Меню

Составить баланс мощностей по постоянному току с источником тока

Основы электротехники и электроники: Курс лекций , страница 6

Произведем проверку расчета токов с помощью баланса мощности. При расчете мощности источников токи мы должны направить так, чтобы они совпадали с направлением ЭДС (См. Рис. 8.2). Итак, мощность источников:

С учетом вычислительных погрешностей .

Общий вид системы уравнений метода контурных токов:

где называется собственным или полным сопротивлением контура. Оно равно сумме всех сопротивлений контура и всегда положительно.

называется сопротивлением смежной ветви. Если контурные токи в смежной ветви встречны, . Если контурные токи в смежной ветви одного направления, . И при этом всегда справедливо равенство .

называется контурной ЭДС. Контурная ЭДС равна алгебраической сумме отдельных ЭДС контура.

Главный определитель системы (8.7) имеет вид:

Он всегда симметричен относительно главной диагонали.

Чтобы решить систему (8.7) методом Крамера, необходимо найти алгебраические дополнения определителя (8.8).

Алгебраическое дополнение Δkm определителя (8.8) можно получить путем вычеркивания из определителя (8.8) k-го столбца и m-ой строки и умножения полученного определителя на (‑1) k+ m

Решая систему (8.7) в общем виде, получим для любого k-го контурного тока выражение:

Выражение (8.9) имеет важное теоретическое значение и будет использоваться в дальнейшем при рассмотрении методов расчета электрических цепей.

Особенности метода контурных токов при наличии в цепи источников тока

При наличии в схеме источника тока записать уравнение по второму закону Кирхгофа для контура с источником нельзя. Однако, расчетные контуры можно выбрать так, чтобы каждый источник тока входил только в один независимый контур. Тогда реальный ток источника будет равен контурному току, и, следовательно, этот контурный ток уже будет известен. Для него не надо записывать уравнения по второму закону Кирхгофа. Но он будет входить в уравнения для других контурных токов. При формировании системы уравнений его необходимо перенести в правую часть системы как известную величину.

В схеме четыре независимых контура. Выбираем контуры так, чтобы каждый источник тока входил только в один контур и ток источника был равен контурному. В данном случае:

Составляем систему уравнений для контурных токов I33 и I44:

Преобразуем систему (Пр. 8.2.1), перенеся в правую часть слагаемые, содержащие известные величины:

Подставляем в систему (Пр. 8.2.2) числа:

Систему (Пр. 8.2.3) решаем методом Крамера:

Вычисляем реальные токи через контурные (См. Рис. 8.3):

Произведем проверку расчета токов с помощью баланса мощности. Токи в ветвях с ЭДС направим так, чтобы они совпадали с направлением ЭДС, напряжения на выводах источников тока направим противоположно току источников (Рис. 8.4).

Напряжения на выводах источников тока:

Мощность источников равна мощности потребителей:

9. МЕТОД НАЛОЖЕНИЯ

При рациональном выборе контуров всегда можно добиться того, чтобы ветвь с искомым током входила только в один независимый контур. Тогда реальный ток будет совпадать с контурным, и для него будет справедливо соотношение (8.9):

Каждую из контурных ЭДС можно выразить через ЭДС ветвей E1, E2, E3

Тогда соотношение (8.9) предстанет в виде:

Очевидно, что в выражении (9.1) каждое слагаемое представляет собой часть полного тока, обусловленную лишь одной ЭДС.

Отсюда следует важный в теоретическом отношении вывод: ток в произвольной ветви равен алгебраической сумме частичных токов, порождаемых каждым из источников в отдельности.

На этом принципе основан расчетный метод, называемый методом наложения.

Алгоритм расчета цепи методом наложения

Поочередно рассчитываются токи, возникающие от действия каждого источника в отдельности. При этом остальные источники мысленно удаляются из цепи, но сохраняются их внутренние сопротивления. Истинный ток определяется алгебраической суммой частичных токов.

Найти неизвестные токи методом наложения (Рис. 9.1).

В схеме два источника. Разбиваем исходную схему на две: схему с источником тока и схему с источником ЭДС.

Находим составляющие токов, создаваемых источником тока. Для этого удаляем из схемы источник ЭДС. Так как внутреннее сопротивление источника ЭДС равно нулю, на его место (между точками c и d) ставим закоротку (Рис. 9.2).

Не вызывает сомнений, что ток равен току источника:

Для определения токов и воспользуемся так называемым правилом параллельного разброса, которое состоит в следующем. Пусть в узел a втекает известный ток I (Рис. 9.3). Необходимо найти токи и .

Запишем эквивалентное сопротивление двух параллельных ветвей:

Теперь, чтобы найти ток , протекающий через резистор (см. Рис. 9.3), в формулу эквивалентного сопротивления (Пр. 9.1.1) вместо в числителе ставим ток I, втекающий в узел a:

Аналогично находится ток через резистор :

