Меню

Схема уравновешенного моста постоянного тока

Электрический уравновешенный мост.

Электрическим мостом принято называть 4 сопротивления, активных или реактивных, соединенных друг за другом по кольцу. Каждое из сопротивлений называется плечом моста. Плечи, имеющие общую точку, — смежные плечи моста, а плечи, не имеющие общих точек, — противоположные. dc – питающая диагональ моста, к ней подключается источник питания. bd – измерительная диагональ моста, в нее включается измерительный прибор. В уравновешенных мостах этим прибором служит 0-индикатор, например, магнитоэлектрическая система.

Мосты широко применяются для измерения сопротивлений R различных чувствительных элементов, например, фоторезисторов, тензорезисторов, терморезисторов.

Измерение с помощью уравновешенного моста осуществляется следующим образом: наблюдают за положением стрелки 0-индикатора и перемещают движок переменного резистора R до тех пор, пока стрелка не установится на нулевой отметке. Такое состояние моста – равновесие. В этом случае потенциалы точек b и d одинаковы, а через измерительную диагональ ток равен 0.

Значение R определяют по положению движка переменного резистора на шкале Шк.

Наибольшее применение имеют уравновешенные мосты постоянного тока с активными резисторами.

Состояние равновесия моста может быть описано системой уравнений (1), (2) и (3) , которую в соответствии с законом Ома можно преобразовать к виду:

Уравнение (7) является условием равновесия моста.

В положении равновесия произведение сопротивлений противоположных плеч моста равны.

Следовательно, из уравнения (7) получаем уравнение (8), из которого можно видеть, что о значении искомого R можно судить по значению переменного сопротивления R . Оно справедливо в том случае, если сопротивление проводов постоянно.

Из уравнения (7) также следует, что изменение напряжения питания моста не влияет на результат измерения.

Трехпроводная схема подключения измеряемого резистора (сопротивления) к уравновешенному мосту.

Очень часто измеряемый резистор подключается к мосту с помощью длинных проводов, поэтому могут возникать погрешности, связанные с изменением сопротивления проводов от температуры. Поэтому в уравнении (8) такое явление будет отождествляться с изменением сопротивления R .

Для исключения влияния проводов на результат измерения и применяют трехпроводную схему подключения к мосту. Если в предыдущей схеме к резистору подходят 2 провода, то в данной схеме – 3. А именно: 1 полюс источника питания также подключается к резистору R в точке С`. Используя условие равновесия моста для данной схемы, можно записать уравнение (*).

Решая последнее уравнение относительно R , и предварительно изготавливая R и R равными друг другу, можно видеть, что при всех изменениях сопротивления проводов, они не влияют на результат измерений.

Автоматические уравновешенные мосты.

Автоматический уравновешенный мост функционирует так же, как и мост с ручным уравновешением. Отличие: в качестве 0-индикатора здесь используется электронный усилитель. Причем питание уравновешенных мостов с активными сопротивлениями осуществляется от источников с переменным током. Когда из-за изменения сопротивления R возникает разбалансирование электрического моста, этот разбаланс воспринимается ЭУ, усиливается, и управляет работой реверсивный двигатель РД. Ротор двигателя механически соединен с движком резистора R (конструкция этого резистора аналогична конструкции реохорда потенциометра). Перемещение ротора двигателя будет происходить до тех пор. Пока разность потенциалов между точками b и c не станет равной 0. по положению стрелки, которая соединена с ротором, на шкале судят о значении сопротивления R .

Такие приборы выпускаются показывающими, самопишущими, одно- и многоточечными. Класс точности Λ =0,25-1,5.

Неуравновешенные электрические мосты.

Неуравновешенный мост работает специальным образом: при некотором начальном значении R с помощью переменного резистора R устанавливают равновесие моста, при всех других значениях R , например, при увеличении R , между точками b и d возникает разность потенциалов, а через прибор, включенный в диагональ bd, протекает ток. Причем, чем больше изменение R , тем больше этот ток. Т.е. для получения измерительной информации используется разбалансированность.

