Меню

Схема цепи синусоидального тока с активным сопротивлением

Электрическая цепь синусоидального тока с активным сопротивлением

Процесс односторонего превращения электрической энергии в другие (механическую, тепловую и др.) обозначается на схеме замещения активным сопротивлением R (рис. 2, б).
Ток в активном сопротивлении

Напряжение на нем

где Um = RIm.
Для упрощения обозначений часто вместо амплитудного водится комплекс действующего значения тока

Приборы (рис. 2, а) показывают: U = 120 В, I = 4 А.
Векторы I и U на комплексной плоскости создают векторную диаграмму (рис. 1). Здесь ток и напряжение совпадают по фазе.

Мгновенное значение мощности всегда положительно (рис. 2, в):

Функция мощности пульсирующая с удвоенной, в сравнении с током и напряжением, частотой. Среднее значение мощности за период Т, как площадь под графиком p(t), согласно рис. 2,в, равняется:

Ваттметр (рис. 2) показывает Р = 480 Вт. Электрическая энергия, которая потребляется активным сопротивлением, описывается возрастающей во времени функцией WR(t) (рис. 2, в). Энергия W R за целое число К полупериодов:

Источник

Схема цепи синусоидального тока с активным сопротивлением

Идеальный резистивный элемент не обладает ни индуктивностью, ни емкостью. Если к нему приложить синусоидальное напряжение (см. рис. 1), то ток i через него будет равен

Соотношение (1) показывает, что ток имеет ту же начальную фазу, что и напряжение. Таким образом, если на входе двухлучевого осциллографа подать сигналы u и i , то соответствующие им синусоиды на его экране будут проходить (см. рис. 2) через нуль одновременно, т.е. на резисторе напряжение и ток совпадают по фазе.

Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:

— разделим первый из них на второй:

Полученный результат показывает, что отношение двух комплексов есть вещественная константа. Следовательно, соответствующие им векторы напряжения и тока (см. рис. 3) совпадают по направлению.

2. Конденсатор

Идеальный емкостный элемент не обладает ни активным сопротивлением (проводимостью), ни индуктивностью. Если к нему приложить синусоидальное напряжение (см. рис. 4), то ток i через него будет равен

Полученный результат показывает, что напряжение на конденсаторе отстает по фазе от тока на /2. Таким образом, если на входы двухлучевого осциллографа подать сигналы u и i , то на его экране будет иметь место картинка, соответствующая рис. 5.

Введенный параметр называют реактивным емкостным сопротивлением конденсатора. Как и резистивное сопротивление, имеет размерность Ом. Однако в отличие от R данный параметр является функцией частоты, что иллюстрирует рис. 6. Из рис. 6 вытекает, что при конденсатор представляет разрыв для тока, а при .

Переходя от синусоидальных функций напряжения и тока к соответствующим им комплексам:

— разделим первый из них на второй:

В последнем соотношении — комплексное сопротивление конденсатора. Умножение на соответствует повороту вектора на угол по часовой стрелке. Следовательно, уравнению (4) соответствует векторная диаграмма, представленная на рис. 7.

3. Катушка индуктивности

Идеальный индуктивный элемент не обладает ни активным сопротивлением, ни емкостью. Пусть протекающий через него ток (см. рис. 8) определяется выражением . Тогда для напряжения на зажимах катушки индуктивности можно записать

Полученный результат показывает, что напряжение на катушке индуктивности опережает по фазе ток на /2. Таким образом, если на входы двухлучевого осциллографа подать сигналы u и i , то на его экране (идеальный индуктивный элемент) будет иметь место картинка, соответствующая рис. 9.

Введенный параметр называют реактивным индуктивным сопротивлением катушки; его размерность – Ом. Как и у емкостного элемента этот параметр является функцией частоты. Однако в данном случае эта зависимость имеет линейный характер, что иллюстрирует рис. 10. Из рис. 10 вытекает, что при катушка индуктивности не оказывает сопротивления протекающему через него току, и при .

