Меню

Спектр амплитуд гармоник тока

Спектр амплитуд гармоник тока

2.1. Спектры периодических сигналов

Периодическим сигналом (током или напряжением) называют такой вид воздействия, когда форма сигнала повторяется через некоторый интервал времени T, который называется периодом. Простейшей формой периодического сигнала является гармонический сигнал или синусоида, которая характеризуется амплитудой, периодом и начальной фазой. Все остальные сигналы будут негармоническими или несинусоидальными. Можно показать, и практика это доказывает, что, если входной сигнал источника питания является периодическим, то и все остальные токи и напряжения в каждой ветви (выходные сигналы) также будут периодическими. При этом формы сигналов в разных ветвях будут отличаться друг от друга.

Существует общая методика исследования периодических негармонических сигналов (входных воздействий и их реакций) в электрической цепи, которая основана на разложении сигналов в ряд Фурье. Данная методика состоит в том, что всегда можно подобрать ряд гармонических (т.е. синусоидальных) сигналов с такими амплитудами, частотами и начальными фазами, алгебраическая сумма ординат которых в любой момент времени равна ординате исследуемого несинусоидального сигнала. Так, например, напряжение u на рис. 2.1. можно заменить суммой напряжений и , поскольку в любой момент времени имеет место тождественное равенство: . Каждое из слагаемых представляет собой синусоиду, частота колебания которой связана с периодом T целочисленными соотношениями.

Для рассматриваемого примера имеем период первой гармоники совпадающим с периодом негармонического сигнала T 1 = T , а период второй гармоники в два раза меньшим T 2 = T /2, т.е. мгновенные значения гармоник должны быть записаны в виде:

Здесь амплитуды колебаний гармоник равны между собой ( ), а начальные фазы равны нулю.

Рис. 2.1. Пример сложения первой и второй гармоники

В электротехнике гармоническая составляющая, период которой равен периоду негармонического сигнала, называется первой или основной гармоникой сигнала. Все остальные составляющие называются высшими гармоническими составляющими. Гармоника, частота которой в k раз больше первой гармоники (а период, соответственно, в k раз меньше), называется

k — ой гармоникой. Выделяют также среднее значение функции за период, которое называют нулевой гармоникой. В общем случае ряд Фурье записывают в виде суммы бесконечного числа гармонических составляющих разных частот:

где k — номер гармоники; — угловая частота k — ой гармоники;

ω 1 = ω =2 π / T — угловая частота первой гармоники; — нулевая гармоника.

Для сигналов часто встречающихся форм разложение в ряд Фурье можно найти в специальной литературе. В таблице 2 приведены разложения для восьми форм периодических сигналов. Следует отметить, что приведенные в таблице 2 разложения будут иметь место, если начало системы координат выбраны так, как это указано на рисунках слева; при изменении начала отсчета времени t будут изменяться начальные фазы гармоник, амплитуды гармоник при этом останутся такими же. В зависимости от типа исследуемого сигнала под V следует понимать либо величину, измеряемую в вольтах, если это сигнал напряжения, либо величину, измеряемую в амперах, если это сигнал тока.

Разложение в ряд Фурье периодических функций

Источник

Спектральное представление сигналов

Любой сигнал можно разложить на составляющие. Такое разложение сигнала называется спектральным. При этом сигнал можно представить в виде графика зависимости параметров сигнала от частоты, такая диаграмма называется спектральной или спектром сигнала.

Спектр сигнала — это совокупность простых составляющих сигнала с определенными амплитудами, частотами и начальными фазами.
Между спектром сигнала и его формой существует жесткая взаимосвязь: изменение формы сигнала приводит к изменению его спектра и наоборот, любое изменение спектра сигнала приводит к изменению его формы. Это важно запомнить, поскольку при передаче сигналов в системе передачи, они подвергаются преобразованиям, а значит, происходит преобразование их спектров.

Различают два вида спектральных диаграмм:
— спектральная диаграмма амплитуд;
— спектральная диаграмма фаз.

В спектральной диаграмме амплитуд — отображаются все составляющие со своими амплитудами и частотами.
В спектральной диаграмме фаз — отображаются все составляющие со своими начальными фазами и частотами.
Любой сигнал имеет одну спектральную диаграмму амплитуд и одну спектральную диаграмму фаз, в составе которых может содержаться множество составляющих.