  • АлтГТУ 419
  • АлтГУ 113
  • АмПГУ 296
  • АГТУ 267
  • БИТТУ 794
  • БГТУ «Военмех» 1191
  • БГМУ 172
  • БГТУ 603
  • БГУ 155
  • БГУИР 391
  • БелГУТ 4908
  • БГЭУ 963
  • БНТУ 1070
  • БТЭУ ПК 689
  • БрГУ 179
  • ВНТУ 120
  • ВГУЭС 426
  • ВлГУ 645
  • ВМедА 611
  • ВолгГТУ 235
  • ВНУ им. Даля 166
  • ВЗФЭИ 245
  • ВятГСХА 101
  • ВятГГУ 139
  • ВятГУ 559
  • ГГДСК 171
  • ГомГМК 501
  • ГГМУ 1966
  • ГГТУ им. Сухого 4467
  • ГГУ им. Скорины 1590
  • ГМА им. Макарова 299
  • ДГПУ 159
  • ДальГАУ 279
  • ДВГГУ 134
  • ДВГМУ 408
  • ДВГТУ 936
  • ДВГУПС 305
  • ДВФУ 949
  • ДонГТУ 498
  • ДИТМ МНТУ 109
  • ИвГМА 488
  • ИГХТУ 131
  • ИжГТУ 145
  • КемГППК 171
  • КемГУ 508
  • КГМТУ 270
  • КировАТ 147
  • КГКСЭП 407
  • КГТА им. Дегтярева 174
  • КнАГТУ 2910
  • КрасГАУ 345
  • КрасГМУ 629
  • КГПУ им. Астафьева 133
  • КГТУ (СФУ) 567
  • КГТЭИ (СФУ) 112
  • КПК №2 177
  • КубГТУ 138
  • КубГУ 109
  • КузГПА 182
  • КузГТУ 789
  • МГТУ им. Носова 369
  • МГЭУ им. Сахарова 232
  • МГЭК 249
  • МГПУ 165
  • МАИ 144
  • МАДИ 151
  • МГИУ 1179
  • МГОУ 121
  • МГСУ 331
  • МГУ 273
  • МГУКИ 101
  • МГУПИ 225
  • МГУПС (МИИТ) 637
  • МГУТУ 122
  • МТУСИ 179
  • ХАИ 656
  • ТПУ 455
  • НИУ МЭИ 640
  • НМСУ «Горный» 1701
  • ХПИ 1534
  • НТУУ «КПИ» 213
  • НУК им. Макарова 543
  • НВ 1001
  • НГАВТ 362
  • НГАУ 411
  • НГАСУ 817
  • НГМУ 665
  • НГПУ 214
  • НГТУ 4610
  • НГУ 1993
  • НГУЭУ 499
  • НИИ 201
  • ОмГТУ 302
  • ОмГУПС 230
  • СПбПК №4 115
  • ПГУПС 2489
  • ПГПУ им. Короленко 296
  • ПНТУ им. Кондратюка 120
  • РАНХиГС 190
  • РОАТ МИИТ 608
  • РТА 245
  • РГГМУ 117
  • РГПУ им. Герцена 123
  • РГППУ 142
  • РГСУ 162
  • «МАТИ» — РГТУ 121
  • РГУНиГ 260
  • РЭУ им. Плеханова 123
  • РГАТУ им. Соловьёва 219
  • РязГМУ 125
  • РГРТУ 666
  • СамГТУ 131
  • СПбГАСУ 315
  • ИНЖЭКОН 328
  • СПбГИПСР 136
  • СПбГЛТУ им. Кирова 227
  • СПбГМТУ 143
  • СПбГПМУ 146
  • СПбГПУ 1599
  • СПбГТИ (ТУ) 293
  • СПбГТУРП 236
  • СПбГУ 578
  • ГУАП 524
  • СПбГУНиПТ 291
  • СПбГУПТД 438
  • СПбГУСЭ 226
  • СПбГУТ 194
  • СПГУТД 151
  • СПбГУЭФ 145
  • СПбГЭТУ «ЛЭТИ» 379
  • ПИМаш 247
  • НИУ ИТМО 531
  • СГТУ им. Гагарина 114
  • СахГУ 278
  • СЗТУ 484
  • СибАГС 249
  • СибГАУ 462
  • СибГИУ 1654
  • СибГТУ 946
  • СГУПС 1473
  • СибГУТИ 2083
  • СибУПК 377
  • СФУ 2424
  • СНАУ 567
  • СумГУ 768
  • ТРТУ 149
  • ТОГУ 551
  • ТГЭУ 325
  • ТГУ (Томск) 276
  • ТГПУ 181
  • ТулГУ 553
  • УкрГАЖТ 234
  • УлГТУ 536
  • УИПКПРО 123
  • УрГПУ 195
  • УГТУ-УПИ 758
  • УГНТУ 570
  • УГТУ 134
  • ХГАЭП 138
  • ХГАФК 110
  • ХНАГХ 407
  • ХНУВД 512
  • ХНУ им. Каразина 305
  • ХНУРЭ 325
  • ХНЭУ 495
  • ЦПУ 157
  • ЧитГУ 220
  • ЮУрГУ 309
Читайте также:  Системы которые проводят электрический ток химия

Полный список ВУЗов

  • О проекте
  • Реклама на сайте
  • Правообладателям
  • Правила
  • Обратная связь

Чтобы распечатать файл, скачайте его (в формате Word).

Источник

Расчет электрической цепи и лабораторные работы по электротехнике

Баланс мощностей

Для проверки правильности результатов расчета электрической схемы составляется баланс электрических мощностей. В соответствии с законом

сохранения энергии в любой отдельно взятой электрической цепи мощность, развиваемая источниками в этой цепи, равна мощности, расходуемой в приемниках энергии. При этом следует иметь в виду, что при определенных условиях некоторые источники, действующие в цепи, не генерируют, а, наоборот, потребляют энергию. Следовательно, суммарную мощность источников, действующих в цепи, находят в виде алгебраической суммы мощности отдельных источников. Со знаком “плюс” берется мощность источников, генерирующих энергию (рисунок 3.22, а, б), а со знаком “минус” – мощность источников, потребляющих энергию (рисунок 3.22, в, г). На рисунках буквой А обозначен активный двухполюсник, внутренняя схема которого представляет совокупность источников энергии и резисторов, соединенных между собой определенным образом.

Мощность источника напряжения равна произведению ЭДС E источника и проходящего по нему тока I (P = ЕI), а мощность источника тока определяется произведением напряжения UJ на его зажимах и генерируемого источником тока J (P = UJJ). На рисунке 3.22, а, б мощность источников берется с положительным знаком, а на рисунке 3.22, в, г – с отрицательным.

Таким образом, мощность источников, действующих в цепи, находят по формуле

(3.20)

В резисторах электрическая энергия необратимо превращается в тепловую. Мощность, потребляемая всеми резисторами в цепи, равна сумме мощностей каждого резистора:

Pнагр = (3.21)

Относительную ошибку вычислений находят по формуле

(3.22)

Составим баланс мощностей для примера 3.4. Найдем напряжение UJ на зажимах источника тока по второму закону Кирхгофа для контура b-c-d-b:

UJ = E5 – R5I5 + R3I3 = 118,325 В.