Переходя от синусоидальных функций напряжения и тока к соответствующим комплексам:

разделим первый из них на второй:

В полученном соотношении — комплексное

сопротивление катушки индуктивности. Умножение на соответствует повороту вектора на угол против часовой стрелки. Следовательно, уравнению (6) соответствует векторная диаграмма, представленная на рис. 11

4. Последовательное соединение резистивного и индуктивного элементов

Пусть в ветви на рис. 12 . Тогда

Читайте также:  Какие виды помещений по опасности поражения электрическим током

Уравнению (7) можно поставить в соответствие соотношение

которому, в свою очередь, соответствует векторная диаграмма на рис. 13. Векторы на рис. 13 образуют фигуру, называемую треугольником напряжений. Аналогично выражение

графически может быть представлено треугольником сопротивлений (см. рис. 14), который подобен треугольнику напряжений.

5. Последовательное соединение резистивного и емкостного элементов

Опуская промежуточные выкладки, с использованием соотношений (2) и (4) для ветви на рис. 15 можно записать

На основании уравнения (7) могут быть построены треугольники напряжений (см. рис. 16) и сопротивлений (см. рис. 17), которые являются подобными.

6. Параллельное соединение резистивного и емкостного элементов

Для цепи на рис. 18 имеют место соотношения:

, где [См] – активная проводимость;

, где [См] – реактивная проводимость конденсатора.

Векторная диаграмма токов для данной цепи, называемая треугольником токов, приведена на рис. 19. Ей соответствует уравнение в комплексной форме

Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 20.

Для комплексного сопротивления цепи на рис. 18 можно записать

Необходимо отметить, что полученный результат аналогичен известному из курса физики выражению для эквивалентного сопротивления двух параллельно соединенных резисторов.

7. Параллельное соединение резистивного и индуктивного элементов

Для цепи на рис. 21 можно записать

, где [См] – активная проводимость;

, где [См] – реактивная проводимость катушки индуктивности.

Векторной диаграмме токов (рис. 22) для данной цепи соответствует уравнение в комплексной форме

Треугольник проводимостей, подобный треугольнику токов, приведен на рис. 23.

Выражение комплексного сопротивления цепи на рис. 21 имеет вид:

1. Основы теории цепей: Учеб. для вузов /Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. –5-е изд., перераб. –М.: Энергоатомиздат, 1989. -528с.

2. Бессонов Л.А. Теоретические основы электротехники: Электрические цепи. Учеб. для студентов электротехнических, энергетических и приборостроительных специальностей вузов. –7-е изд., перераб. и доп. –М.: Высш. шк., 1978. –528с.

Контрольные вопросы и задачи

1. В чем сущность реактивных сопротивлений?

2. Какой из элементов: резистор, катушку индуктивности или конденсатор – можно использовать в качестве шунта для наблюдения за формой тока?

3. Почему катушки индуктивности и конденсаторы не используются в цепях постоянного тока?

4. В ветви на рис. 12 . Определить комплексное сопротивление ветви, если частота тока .
Ответ: .

5. В ветви на рис. 15 . Определить комплексное сопротивление ветви, если частота тока .
Ответ: .

6. В цепи на рис. 18 . Определить комплексные проводимость и сопротивление цепи для .
Ответ: ; .

7. Протекающий через катушку индуктивности ток изменяется по закону А. Определить комплекс действующего значения напряжения на катушке.
Ответ: .

Источник

Лекция № 2 ЭЛЕКТРИЧЕСКИЕ ЦЕПИ СИНУСОИДАЛЬНОГО ТОКА

1.Основные параметры, характеризующие синусоидальные токи, напряжения и ЭДС

2. Идеальные резистивный, индуктивный и емкостный элементы в цепях синусоидального тока

1. Основные параметры, характеризующие синусоидальные токи, напряжения и ЭДС

Токи, напряжения и ЭДС, значения которых периодически изменяются во времени по синусоидальному закону, называют синусоидальными (гармоническими).

По сравнению с постоянным током синусоидальный имеет ряд преимуществ:

производство, передача и использование электрической энергии наиболее экономичны при синусоидальном токе;

в цепях синусоидального тока относительно просто преобразовывать форму напряжения, а также создавать трехфазные системы напряжения.

В зависимости от типа решаемой задачи синусоидальные величины представляют:

— в виде аналитических выражений;
— графически, посредством временной или векторной диаграмм;

Аналитическое представление синусоидальных величин

Синусоидальные ЭДС, напряжение и ток можно задать с помощью вещественных функций времени (в виде аналитических выражений):

где е, u, i — соответственно мгновенные значения ЭДС, напряжения, тока;
— аргументы (фазы) синусоидальных

Для расчета электрических цепей аналитические выражения синусоидальных величин неудобны, т. к. алгебраические действия (сложение, вычитание, умножение и т. д.) с тригонометрическими функциями приводят к громоздким вычислениям.