Ток и разбаланс, как видно из формулы, зависят от R и U , причем величина М в знаменателе выражения также зависит от R . Однако, эта величина R входит в виде суммы с другими сопротивлениями, поэтому изменение R мало влияет на величину М. Установлено, что при изменении R на 10-15% практически не изменяется линейка зависимости между током и значением R .

Источник

Уравновешенные мосты

Уравновешенные мосты являются наиболее распространёнными приборами для измерения сопротивлений. Поэтому они широко применяются и для работы в комплекте с термопреобразователями сопротивления (рис.2) [4].

Рис.2. Схема уравновешенного моста

Сопротивления R1,R3постоянные.

R2–сопротивление реохорда (переменное);

Rt– термопреобразователь сопротивления;

НП– нуль-прибор.

В измерительной схеме ток от источника Uпит.Протекает по двум ветвям:асbиadb. Меняя значениеR2можно добиться такого состояния, при котором разность потенциалов в точкахсиd, а следовательно и ток в диагонали мостасиd, равны нулю. Это состояние называется равновесием моста.

Читайте также:  Работа в токе азота

Мост считается уравновешенным, когда произведение сопротивлений противоположных плеч моста равны, т.е. R1Rt=R2R3. При этом, каждому значениюRt будет соответствовать определённое значениеR2.

Необходимо учитывать, что термопреобразователь сопротивления Rtчасто находится на значительном расстоянии от измерительной схемы моста и влияние сопротивлений внешних соединительных проводовRвнможет быть существенным за счёт изменения температуры окружающей среды. Уравнение баланса при этом имеет вид:R2R3=(Rt+2Rвн)R1. Этот недостаток устраняется применением трёхпроводной схемы соединения моста с термометром сопротивления (рис.3) [4].

Рис.3. Трехпроводная схема уравновешенного моста

Такое изменение схемы приводит к тому, что сопротивление внешних проводов Rвноказываются в разных плечах моста и, следовательно, в разных частях уравнения, поэтому их влияние на баланс компенсируется:

R3(R2+Rвн)=R1(Rt+Rвн)

При условии, что R1=R3зависимость междуRtиR2становится однозначной:R2=Rt.

Автоматический уравновешенный мост собран по схеме с переменным сопротивлением плеч и трехпроводным соединением термопреобразователя сопротивления с мостом (рис.4) [1, 4]. Переменное сопротивление здесь содержит три параллельно соединенных резистора: Rр– собственно реохорд, выполняющий измерительные функции; Rш – шунт реохорда; Rп– резистор для подгонки заданного значения параллельного соединения сопро­тивлений всей реохордной группы; Rпр, Rh R2, R3 – резисторы мостовой схемы; Rд – добавочный резистор для подгонки тока из условия минимального самонагрева термопреобразователя сопро­тивления; Rб– резистор балластный в цепи питания для ограни­чения тока; Rt – термопреобразователь сопротивления; Rл – ре­зистор для подготовки сопротивления соединительной линии; m – положение движка реохорда правее точки d в долях от Rпр; n – положение движка реохорда левее точки d в долях от Rпр [1, 4]. В качестве нуль-индикатора (НИ) в автоматических мостах ис­пользуется электронный усилитель ЭУ. При измене­нии температуры изменяется сопротивление Rt и мост выходит из равновесия, т.е. в измерительной диагонали cd появляется нап­ряжение дебаланса U, которое усиливается усилителем ЭУ до значений, достаточных для вращения ротора реверсивного двига­теля РД в соответствующую сторону, в зависимости от знака дебаланса. Вал РД, связанный с движком реохорда, перемещает его до тех пор, пока дебаланс U не станет равным нулю [1, 4]. Одно­временно с движком перемещается каретка с пером и стрелкой, указывающей по шкале положение m движка т.е., зна­чение измеряемой температуры. Назначение, устройство и принцип работы основных узлов автоматического моста – модулятора (при питании моста посто­янным током), электронного усилителя, реверсивного двигателя, реохорда, записывающего устройства, привода диаграммы, переключателя (в многоточечных приборах) – такие же, как и в авто­матических потенциометрах.