Из полученных в результате расчета значений токов следует, что энергию генерируют источники ЭДС E1, E4 и источник тока J, в то время как источник ЭДС E5 является ее потребителем. Таким образом, мощность, развиваемая источниками,

Pист = E1I1 + E4I4 – E5I5 +UJJ = 404,935 Вт.

Мощность, выделяемая в сопротивлениях резисторов (мощность нагрузки),

Pнагр = 404,92 Вт.

Относительная ошибка вычислений

Вывод: расчет токов схемы выполнен правильно, т. к. баланс мощностей выполняется.

В схеме можно предварительно произвести эквивалентные преобразования, позволяющие исключить из нее ветви с источниками токов и, следовательно, уменьшить число контуров.

В этом случае система контурных уравнений (3.19) может быть записана в матричной форме:

(3.23)

где ; ; ;

– квадратная матрица сопротивлений электрической цепи порядка n;

– матрица-столбец искомых контурных токов;

– матрица-столбец контурных ЭДС.

Решение матричного уравнения (3.23) находим в следующей форме:

. (3.24)

При расчете многоконтурных электрических цепей матричная форма записи позволяет использовать при решении системы уравнений ЭВМ.

Пример 3.5 Рассчитать токи в схеме на рисунке 3.23 с параметрами E1 = 12 В, E5 = 8 В, J = 2 A, r01 = 1 Ом, r05 = 1,2 Ом, R1 = 11 Ом, R2 = 8 Ом, R3 = 14 Ом, R4 = 5 Ом, R5 = 6,8 Ом, R6 = 6 Ом методом контурных токов. Построить потенциальную диаграмму для контура a-b-c-d-a.

Решение. Подключим источник тока J параллельно сопротивлениям R2 и R4 (рисунок 3.24, а), распределение токов в узлах a, b и c при этом останется прежним. Заменим параллельное соединение источников тока J и сопротивлений R2 и R4 эквивалентным последовательным соединением ЭДС Е2 = R2J = 16 В и Е4 = R4J = 10 В с соответствующими сопротивлениями R2 и R4 (рисунок 3.24, б).

В результате эквивалентных преобразований получим схему на рисунке 3.25. Токи в ветвях с сопротивлениями R2 и R4 этой схемы будут отличаться от токов в исходной схеме, поэтому обозначим их и .

Выберем независимые контуры и направим в них контурные токи I11, I22 и I33. Запишем систему уравнений относительно неизвестных контурных токов в матричной форме и найдем ее решение.

,

где R11 = R1 + r01 + R2 + R3 = 34 Ом;

R22 = R2 + R4 + r05 + R5 = 21 Ом;

R33 = R3 + R6 + r05 + R5 = 28 Ом;

R12 = R21 = – R2 = – 8 Ом;

R13 = R31 = R3 = 14 Ом;

R23 = R32 = r05 + R5 = 8 Ом;

E11 = E1 – E2 = – 4 В;

E22 = E2 + E4 – E5 = 18 В;

E33 = – E5 = – 8 В.

Решение системы линейных алгебраических уравнений выполним методом Крамера. Найдем определитель матрицы сопротивлений

1,012∙104 Ом3,

а также следующие определители:

Находим контурные токи:

Токи ветвей схемы 3.25:

I1 = I11 = 0,674 A; = – I11 + I22 = 0,842 A; I3 = – I11 – I33 = 0,382 A;

= I22 = 1,516 A; I5 = – I22 – I33 = – 0,46 A; I6 = – I33 = 1,056 A.

Вернемся к исходной схеме и определим токи во второй и четвертой ветвях по первому закону Кирхгофа:

I2 = I3 – I5 – J = – 1,158 А; I4 = I1 + I2 = – 0,484 А.

Проверим правильность результатов расчета по балансу электрических мощностей. Найдем напряжение UJ на зажимах источника тока:

UJ = – R2I2 – R4I4 = 11,684 В.

Истинные направления токов I2 и I4 противоположны предварительно выбранным.

Из проведенных расчетов следует, что источник ЭДС E1 и источник тока J функционируют в режиме генерирования энергии, в то время как источник ЭДС E5 ее потребляет.

Мощность источников Pист = E1I1 – E5I5 + UJJ = 27,776 Вт.

Мощность нагрузки

Pнагр = 27,777 Вт.

Построим потенциальную диаграмму, т. е. распределение потенциалов узлов, в том числе и устранимых m и n вдоль контура a-b-c-d-a (рисунок 3.26) в зависимости от сопротивлений участков, входящих в этот контур. Выделим из схемы 3.23 этот контур и укажем действительные направления токов в ветвях. Ток на любом участке схемы определяется не абсолютными значениями потенциалов точек, к которым этот участок присоединен, а их разностью. Следовательно, потенциал одной из точек схемы можно принять равным нулю. Примем, например, потенциал узла а равным нулю (φа = 0) и найдем потенциалы остальных точек контура:

φb = –R2I2 = – 9,264 В; φn = φb + R5I5 = – 6,136 В; φc = φn + E5 + r05I5 = 2,416 В;

φd = φc–R6I6 = – 3,92 В; φm= φd + E1– r01I1 = 7,406 В; φa = φm – R1I1 = – 0,008 В.

Потенциальная диаграмма представлена на рисунке 3.27.

Понятие проводимости приобретает особый смысл в том случае, если ветвь содержит активные и реактивные элементы. На ветви, изображенной на рис.2.22, определим ее активную и реактивную проводимости:

Рис.2.22. Участок цепи с активно-индуктивным сопротивлением

. 58(2.49)

Из векторной диаграммы (рис.2.21) можно выделить треугольник токов (рис. 2.23).

Рис.2.23. Векторный треугольник токов

Разделив стороны векторного треугольника токов на вектор напряжения, получим скалярный треугольник проводимостей (рис. 2.24).

