда тока в момент включения несколько превышает величину ICload. Причиной этого является процесс обратного восстановления диода, в результате чего ток восстановления Irr добавляется к IC на время перехода диода в непроводящее состояние. Именно поэтому напряжение VCE на отрезке времени t1 остается на прежнем уровне.

Далее сигнал управления затвором достигает величины VGE(pl), носящей название «плато Миллера», она поддерживается в течение промежутков времени t2 и t3. На этом же этапе после полного выключения оппозитного диода начинается спад напряжения коллектора VCE, скорость которого dVCE/dt во время t2 достаточно высока. Она снижается на промежутке t3, в течение которого транзистор переходит в насыщенное состояние. Все это время в соответствии с графиком, приведенным на рисунке 1b, емкость Миллера CCG возрастает и заряжается частью тока затвора IGС, что и обусловливает стабилизацию сигнала управления затвором на уровне VGE(pl).

В начале временного отрезка t4 транзистор уже полностью включен, а емкость CCG — заряжена. Экспоненциально спадающий ток затвора продолжает поступать во входную емкость CGE, доводя напряжение на ней до максимального значения VGE(on), определяемого схемой управления. В конце данного этапа величина VCE достигает своего минимума, называемого напряжением насыщения VCEsat.

При выключении транзистора описанные процессы происходят в обратном порядке.

Измерение характеристик затвора

На рисунке 3а показана схема, которая может быть использована для измерения заряда затвора. Включение и выключение IGBT производится от источника стабилизированного тока +IG/-IG.

Рис. 3. а) схема измерения заряда затвора, b) типовая характеристика затвора VGE = f(t) « VGE = f(QG), c) экстраполяция характеристики

К транзистору прикладывается напряжение питания VCC, амплитуда импульса тока коллектора ICpulse ограничена величиной нагрузки RL. Поскольку ток затвора стабилен, напряжение VGE изменяется линейно на каждом временном участке, так же линейно, в соответствии с соотношением QG = IG × t идет накопление заряда. Вследствие этого, изменение напряжения на затворе оказывается эквивалентно характеристике затвора: VGE = f(t) « VGE = f(QG), как показано на рисунке 3b. Данный метод определения характеристики QG описан в документе IEC 60747-9, Ed.2: «Semiconductor Devices — discrete Devices — Part 9: Insulated-Gate Bipolar Transistors (IGBT).

Если в спецификации транзистора приводится только положительная область характеристики, то суммарное значение QG может быть определено с помощью экстраполяции, как показано на рисунке 3с. Светло-зеленый прямоугольник представляет собой квадрант величин, нормированных в технических характеристиках. С помощью параллельного переноса этой зоны вдоль графика QG до значения VG(off) можно получить характеристику, расположенную в 1 и 3 квадрантах.

Заряд затвора QG можно также определить расчетным способом на основании величины входной емкости Ciss:

QG = CG × (VG(on) — VG(off)), где CG = kC × Ciss

Коэффициент пересчета емкости затвора kC определяется в соответствии с выражением kC = QG(ds)/(Cies × (VG(on) — VG(off))),

где QG(ds) — номинальное значение заряда, нормируемое в спецификациях при заданных напряжениях управления VG(on)/VG(off).

Ток затвора и выходная мощность драйвера

Мощность, необходимая драйверу для коммутации IGBT, является функцией частоты коммутации fsw и энергии E, необходимой для заряда и разряда емкостей затвора. Таким образом, выходная мощность схемы управления изолированным затвором PGD(out) определяется по следующей формуле: PGD(out) = E × fsw.

Читайте также:  Вольтметр предназначен для измерения переменного напряжения

В свою очередь величина Е зависит от значения заряда затвора QG и перепада управляющего напряжения dVG: E = QG × (VGon — VGoff). Отсюда результирующее выражение для определения мощности драйвера: PGD(out) = QG × (VGon — VGoff) × fsw.

Еще одним важным параметром является величина тока затвора IG, которого должно быть достаточно для коммутации упомянутых выше емкостей и, следовательно, для переключения IGBT. На рисунке 4 показано, как распределяется ток управления затвором IGBT IG между его входными емкостями CGE и CGC.

Рис. 4. Емкости и токи затвора

Минимальная величина IG может быть рассчитана следующим образом: IG=IGE + IGC = QG × fsw.

В свою очередь пиковое значение тока затвора IGpeak, определяющее скорость перезаряда QG, непосредственно влияет и на скорость переключения IGBT. При увеличении значения IGpeak сокращается время включения ton и выключения toff и соответственно уменьшаются коммутационное потери. Это неизбежно влияет и на другие важные динамические свойства IGBT, например, на величину коммутационного всплеска напряжения при выключении, зависящего от скорости спада тока di/dt. С этой точки зрения повышение скорости коммутации является в большей степени негативным фактором, снижающим надежность работы устройства.