Рис.4. Схема автоматического уравновешенного моста

Выпускаемые в настоящее время автоматические мосты отли­чаются друг от друга назначением, конструкцией, размерами, точ­ностью измерения и другими техническими характеристиками, например мосты одноточечные и многоточечные, самопишущие и показывающие с ленточной, а также с дисковой диаграммой: пол­ногабаритные, малогабаритные и миниатюрные с шириной диаг­раммной ленты соответственно 250, 160 и 100 мм. Измерительная схема всех этих мостов незначительно отличается от схемы, при­веденной на рис.3. Классы точности автоматических мостов равны 0,25; 0,5 и 1, а время пробега стрелки всей шкалы 1; 2,5 и 10с. В автоматические мосты встраиваются электрические и пневматические регулирующие устройства, а также устройства сигнализации; для дистанционной передачи показаний — преобра­зователи пневматические, токовые, частотные и др.

Источник

Уравновешенные мосты

Мосты подразделяют на неавтоматические и автоматические. В них используется нулевой метод измерения. С помощью неавтоматических мостов, используемых в лабораторных условиях, измеряют сопротивление от 0,5 до 10 7 Ом, в частности производят градуировку термопреобразователей сопротивления и измеряют температуру.

Схема уравновешенного моста показана на рисунке 15.6.2 Диагональ питания моста аЬ содержит источник тока, а диагональ измерения нуль-индикатор, в частности нуль-гальванометр. Между точками подключения разноименных диагоналей располагаются плечи моста, состоящие в данном случае из постоянных резисторов R1 и R2 и регулируемого R3, а плечо сb содержит измеряемое сопротивление Rt и два соединительных провода каждый сопротивлением RBH . Если мост уравновешен, то ток IНИ в диагонали сd. равен нулю, а токи в соответствующих плечах равны, т. е. I2=I3 и I1=It, и как следствие, имеем –I2R2=I1R1 и I3R3=It(Rt+2RBH.).

Разделив два последних равенства друг на друга, с учетом равенства соответствующих токов получаем выражение (14.94) /8/

Полученное выражение, выведенное из условия IНИ = 0, предопределяет условие равновесия моста: чтобы мост находился в равновесии, необходимо соблюсти равенство произведений сопротивлений противоположных его плеч. Это достигается путем регулирования сопротивления резистора R3 до тех пор, пока нуль-индикатор не покажет нуль.

Рисунок 14.144- Схема уравновешенного моста

Читайте также:  Как определить направление линий магнитного поля созданного проводником с током

Рисунок 14.145 — Трехпроводная схема соединения термопреобразователя сопротивления с мостом

Таким образом, при равновесии моста имеетместо равенство (14.95) /8/

Из (14.94) следует, что неизвестное сопротивление Rt может быть определено по значению R3 при постоянном отношении плеч R1/R2, а также при неизменном значении RBH. В то же время RBH изменяется с изменением температуры окружающей среды, что приводит к искажению результата измерения Rt и в тем большей степени, чем меньше значение Rt. Указанный недостаток может быть устранен путем трехпроводного соединения термопреобразователя сопротивления с мостом (рисунок 15.6.3). При таком соединении питающая диагональ моста доводится (точка b) до термопреобразователя сопротивления. В результате этого соединительные провода оказываются разнесенными к двум плечам моста: одно из сопротивлений RBH в плече вместе с сопротивлением RЗ, а другое RBH — в смежном плече вместеc Rt . Тогда условие равновесия моста определяет равенство (14.96) /8/

Откуда следует выражение (14.97) /8/

Если сделать мост симметричным (R1 = R2), то будем иметь Rt = R3. т. е. результат измерения Rt в этом случае не зависит от сопротивления соединительных проводов RBH.

Недостатком уравновешенных мостов, собранных по указанным схемам (рисунки 14.144 и 14.145), является неопределенность в измерении, которую вносит переходное сопротивление контакта в регулируемом плече R3. Для устранения этого недостатка подвижный контакт располагают в измерительной диагонали, при этом регулируемое сопротивление оказывается размещенным в двух плечах. Таким образом, при уравновешивании моста путем перемещения контакта изменяется сопротивление сразу обоих плеч, а переходное сопротивление контакта, располагаемое теперь в измерительной диагонали, из-за отсутствия тока в момент уравновешивания не сказывается на результате измерения.