Рис.2.24. Скалярный треугольник проводимостей

Источник

Мощность в цепи постоянного тока

moshhnost-v-cepi-postoyannogo-toka8

Здравствуйте! Эту статью можно считать началом знакомства с электричеством. Напряжение, ток, сопротивление – это три главные величины, на которых построены основные законы электротехники и эти величины связаны между собой еще одной – мощностью. А чтобы было проще знакомиться с электротехникой, мы будем рассматривать мощность в цепи постоянного тока. Дело в том, что при расчетах в цепях переменного тока появляется довольно много условий. Впрочем, обо всём по порядку и вы сейчас сами с этим разберётесь.

Читайте также:  Активное сопротивление проводника в цепи переменного тока

Для удобства я сразу напишу международные обозначения этих четырёх величин:

U – напряжение (В, вольт)

R – сопротивление (Ом, ом)

P – мощность (Вт, ватт – не надо путать с вольтом, который обозначается только одной буквой В)

закон Ома

Для начала абстрактный пример, чтобы проще было понимать термины, которые я сейчас буду использовать. Допустим, есть магазин товаров (условно это можно представить, как напряжение), есть деньги (условно это будет ток), есть совесть, которая не позволяет вам тратить много или наоборот, шепчет, чтобы вы крупно потратились (это можно считать сопротивлением) и есть купленные товары или продукты, которые вы несёте домой (это мощность). Собственно, на этом примере можно объяснить многие законы, связанные с электрическим током. Все обозначенные величины связаны между собой законом Ома, который гласит, что сила тока в цепи прямо пропорциональна напряжению и обратно пропорциональна сопротивлению цепи, а именно:

мнемоническая табличка закона ома

В абстрактном примере – чем больше магазин (напряжение) и чем меньше вам шепчет совесть (сопротивление), тем больше вы тратите денег (сила тока), а когда вы несёте купленный товар домой, вы совершаете работу (мощность). Мощность в цепи постоянного тока это и есть работа, совершаемая электричеством. Мощность это произведение тока на напряжение, а если вместо тока или напряжения подставить соответствующие значения, то можно получить мнемоническую табличку:

Как видите, мощность в цепи постоянного тока это довольно простое понятие, если немного вдуматься в материал. По сути, это всего две формулы с заменой значений. Как это выглядит:moshhnost-v-cepi-postoyannogo-toka3

Если теперь в формуле мощности подставить место значения тока формулу тока, то получим следующее:moshhnost-v-cepi-postoyannogo-toka4

Именно таким образом и получилось 12 формул на основе закона Ома, которые вы видите в мнемонической табличке. Что такое мощность в цепях постоянного тока мы более или менее разобрались, но есть ещё один момент.

Баланс мощностей в цепи постоянного тока.

Собственно, это просто проверка правильности расчетов электрической цепи. Возвращаясь к нашему абстрактному примеру это выглядит так: вы купили товары, забрали их на кассе, отошли от кассы и вам показалось, что ваши пакеты должны быть больше или меньше, чем получились. Тогда вы берёте чек и начинаете сравнивать товар в чеке и товар в наличии. Если товары в чеке и товары в руках совпали, значит всё в порядке. Если мы обратимся к определению, то баланс мощностей – сумма мощностей потребляемых приемниками, равна сумме мощностей отдаваемых источниками.

moshhnost-v-cepi-postoyannogo-toka5

Как это использовать на практике? Допустим, у нас есть задача, которую нужно решить:

moshhnost-v-cepi-postoyannogo-toka6

Поскольку решение задачи не является целью этой статьи, я дам уже готовые ответы.

moshhnost-v-cepi-postoyannogo-toka7

Теперь надо проверить правильно ли были посчитаны токи в задаче. Ток в цепи равен току , следовательно, мощность источника питания (Е1хI1) должна быть равна сумме мощностей сопротивлений

Что мы и получаем с учетом потерь при округлениях.

Таким образом, баланс мощностей в электрической цепи постоянного тока — это ничто иное, как проверка самого себя, своих расчётов.

Как видите, мощность в цепи постоянного тока посчитать довольно легко. Гораздо больше сложностей возникнет, если ток будет переменный. Другими словами, на примере магазина это выглядит так:

Постоянный ток – от входа до выхода прямая линия и вы спокойно идете от начала и до конца без каких-либо приключений.

Переменный ток – магазин представляет из себя зигзаг и вам приходится делать лишние движения.

Поэтому в переменном токе мощность считать немного сложнее, но это уже тема совсем другой статьи.

Источник



Баланс мощностей в электрической цепи постоянного тока

Баланс мощностей в электрической цепи означает, что мощность, которую выделяют все источники энергии, равна мощности, которую потребляют в этой же цепи все приемники энергии:

где – мощность i-го источника ЭДС или тока, Вт; – мощность, выделяемая в j-м сопротивлении, Вт.

Очевидно, что баланс мощностей следует из закона сохранения энергии.

Запишем для анализируемой цепи рис. 2.15 сумму мощностей, выделяемых всеми источниками энергии. При этом мощности, выделяемые источниками ЭДС и тока, будем считать положительными, если ток в ветви, где установлен источник ЭДС или тока, совпадает с направлением тока внутри источника (со стрелкой в обозначении источника ЭДС или тока), и отрицательными, если направление тока в ветви противоположно направлению тока в источнике. Тогда, составив соответствующее уравнение для вычисления суммарной мощности, отдаваемой источниками ЭДС и тока в анализируемую цепь и подставив в него численные значения, получим суммарную мощность источников:

при этом токи ветвей должны подставляться в уравнение (2.70) со своим знаком, который получился при их расчете.

Суммарная мощность, рассеиваемая в цепи сопротивлениями (приемниками энергии), для той же цепи рис. 2.15, может быть найдена так:

В результате расчета (2.70) – выделяемая источниками мощность, и (2.71) – потребляемая сопротивлениями мощность в цепи – должны быть одинаковы.