Временная диаграмма

Графическое представление синусоидальных величин в виде временной диаграммы достаточно наглядно,

I2

но из-за сложности построения синусоид и операций с ними применяется сравнительно редко.

При построении временной диаграммы за аргумент синусоидальной функции, например, напряжения u(t) принимают время t или угол ωt .

Читайте также:  Костюм ток 200 это

Однако для большей наглядности угол φu часто выражают в градусах. Тогда аргумент ωt также переводят в градусы (напомним, что 1 рад » 57,3°). В этом случае период составляет 360°.

Основные параметры синусоидальных величин

Для характеристики синусоидальных функций времени используют следующие параметры:

— Мгновенное значение;
— Амплитуда;
— Период;
— Частота;
— Фаза;
— Начальная фаза;
— Угловая частота;
— Сдвиг фаз;
— Среднее значение гармонической функции;
— Действующее значение гармонической функции.

Цепь с активным сопротивлением

Элементы, обладающие активным сопротивлением R, нагреваются при прохождении через них тока.

Если к активному сопротивлению приложено синусоидальное напряжение

то и ток изменяется по синусоидальному закону

где

или в действующих значениях

Ток в цепи с активным сопротивлением совпадает по фазе с напряжением, т.к. их начальные фазы равны

Временная и векторная диаграммы

Активная мощность

Из временной диаграммы следует, что мощность в цепи с активным сопротивлением изменяется по величине, но не изменяется по направлению.

Эта мощность (энергия) необратима.

От источника она поступает к потребителю и полностью преобразуется в другие виды мощности (энергии), т.е. потребляется.

Такая потребляемая мощность называется активной.

Поэтому и сопротивление R, на котором происходит подобное преобразование, называется активным.

Количественно мощность в цепи с активным сопротивлением определяется

Мгновенная мощность в цепи синусоидального тока с активным сопротивлением представляет собой сумму двух величин – постоянной мощности и переменной мощности , изменяющейся с двойной частотой

Среднее за период значение переменной составляющей

Таким образом, величина активной мощности в цепи синусоидального тока с активным сопротивлением с учётом закона Ома

Единица активной мощности

Цепь с идеальной индуктивностью

Идеальной называют индуктивность такой катушки, активным сопротивлением и ёмкостью которой можно пренебречь

Если в цепи идеальной катушки проходит синусоидальный ток

то он создаёт в катушке синусоидальный магнитный поток

Этот поток индуцирует в катушке ЭДС самоиндукции

Эта ЭДС достигает амплитудного значения при

Тогда

ЭДС самоиндукции в цепи с идеальной индуктивностью, как и ток, вызвавший эту ЭДС, изменяется по синусоидальному закону, но отстаёт от тока по фазе на угол π/2.

Согласно второго закона Кирхгофа для мгновенных значений

Тогда напряжение, приложенное к цепи с идеальной индуктивностью

Для существования тока в цепи с идеальной индуктивностью необходимо приложить к цепи напряжение, которое в любой момент времени равно по величине, но находится в противофазе с ЭДС, вызванной этим током

Напряжение достигает своего амплитудного значения при

Следовательно,

Напряжение, приложенное к цепи с идеальной индуктивностью, как и ток в этой цепи, изменяется по синусоидальному закону, но опережает ток по фазе на угол π/2.

Математическое выражение закона Ома для цепи синусоидального тока с идеальной индуктивностью

Знаменатель уравнения – индуктивное сопротивление

Тогда закон Ома будет иметь вид

Индуктивное сопротивление – это противодействие, которое ЭДС самоиндукции оказывает изменению тока.

Реактивная мощность в цепи с индуктивностью

Мгновенная мощность для цепи с идеальной катушкой индуктивности определяется

Следовательно,

Мощность в цепи синусоидального тока с идеальной катушкой индуктивности изменяется по синусоидальному закону с двойной частотой

Среднее значение этой мощности за период, т.е. активная потребляемая мощность, равно нулю.

В 1-ю и 3-ю четверти периода мощность источника накапливается в магнитном поле индуктивности, а во 2-ю и 4-ю – возвращается к источнику.

В цепи переменного тока с идеальной катушкой мощность не потребляется, а колеблется между источником и катушкой индуктивности, загружая источник и провода

Такая колеблющаяся мощность, в отличие от активной, называется реактивной.