Достоинством уравновешенных мостов является независимость их от напряжения питания, минимально допустимое значение которого определяется чувствительностью нуль-индикатора.

Автоматический уравновешенный мост, собранный по схеме с переменным сопротивлением плеч и трехпроводным соединением термопреобразователя сопротивления с мостом, показан на рисунок 14.146.

Переменное сопротивление здесь содержит три параллельно соединенных резистора: RP—собственно реохорд, выполняющий измерительные функции; RШшунт реохорда; RП—резистор для подгонки заданного значения параллельного соединения сопротивлений всей реохордной группы; RПР, R1, R2, R3 резисторы мостовой схемы; RД—добавочный резистор для подгонки тока из условия минимального самонагрева термопреобразователя сопротивления; Rб резистор балластный в цепи питания для ограничения тока; Rt — термопреобразователь сопротивления; RЛ резистор для подготовки сопротивления соединительной линии; т — положение движка реохорда правее точки d в долях от RПР; n — положение движка реохорда левее точки d в долях от RПР.

Рисунок 14.146 — Схема автоматического уравновешенного моста

Для получения линейной зависимости положения движка реохорда от изменения сопротивления резистора Rt последний включается в плечо, прилежащее к реохорду.

В качестве нуль-индикатора НИ в автоматических мостах используется электронный усилитель ЭУ. Автоматические мосты питаются как переменным, так и постоянным током. В последнем случае на входе ЭУ устанавливается модулятор, подобно тому, как это делается в автоматических потенциометрах. При изменении температуры изменяется сопротивление Rt и мост выходит из равновесия, т. е. в измерительной диагонали cd появляется напряжение дебаланса , которое усиливается усилителем ЭУ до значений, достаточных для вращения ротора реверсивного двигателя КД в соответствующую сторону, в зависимости от знака дебаланса. Вал РД, связанный с движком реохорда, перемещает его до тех пор, пока дебаланс не станет равным нулю. Одновременно с движком перемещается каретка с пером и стрелкой, указывающей по шкале положение т движка или, что то же, значение измеряемой температуры. При изменении температуры от минимального до максимального значения движок перемещается из одного крайнего положения в другое (для схемы, показанной на рисунке 15.6.4, соответственно справа налево). Пусть при температуре, соответствующей начальному значению шкалы прибора, измеряемое сопротивление Rt равно Rtнач, а при изменении температуры Условия равновесия для двух этих случаев представляются в виде равенства (14.98) и (14.99) /8/

Вычитая из второго равенства первое и решая относительно т, получим (14.100) /8/

Отсюда видно, что т — линейная функция . Кроме того, из последнего выражения следует, что, несмотря на трехпроводную схему соединения термопреобразователя сопротивления с мостом, показания последнего зависят от изменения сопротивления соединительных проводов. Однако эта зависимость, как показывают расчеты из различных источников, незначительна и при изменении температуры окружающей среды до t=40 °С изменение сопротивления проводов RЛ приводит к изменению показаний прибора в пределах (0,05— Ч) % от нормирующего значения измеряемой величины для различных диапазонов измерения. Полностью отсутствует влияние сопротивления соединительных проводов при симметричном мосте, т. е. когда . Так как это условие может быть реализовано лишь при одной измеряемой температуре, то обычно его выполняют для температуры tсред, соответствующей середине диапазона шкалы. При этом /8/.

Читайте также:  График изменения тока в конденсаторе

Назначение, устройство и принцип работы основных узлов автоматического моста — модулятора (при питании моста постоянным током), электронного усилителя, реверсивного двигателя, реохорда, записывающего устройства, привода диаграммы, переключателя (в многоточечных приборах) — такие же, как и в автоматических потенциометрах.

Выпускаемые в настоящее время автоматические мосты отличаются друг от друга назначением, конструкцией, размерами, точностью измерения и другими техническими характеристиками, например мосты одноточечные и многоточечные, самопишущие и показывающие с ленточной, а также с дисковой диаграммой: полногабаритные, малогабаритные и миниатюрные с шириной диаграммной ленты соответственно 250, 160 и 100 мм. Классы точности автоматических мостов равны 0,25; 0,5 и 1, а время пробега стрелки всей шкалы 1; 2,5 и 10 с. В автоматические мосты встраиваются электрические и пневматические регулирующие устройства, а также устройства сигнализации; для дистанционной передачи показаний — преобразователи пневматические, токовые, частотные и др.