Потенциальная диаграмма электрической цепи

Постоянного тока

Потенциальная диаграмма контура электрической цепи постоянного тока – это графическое изображение второго закона Кирхгофа, в котором вместо падений напряжений записаны потенциалы узлов электрической цепи. Она показывает суммарное значение потенциала и суммарное сопротивление в данной точке цепи того контура, для которого построена диаграмма, считая от опорного узла, потенциал которого принят за нулевой. Иными словами, потенциальная диаграмма показывает распределение потенциалов и сопротивлений в том контуре цепи, для которого она построена.

Читайте также:  Какая вода не передает ток

Графически эта диаграмма представляет собой ломаную линию, изображенную в декартовой системе координат, горизонтальной осью которой (осью абсцисс) является ось сопротивлений , а вертикальной осью (осью ординат) – ось потенциалов .

Процесс построения потенциальной диаграммы электрической цепи рассмотрим для той же, что и ранее, электрической цепи, показанной на рис. 2.3, и модифицированной для удобства построения потенциальной диаграммы так, как показано на рис. 2.15.

Поскольку для построения потенциальной диаграммы требуется знание численных значений токов ветвей и сопротивлений ветвей, приведем эти численные значения для цепи рис. 2.15 при условии, что исходные данные для расчета этой цепи таковы: Ом, Ом, Ом, Ом, Ом, Ом; величины источников ЭДС: В, В; величины источников тока: А, А. Значения токов в ветвях цепи, рассчитанные прямым применением законов Кирхгофа (сам расчет здесь не приводится), таковы: [А]; [А]; [А]; [А]; [А]; [А].

Построение потенциальной диаграммы начнем с выбора контура, для которого эта диаграмма будет составляться. На наш взгляд, наиболее информативно будет построить потенциальную диаграмму для контура d-b-m-a-c-s-d, так как в этом контуре содержатся все источники ЭДС и источники тока анализируемой цепи и при таком обходе на потенциальной диаграмме будут показаны потенциалы всех узлов анализируемой схемы. Далее произведем выбор опорного узла, потенциал которого примем за ноль. Есть смысл взять за опорный узел d, как и ранее при расчетах анализируемой цепи. Потенциал этого узла положим равным нулю, как и ранее (2.44).

Определим численные значения потенциалов узлов и точек анализируемой схемы, находящихся на пути обхода выбранного нами контура d-b-m-a-c-s-d. Поскольку потенциал узла d равен нулю (2.44), то потенциал узла b определится так:

Знак «плюс» при произведении означает, что потенциал узла b повышается при переходе от узла d анализируемой схемы к узлу b (см. полярность падения напряжения на сопротивлении от тока на схеме рис. 2.15).

Следующим определим потенциал точки m анализируемой схемы:

Знаки при произведениях и соответствуют полярностям, показанным на схеме рис. 2.15.

Следующим за точкой m анализируемой схемы идет узел a. Его потенциал равен:

Рис. 2.15. Эквивалентная схема анализируемой электрической цепи для построения потенциальной диаграммы

Далее определим потенциал узла c, значение которого составит:

Потенциал точки s, следующей за узлом c по выбранному нами обходу, равен:

Обойдя таким образом весь контур d-b-m-a-c-s-d, мы возвращаемся в узел d. При этом потенциал узла d должен стать равным нулю. В самом деле, так оно и происходит, так как при подходе из узла c к узлу d, потенциал последнего станет равен:

После расчета численных значений потенциалов для контура d-b-m-a-c-s-d можно построить саму потенциальную диаграмму. Эта диаграмма показана на рис. 2.16.

Техника построения потенциальной диаграммы такова. На осях декартовой системы координат откладывают значения потенциалов и сопротивлений для контура цепи (схемы), который был ранее выбран для построения потенциальной диаграммы. В нашем примере, рис. 2.15, это контур d-b-m-a-c-s-d. Значения заранее рассчитанных величин потенциалов для каждой из точек этого контура откладывают на вертикальной оси (оси ординат) в положительную или отрицательную область значений, в зависимости от знака потенциала, полученного ранее при расчете. В нашем примере это будут потенциалы , , , , , и вновь точек d-b-m-a-c-s-d, соответственно. Порядок следования значений потенциалов в потенциальной диаграмме соответствует их порядку при расчете значений потенциалов. В анализируемой нами цепи рис. 2.15, этот порядок , , , , , , соответствует обходу контура d-b-m-a-c-s-d. Значения сопротивлений откладываются по горизонтальной оси (оси абсцисс) декартовой системы координат. За нулевое (исходное) значение сопротивления в потенциальной диаграмме принимается значение в опорном узле; в нашем примере рис. 2.15 это значение сопротивления в узле d. Далее, по мере обхода контура цепи, который выбран для построения потенциальной диаграммы (в нашем примере это контур d-b-m-a-c-s-d), значения сопротивлений в каждой последующей точке прибавляются к значениям сопротивлений в предыдущей точке.

Таким образом, сопротивление в каждой точке потенциальной диаграммы контура оказывается суммарным для этой точки, начиная с опорного узла, где значение сопротивления принято за ноль. Если при переходе из одной точки контура в другую сопротивления в схеме цепи нет, то к предыдущему значению сопротивления прибавляется ноль (это имеет место при прохождении источника ЭДС с нулевым внутренним сопротивлением).

Рис. 2.8.2 Потенциальная диаграмма контура d-b-m-a-c-s-d исследуемой цепи

В нашем примере значения сопротивлений в точках потенциальной диаграммы контура d-b-m-a-c-s-d составят:

Таким образом, при построении потенциальной диаграммы контура электрической цепи по вертикальной оси декартовой системы координат откладывают потенциалы узлов по мере их упоминания при обходе контура, а по горизонтальной оси – нарастающим итогом сопротивления также по мере их упоминания при таком обходе. Используют потенциальную диаграмму цепи для наглядного визуального представления распределения потенциалов и соответствующих им сопротивлений по тому или иному контуру электрической цепи.