Теоретическое пиковое значение тока затвора определяется по формуле IGpeak = (VG(on) — VG(off))/(RG + RG(int)), где RG(int) — внутренний импеданс цепи управления, включающий резистор, устанавливаемый внутри модуля IGBT. На практике амплитуда тока оказывается несколько меньше расчетного уровня из-за наличия распределенной индуктивности цепи управления.

Максимально допустимое значение выходного тока, как и минимальная величина RG, как правило, указывается в спецификации драйвера. Необходимо учесть, что несоблюдение требований по ограничению предельной величины IGpeak может привести к выходу схемы управления из строя.

Выбор драйвера

При выборе устройства управления затвором IGBT необходимо принимать во внимание следующие требования:

  • справочное значение среднего тока драйвера IGav должно быть выше расчетного значения, а максимально допустимая величина его пикового тока IGpeak должна быть равной или превышать реальное значение, ограниченное импедансом цепи управления;
  • выходная емкость схемы управления (емкость, установленная по питанию выходного каскада) должна быть способной запасать заряд (QC = C × U), необходимый для коммутации IGBT;

С помощью приведенных выше формул и выражений разработчик может определить все необходимые параметры схемы управления затвором. Для автоматизации этого процесса специалисты компании SEMIKRON разработали простую программу DriverSEL, позволяющую определить все необходимые параметры и произвести выбор соответствующего драйвера.

Программа DriverSEL доступна для свободного пользования на сайте компании http://www.semikron.com/ . Следует отметить, что она позволяет проводить анализ режимов работы схемы не только при управлении модулем IGBT (или их параллельным соединением) SEMIKRON, но и любого другого производителя. В первом случае параметры цепи затвора берутся из встроенной базы данных, во втором они должны быть описаны пользователем с помощью меню «User Defined Module Parameters».

На рисунке 5 показано рабочее окно программы DriverSel, состоящее из трех фрагментов: меню ввода данных, результаты расчетов и типы драйверов, рекомендуемые SEMIKRON для заданных режимов работы.

Рабочее окно программы DriverSel

Рис. 5. Рабочее окно программы DriverSel

Для расчета DriverSel необходима следующая информация:

  1. тип модуля (в данном случае SEMiX 653GD176HDc), при этом программа получает из базы данных информацию о заряде затвора QG, рабочем напряжении и конфигурации модуля;
  2. количество параллельно соединенных модулей — это число позволяет определить суммарный заряд затвора, на основании чего производится расчет мощности, рассеиваемой драйвером;
  3. рабочая частота fsw — информация, также необходимая для определения рассеиваемой мощности;
  4. номинал резистора затвора.

Если выбрать режим «User Defined Module Parameters» (параметры модуля, определяемые пользователем), то появится дополнительное меню, состоящее из трех окон:

  • Gate charge per module (заряд затвора модуля в мкКл);
  • Collector — Emitter Voltage (напряжение «коллектор — эмиттер»);
  • Number of switch per module (количество ключей в модуле: 1- одиночный ключ, 2- полумост, 6- 3-фазный мост, 7- 3-фазный мост с тормозным чоппером).

Для корректной работы DriverSel, требуется указать два значения заряда затвора: для напряжения открывания транзистора +15 В и напряжения запирания -8 В.

Величина резистора затвора RG необходима для вычисления пикового тока управления. На основании полученных данных программа будет выбирать драйвер с соответствующим значением предельного тока. Если номиналы резисторов для режимов включения и выключения RGon/RGoff различаются, то нужно использовать минимальное значение. Если величина резистора неизвестна, можно задать величину 10 Ом, при этом необходимо учесть, что рекомендуемое минимальное значение RGmin будет показано в результатах расчетов.

Введя требуемые данные, Вы получите в результате рекомендации «Suggestion for SEMIKRON IGBT driver» в виде, представленном в нижней части рисунка 2:

  • Number of Drivers- необходимое для данного модуля количество схем управления (например, три полумостовых драйвера для 3-фазного модуля);
  • IoutPEAK- пиковое значение выходного тока драйвера, определяемое по формуле IoutPEAK= VGE/RG;
  • IoutAVmax, RGmin, VS- справочные значения среднего тока, минимального резистора затвора и напряжения питания для драйвера данного типа.

Программа выдает замечание «A suitable driver could not be found», если для заданных условий корректно выбрать устройство управления невозможно. Это может быть в случае, если суммарный заряд затвора оказывается недопустимо большим (большое количество параллельно соединенных модулей), слишком велика частота коммутации или указанный резистор затвора меньше минимально возможного значения.

Источник