Дата добавления: 2015-01-13 ; просмотров: 10127 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

Источник



Автоматический уравновешенный мост. Назначение основных элементов схемы. Принцип работы прибора

В автоматических электронных уравновешен­ный мостах движок реохорда перемещается не вручную, а автоматически (рис. 14). Измерительная схема таких мостов питается как постоянным, так и переменным током. В автоматических мостах переменного тока решающее значение имеют активные сопротивления, поэтому выведенные выше соотношения для мостов постоянного тока сохраняются и для автоматических мостов переменного тока. Последние имеют ряд преимуществ перед мостами постоянного тока: измерительная схема питается от одной из обмоток силового трансформатора электронного усилителя, т. е. не требуется дополнительного источника питания (сухого элемента) и отпадает необходимость в применении вибрационного преобразователя. [1].

Существуют различные модификации автоматических уравновешенных мостов, однако принцип их работы одинаков. В качестве примера здесь рассматривается принципиальная схема электронного автоматического уравновешенного моста на переменном токе (рис. 14). Постоянные сопротивления R1, R2, R3 и R4 измерительной схемы выполнены из манганина, а рео­хорд Rp из манганина или специального сплава. Измеритель­ная схема питается переменным током напряжения 6,3 В.

Напряжение разбаланса на вершинах моста а и Ь подается на вход электронного усилителя. В нем оно усиливается до величины, достаточной для приведения в действие реверсивного электродвигателя РД. Этот двигатель, вращаясь в ту или другую сторону (в зависимости от знака разбаланса), через систему пере­дач перемещает движок реохорда, уравновешивая измерительную схему моста, а также перемещает показывающую стрелку. Если мост находится в равновесии, то реверсивный двигатель не вра­щается, так как напряжение на вход электронного усилителя не подается.

Серийно изготовляемые электронные автоматические уравно­вешенные мосты могут быть использованы и при измерении темпе­ратуры полупроводниковыми термосопротивлениями. В связи с большой разницей в характеристиках металлических термоме­тров сопротивления и полупроводниковых термосопротивлений измерительную схему моста следует рассчитать.

Неуравновешенные мосты

Возможность непосредственного отсчета температуры — преимущество неуравновешенного моста перед лабораторным уравновешенным мос­том.

На принципиальной схеме неурав­новешенного моста (рис. 15) в которой R1, R2 и R3 постоянные сопротивления плеч моста; R — реостат; RK контроль­ное сопротивление; Rt сопротивление термо­метра; Iм — сила тока, протекаю­щего по рамке милливольтметра [1].

Рис. 15. Схема неуравновешенного

измерительного моста

Для контроля разности потен­циалов в схему моста параллельно термометру включается манганиновое контрольное сопротивление Rк, равное сопротивлению термометра при опре­деленной температуре, отмеченной красной чертой на шкале милливольт­метра [1].

Для контроля разности потенциалов Uab переключатель ста­вят в положение 2 и с помощью реостата R устанавливают стрелку мил­ливольтметра точно на красной черте. После этого переклю­чатель ставят в положение 1и по шкале снимают отсчет, соответ­ствующий температуре термометра.

Неуравновешенные мосты питаются от батареи или от сети (через трансформатор и выпрямитель). Показания неуравновешенных мостов зависят от напряжения Uab,, поэтому они не используются для промышленных измерений. Эти мосты используются иногда в лабораторной практике, а также в измерительных схемах других приборов

В технике обычно применяют приборы, с помощью которых измерения производят лишь с определенной заранее заданной и установленной ГОСТом допустимой основной (при нормальных условиях) при­веденной относительной погрешностью. По ее величине измерительные при­боры делят на классы точности 0,05 — 4,0. Промышленные логометры и автоматические уравновешенные мосты в большин­стве случаев выпускаются с классами точности 0,5; 1,0; 1,5. Например, прибор класса 1,5 имеет максимально допустимую основную приведенную относительную погрешность ±1,5%. Класс точности прибора обычно указывают на его шкале.

Источник