Библиографический список

1. Основы теории цепей. Методические указания и контрольные задания для студентов радиотехнического факультета спец. 0701 “Радиотехника”.-Сост. Ю.А.Мантейфельд, А.Д.Суслов. М.: МИРЭА.-1980.-48 с.

2. Основы теории цепей. Методические указания по выполнению расчетно-графических заданий №1-2 для студентов радиотехнического факультета. Сост. В.И.Вепринцев. Красноярск: Изд-во КГТУ, 2000. 64 с.

3. Шебес, М.Р., Каблукова, М.В. Задачник по теории линейных электрических цепей: Учеб. пособ. для электротехнич., радиотехнич. Спец. вузов.-4-е изд. перераб. и доп.-М.: Высш. шк., 1990.-544 с.: ил.

4. Основы теории цепей: учебник для вузов / Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. – 5-е изд., перераб. – М.: Энергоатомиздат, 1989. – 528 с.

5. Теория линейных электрических цепей: учебник для вузов / Б.П.Афанасьев, О.Е.Гольдин, И.Г.Кляцкин, Г.Я.Пинес. – М.: Высш. шк., 1973. – 592 с.

Оглавление

1. ЗАДАНИЕ И ВЫБОР ВАРИАНТА ДЛЯ ЕГО ВЫПОЛНЕНИЯ.. 4

2. РАСЧЕТ ВЕЛИЧИН ТОКОВ НЕПОСРЕДСТВЕННЫМ ПРИМЕНЕНИЕМ ЗАКОНОВ КИРХГОФА, МЕТОДАМИ КОНТУРНЫХ ТОКОВ, УЗЛОВЫХ ПОТЕНЦИАЛОВ И МЕТОДОМ ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА.. 9

2.2. Анализ (расчет) сложных электрических цепей. 19

методом контурных токов. 19

2.6.3 Анализ (расчет) сложных электрических цепей. 25

методом узловых потенциалов. 25

2.6.4 Анализ (расчет) сложных электрических цепей. 31

методом эквивалентного генератора. 31

2.5. Баланс мощностей в электрической цепи постоянного тока. 40

2.6 Потенциальная диаграмма электрической цепи. 41

постоянного тока. 41

Библиографический список. 47

Оглавление. 48

Дата добавления: 2018-02-15 ; просмотров: 5181 ; Мы поможем в написании вашей работы!

Источник

Составить баланс мощностей по постоянному току с источником тока

Баланс мощностей для цепей постоянного тока — понятное объяснение

Баланс мощностей: сумма мощностей, выделяемых источниками, равна сумме мощностей, потребляемых приемниками.

А теперь давайте рассмотрим по порядку и на конкретных примерах , что такое баланс мощностей и как он составляется для различных цепей постоянного тока (о балансе мощностей цепи переменного тока, мы поговорим позже).

Чтобы было более понятно, сразу рассмотрим пример.

Имеется схема цепи, изображенная на рисунке 1. Дано значение ЭДС E и сопротивление резистора R. Требуется составить баланс мощностей для данной цепи.

Для начала нужно определить ток:

Следующим шагом определим мощности источника и приемника . Поскольку это цепь постоянного тока (в цепи действует постоянный источник напряжения), то мощность, отдаваемая источником и мощность, потребляемая приемником, (в данной схеме цепи, приемник только один – это резистор R ) будет активной .

Определим активную мощность, отдаваемую источником напряжения E:

Pист=I·E=1·10=10 (Вт) (Единица измерения активной мощности «Ватт»)

Активная мощность обозначается буквой P. Индекс “ист” сокращенно от “источников”.

Определяем активную мощность приемника:

Рисунок 2 - Формула активной мощности приемника

Для определения активной мощности источника, применяется формула произведения тока I через источник на величину E источника. Для определения активной мощности приемника, применяется формула произведения квадрата тока через приемник (в данном случае приемником является резистор R) на сопротивление этого резистора. Если ранее было известно напряжение резистора, то можно применить формулу для нахождения активной мощности приемника:

Pпр=Ur·I (Индекс “пр” сокращенно от “приемников”).

Таким образом, в источниках напряжения (ЭДС) происходит генерация электрической энергии , а в элементе R происходит потребление энергии . Электрическая энергия преобразуется в тепловую, т. е. резистор R потребляет электрическую энергию, отдаваемую источником E.

Отсюда следует правило баланса мощностей:

Для нашей задачи, схема цепи которой изображена на рисунке 1, запишем баланс активных мощностей :

10 (Вт)=10 (Вт) . Баланс выполняется .

Для расчета электрических цепей и проверки правильности найденных токов, делаем проверку баланса мощностей. Если полученная мощность приемников отличается от полученной мощности источников, то баланс мощностей нарушается . Это говорит о том, что токи в цепи найдены неверно. Погрешность баланса мощностей может составлять до 3%.

Т. е отличие между Pист и Pпр не должно превышать 3%. Для определения погрешности, пользуются следующей формулой:

Рисунок 3 - Погрешность баланса мощностей

В данном случае, погрешность равна нулю и баланс выполняется .

Рассмотрим следующий пример.

Требуется составить баланс мощностей для цепи, изображенной на рисунке 4.

Рисунок 4 - Электрическая схема цепи для составления баланса мощностей

Для начала определим ток в цепи. Резисторы R1 и R2 включены последовательно. Следовательно, общее сопротивление цепи, запишется как:

Тогда ток по закону Ома:

Рисунок 5 - Ток по закону Ома для цепи, изображенной на рисунке 4

Так как все ЭДС и сопротивления известны, а ток в цепи мы нашли, определим активную мощность источников и приемников.

Рисунок 6 - Активная мощность приемников для цепи, изображенной на рисунке 4

Активная мощность, потребляемая резисторами, составляет 20 (Вт) Определим активную мощность источников.

Pист=I·E1+I·E3-I·E2=1·10+1·30-1·20=20 (Вт)

Активная мощность, отдаваемая всеми источниками ЭДС, составляет 20 (Вт)

Запишем баланс мощностей для данной цепи:

Рисунок 7 - Баланс мощностей для цепи, изображенной на рисунке 4

Баланс мощностей выполняется, погрешность равна нулю.