Цепь с ёмкостью

Если к конденсатору ёмкостью С приложено синусоидальное напряжение

то в цепи конденсатора проходит ток

Амплитудное значении тока , следовательно

Ток в цепи конденсатора, как и напряжение, приложенное к его обкладкам, изменяется по синусоидальному закону, однако опережает это напряжение по фазе на угол π/2.

Математическое выражение закона Ома для цепи переменного тока с ёмкостью

Знаменатель этого выражения является ёмкостным сопротивлением

Читайте также:  Резкая боль в руке ток

Тогда выражение для закона Ома будет иметь вид

Ёмкостное сопротивление — это противодействие, которое оказывает напряжение заряженного конденсатора напряжению, приложенному к нему.

Реактивная мощность в цепи с идеальным конденсатором

Если в цепи с идеальным конденсатором проходит ток , то

напряжение, приложенное к этому конденсатору будет

Мгновенная мощность в цепи с конденсатором

Мощность в цепи с конденсатором, подключённым к источнику с синусоидальным напряжением, изменяется по синусоидальному закону с двойной частотой.

Во 2-ю и 4-ю четверти периода мощность источника накапливается в электрическом поле конденсатора. В 1-ю и 3-ю четверти эта мощность из электрического поля конденсатора возвращается к источнику.

В цепи переменного тока с конденсатором происходит колебание мощности между источником и конденсатором.

Величина реактивной мощности в цепи с конденсатором

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого.

Источник



Активное сопротивление. Цепь синусоидального тока с активным сопротивлением.

Активным или ваттным сопротивлением называется — всякое сопротивление, поглощающее электрическую энергию или вернее превращающее ее в другой вид энергии, например в тепловую, световую или химическую. Потери энергии, а, следовательно, и активное сопротивление в электрической цепи при переменном токе всегда больше потерь энергии в этой же цепи при постоянном токе. Причина этого заключается в том, что в цепях переменного тока потери энергии обусловлены не только обычным омическим сопротивлением проводников, но и многими другими причинами.

Процесс одностороннего превращения электрической энергии в другие (механическую, тепловую и др.) обозначается на схеме замещения активным сопротивлением R

Ток в активном сопротивлении

Напряжение на нем

В активном сопротивлении напряжение и ток совпадают по фазе; их начальные фазы одинаковы, угол сдвига фаз равен нулю, векторы на векторной диаграмме направлены в одну сторону (параллельны).

12.Емкостное сопротивление. Цепь синусоидального тока с емкостным сопротивлением.

— емкостное сопротивление — это проводник, включенный в цепь переменного тока и неимеющий заметного сопротивления и индуктивности, но имеющий заметную емкость С.
— емкостное сопротивление проводника переменному току.
— действующие значения силы тока и напряжения связаны соотношением, аналогичным закону Ома.

При включении конденсатора в цепь постоянного напряже­ния сила тока I=0, а при включении конденсатора в цепь пере­менного напряжения сила тока I ? 0. Следовательно, конденса­тор в цепи переменного напряжения создает сопротивление меньше, чем в цепи постоянного тока.
Мгновенное значение напряжения равно . Мгновенное значение силы тока равно: Таким образом, колебания напряжения отстают от колебаний тока по фазе на π/2.
Т.к. согласно закону Ома сила тока прямо пропорциональна напряжению, то для максимальных значений тока и напряжения получим: , где — емкостное сопротивление.
Емкостное сопротивление не является характеристикой проводника, т.к. зависит от параметров цепи (частоты).
Чем больше частота переменного тока, тем лучше пропускает конденсатор ток (тем меньше сопротивление конденсатора переменному току). Т.к. разность фаз между колебаниями тока и напряжения равна π/2, то мощность в цепи равна 0: энергия не расходуется, а происходит обмен энергией между источником напряжения и емкостной нагрузкой. Такая нагрузка наз. реактивной.

Индуктивное сопротивление. Цепь синусоидального тока с индуктивным сопротивлением.

— индуктивное сопротивление — это сопротивление проводника, включенного в цепь переменного тока и неимеющего заметного активного сопротивления и емкости, но имеющий заметную индуктивность L.

— индуктивное сопротивление проводника переменному току.

— действующие значения силы тока и напряжения связаны соотношением, аналогичным закону Ома.

Дата добавления: 2018-08-06 ; просмотров: 2471 ; Мы поможем в написании вашей работы!

Источник