В левой части равенства получили сумму мощностей, потребляемых приемниками, а в правой части равенства получили сумму мощностей, генерируемых источниками. В данном случае ЭДС E2 работает как приемник, например, аккумулятор в режиме зарядки .

Если действие ЭДС E и тока через Eсовпадают по направлению, то произведение E·I берется со знаком “+”, если не совпадает, то “-“. В нашей цепи I и E2 направлены навстречу друг другу, поэтому произведение I·E2 взяли с минусом.

Читайте также:  Трансформаторы тока тшл 0 66 технические характеристики

Баланс мощностей с источниками тока, мы рассмотрим в следующих статьях.

Если понравилась статья, подписывайтесь на канал и не пропускайте новые публикации.

Источник



Баланс мощностей

При решений электротехнических задач, часто нужно проверить правильность найденных значений. Для этого в науке ТОЭ, существует так называемый баланс мощностей.

Баланс мощностей – это выражение закона сохранения энергии, в электрической цепи. Определение баланса мощностей звучит так: сумма мощностей потребляемых приемниками, равна сумме мощностей отдаваемых источниками. То есть если источник ЭДС в цепи отдает 100 Вт, то приемники в этой цепи потребляют ровно такую же мощность.

Или

Проверим это соотношение на простом примере.

Для начала свернем схему и найдем эквивалентное сопротивление. R2 и R3 соединены параллельно.

Найдем по закону Ома ток источника и напряжение на R23, учитывая, что r1 и R23 соединены последовательно, следовательно, сила тока одинаковая.

Теперь проверим правильность с помощью баланса мощностей.

Небольшое различие в значениях связано с округлениями в ходе расчета.

С помощью баланса мощностей, можно проверить не только простую цепь, но и сложную. Давайте проверим сложную цепь из статьи метод контурных токов.

Как видите независимо от сложности цепи, баланс сошелся, и должен сойтись в любой цепи!

Источник

Баланс мощностей в электрической цепи постоянного тока

Баланс мощностей в электрической цепи означает, что мощность, которую выделяют все источники энергии, равна мощности, которую потребляют в этой же цепи все приемники энергии:

где – мощность i-го источника ЭДС или тока, Вт; – мощность, выделяемая в j-м сопротивлении, Вт.

Очевидно, что баланс мощностей следует из закона сохранения энергии.

Запишем для анализируемой цепи рис. 2.15 сумму мощностей, выделяемых всеми источниками энергии. При этом мощности, выделяемые источниками ЭДС и тока, будем считать положительными, если ток в ветви, где установлен источник ЭДС или тока, совпадает с направлением тока внутри источника (со стрелкой в обозначении источника ЭДС или тока), и отрицательными, если направление тока в ветви противоположно направлению тока в источнике. Тогда, составив соответствующее уравнение для вычисления суммарной мощности, отдаваемой источниками ЭДС и тока в анализируемую цепь и подставив в него численные значения, получим суммарную мощность источников:

при этом токи ветвей должны подставляться в уравнение (2.70) со своим знаком, который получился при их расчете.

Суммарная мощность, рассеиваемая в цепи сопротивлениями (приемниками энергии), для той же цепи рис. 2.15, может быть найдена так:

В результате расчета (2.70) – выделяемая источниками мощность, и (2.71) – потребляемая сопротивлениями мощность в цепи – должны быть одинаковы.

Потенциальная диаграмма электрической цепи

Постоянного тока

Потенциальная диаграмма контура электрической цепи постоянного тока – это графическое изображение второго закона Кирхгофа, в котором вместо падений напряжений записаны потенциалы узлов электрической цепи. Она показывает суммарное значение потенциала и суммарное сопротивление в данной точке цепи того контура, для которого построена диаграмма, считая от опорного узла, потенциал которого принят за нулевой. Иными словами, потенциальная диаграмма показывает распределение потенциалов и сопротивлений в том контуре цепи, для которого она построена.

Читайте также:  Активное сопротивление проводника в цепи переменного тока

Графически эта диаграмма представляет собой ломаную линию, изображенную в декартовой системе координат, горизонтальной осью которой (осью абсцисс) является ось сопротивлений , а вертикальной осью (осью ординат) – ось потенциалов .

Процесс построения потенциальной диаграммы электрической цепи рассмотрим для той же, что и ранее, электрической цепи, показанной на рис. 2.3, и модифицированной для удобства построения потенциальной диаграммы так, как показано на рис. 2.15.

Поскольку для построения потенциальной диаграммы требуется знание численных значений токов ветвей и сопротивлений ветвей, приведем эти численные значения для цепи рис. 2.15 при условии, что исходные данные для расчета этой цепи таковы: Ом, Ом, Ом, Ом, Ом, Ом; величины источников ЭДС: В, В; величины источников тока: А, А. Значения токов в ветвях цепи, рассчитанные прямым применением законов Кирхгофа (сам расчет здесь не приводится), таковы: [А]; [А]; [А]; [А]; [А]; [А].

Построение потенциальной диаграммы начнем с выбора контура, для которого эта диаграмма будет составляться. На наш взгляд, наиболее информативно будет построить потенциальную диаграмму для контура d-b-m-a-c-s-d, так как в этом контуре содержатся все источники ЭДС и источники тока анализируемой цепи и при таком обходе на потенциальной диаграмме будут показаны потенциалы всех узлов анализируемой схемы. Далее произведем выбор опорного узла, потенциал которого примем за ноль. Есть смысл взять за опорный узел d, как и ранее при расчетах анализируемой цепи. Потенциал этого узла положим равным нулю, как и ранее (2.44).

Определим численные значения потенциалов узлов и точек анализируемой схемы, находящихся на пути обхода выбранного нами контура d-b-m-a-c-s-d. Поскольку потенциал узла d равен нулю (2.44), то потенциал узла b определится так:

Знак «плюс» при произведении означает, что потенциал узла b повышается при переходе от узла d анализируемой схемы к узлу b (см. полярность падения напряжения на сопротивлении от тока на схеме рис. 2.15).

Следующим определим потенциал точки m анализируемой схемы:

Знаки при произведениях и соответствуют полярностям, показанным на схеме рис. 2.15.

Следующим за точкой m анализируемой схемы идет узел a. Его потенциал равен:

Рис. 2.15. Эквивалентная схема анализируемой электрической цепи для построения потенциальной диаграммы

Далее определим потенциал узла c, значение которого составит:

Потенциал точки s, следующей за узлом c по выбранному нами обходу, равен:

Обойдя таким образом весь контур d-b-m-a-c-s-d, мы возвращаемся в узел d. При этом потенциал узла d должен стать равным нулю. В самом деле, так оно и происходит, так как при подходе из узла c к узлу d, потенциал последнего станет равен:

После расчета численных значений потенциалов для контура d-b-m-a-c-s-d можно построить саму потенциальную диаграмму. Эта диаграмма показана на рис. 2.16.

Техника построения потенциальной диаграммы такова. На осях декартовой системы координат откладывают значения потенциалов и сопротивлений для контура цепи (схемы), который был ранее выбран для построения потенциальной диаграммы. В нашем примере, рис. 2.15, это контур d-b-m-a-c-s-d. Значения заранее рассчитанных величин потенциалов для каждой из точек этого контура откладывают на вертикальной оси (оси ординат) в положительную или отрицательную область значений, в зависимости от знака потенциала, полученного ранее при расчете. В нашем примере это будут потенциалы , , , , , и вновь точек d-b-m-a-c-s-d, соответственно. Порядок следования значений потенциалов в потенциальной диаграмме соответствует их порядку при расчете значений потенциалов. В анализируемой нами цепи рис. 2.15, этот порядок , , , , , , соответствует обходу контура d-b-m-a-c-s-d. Значения сопротивлений откладываются по горизонтальной оси (оси абсцисс) декартовой системы координат. За нулевое (исходное) значение сопротивления в потенциальной диаграмме принимается значение в опорном узле; в нашем примере рис. 2.15 это значение сопротивления в узле d. Далее, по мере обхода контура цепи, который выбран для построения потенциальной диаграммы (в нашем примере это контур d-b-m-a-c-s-d), значения сопротивлений в каждой последующей точке прибавляются к значениям сопротивлений в предыдущей точке.

Читайте также:  Нейтральный ток в газах

Таким образом, сопротивление в каждой точке потенциальной диаграммы контура оказывается суммарным для этой точки, начиная с опорного узла, где значение сопротивления принято за ноль. Если при переходе из одной точки контура в другую сопротивления в схеме цепи нет, то к предыдущему значению сопротивления прибавляется ноль (это имеет место при прохождении источника ЭДС с нулевым внутренним сопротивлением).

Рис. 2.8.2 Потенциальная диаграмма контура d-b-m-a-c-s-d исследуемой цепи

В нашем примере значения сопротивлений в точках потенциальной диаграммы контура d-b-m-a-c-s-d составят:

Таким образом, при построении потенциальной диаграммы контура электрической цепи по вертикальной оси декартовой системы координат откладывают потенциалы узлов по мере их упоминания при обходе контура, а по горизонтальной оси – нарастающим итогом сопротивления также по мере их упоминания при таком обходе. Используют потенциальную диаграмму цепи для наглядного визуального представления распределения потенциалов и соответствующих им сопротивлений по тому или иному контуру электрической цепи.

Библиографический список

1. Основы теории цепей. Методические указания и контрольные задания для студентов радиотехнического факультета спец. 0701 “Радиотехника”.-Сост. Ю.А.Мантейфельд, А.Д.Суслов. М.: МИРЭА.-1980.-48 с.

2. Основы теории цепей. Методические указания по выполнению расчетно-графических заданий №1-2 для студентов радиотехнического факультета. Сост. В.И.Вепринцев. Красноярск: Изд-во КГТУ, 2000. 64 с.

3. Шебес, М.Р., Каблукова, М.В. Задачник по теории линейных электрических цепей: Учеб. пособ. для электротехнич., радиотехнич. Спец. вузов.-4-е изд. перераб. и доп.-М.: Высш. шк., 1990.-544 с.: ил.

4. Основы теории цепей: учебник для вузов / Г.В.Зевеке, П.А.Ионкин, А.В.Нетушил, С.В.Страхов. – 5-е изд., перераб. – М.: Энергоатомиздат, 1989. – 528 с.

5. Теория линейных электрических цепей: учебник для вузов / Б.П.Афанасьев, О.Е.Гольдин, И.Г.Кляцкин, Г.Я.Пинес. – М.: Высш. шк., 1973. – 592 с.

Оглавление

1. ЗАДАНИЕ И ВЫБОР ВАРИАНТА ДЛЯ ЕГО ВЫПОЛНЕНИЯ.. 4

2. РАСЧЕТ ВЕЛИЧИН ТОКОВ НЕПОСРЕДСТВЕННЫМ ПРИМЕНЕНИЕМ ЗАКОНОВ КИРХГОФА, МЕТОДАМИ КОНТУРНЫХ ТОКОВ, УЗЛОВЫХ ПОТЕНЦИАЛОВ И МЕТОДОМ ЭКВИВАЛЕНТНОГО ГЕНЕРАТОРА.. 9

2.2. Анализ (расчет) сложных электрических цепей. 19

методом контурных токов. 19

2.6.3 Анализ (расчет) сложных электрических цепей. 25

методом узловых потенциалов. 25

2.6.4 Анализ (расчет) сложных электрических цепей. 31

методом эквивалентного генератора. 31

2.5. Баланс мощностей в электрической цепи постоянного тока. 40

2.6 Потенциальная диаграмма электрической цепи. 41

постоянного тока. 41

Библиографический список. 47

Оглавление. 48

Дата добавления: 2018-02-15 ; просмотров: 4986 ; Мы поможем в написании вашей работы!

Источник