Не зависимо от того, какой спектр (амплитуд или фаз), он изображается в виде множества линий — составляющих. В спектре амплитуд высота спектральной линии равна амплитуде составляющей сигнала, а в спектре фаз — начальной фазе составляющей. Причем: в спектре амплитуд все составляющие имеют положительные значения, а в спектре фаз как положительные, так и отрицательные. Если амплитуда спектральной составляющей имеет отрицательный знак, то в спектре амплитуд она берется по модулю, а в спектре фаз знак составляющей изменяется на противоположный.

Классификация спектров сигналов.
1. По виду спектры бывают дискретными (линейчатыми) или сплошными.
Дискретным является спектр, у которого можно выделить отдельные составляющие.
Сплошным является спектр, у которого нельзя выделить отдельные составляющие, так как они расположены настолько близко, что сливаются друг с другом.
2. По диапазону частот различают спектры ограниченные и неограниченные.
Ограниченным является спектр, у которого вся энергия сигнала (все спектральные составляющие) находятся в ограниченном диапазоне частот (fmax ? ?).
Неограниченным является спектр, у которого вся энергия сигнала находится в неограниченном диапазоне частот (fmax ? ?). На практике такие спектры ограничивают.

Читайте также:  Уход за кожей токами

Спектральное представление периодических сигналов

1. Гармоническое колебание.
Математическая модель гармонического колебания имеет вид:

u(t)=Ums sin (?st+?s) (11)

Как видно из математической модели, в спектре данного колебания присутствует одна гармоническая составляющая, которая находится на частоте ?s. Высота составляющей в спектре амплитуд равна амплитуде колебания Ums, а в спектре фаз — начальной фазе колебания ?s. Причем при построении спектра необходимо учитывать связь между временной диаграммой сигнала и спектром амплитуд. Амплитуда составляющей спектра должна по высоте соответствовать амплитуде колебания на временной диаграмме.
Необходимо отметить, что при увеличении частоты сигнала, его составляющая будет удаляться по оси частот от нуля (рисунок 13).

Рисунок 13 — Спектральное представление гармонических колебаний

Как видно из рисунков, спектр гармонического колебания является дискретным и ограниченным.
2. Периодические, негармонические сигналы.
Основной особенностью спектрального представления таких сигналов является наличие в их спектре множества спектральных составляющих. Такие сигналы могут быть описаны рядом Фурье, согласно которому:
т. е. сигнал может быть представлен суммой постоянной составляющей и множества гармонических составляющих.

Преобразуем данный ряд, используя тригонометрическое свойство

sin(x+y) = sin x cos y + cos x sin y (13)

Полагая что x=?k и y=k?ct получим:

Поскольку Umk и ?k являются параметрами ряда, то их можно обозначить коэффициентами

Umk sin ? k = ak; Umk cos ?k = bk (15)

Тогда ряд примет вид:

Параметры ряда можно определить через коэффициенты ak и bk:

где k=1, 2, 3 …

Амплитуда постоянной составляющей и коэффициенты могут быть определены через значение сигнала u(t):

Из ряда следует, что если описываемый сигнал является четной функцией f(t)=f(-t), то ряд будет иметь только косинусоидальные составляющие, так как bk=0, если нечетная функция (f(t) ? f(-t)), то рад содержит только синусоидальные составляющие (ak=0).
Рассмотрим спектральное представление периодических, негармонических сигналов на примере периодической последовательности прямоугольных импульсов (ПППИ).
При построении спектра необходимо рассчитать следующие параметры:
а) скважность сигнала:

б) значение постоянной составляющей:

в) частоту первой гармоники спектра, которая равна частоте сигнала:

г) амплитуды гармонических составляющих спектра:

При построении спектра необходимо отметить следующие особенности:
1. Все гармонические составляющие находятся на частотах, кратных частоте первой гармоники (2?1, 3?1, 4?1 и т. д.);
2. Для спектра амплитуд:
а) спектр ПППИ имеет лепестковый характер, т. е. в спектре можно выделить множество «лепестков»;
б) количество гармонических составляющих в лепестке зависит от скважности и равно q — 1;
в) амплитуды гармонических составляющих, находящихся на частотах, кратных скважности, равны нулю;
г) форма спектра обозначается огибающей — пунктирной линией, плавно соединяющей вершины гармонических составляющих;
д) точка, из которой исходит огибающая, равна 2U0 или 2I0.
3. Для спектра фаз:
а) все гармонические составляющие, на частотах, не кратных скважности, имеют одинаковую высоту, равную ?/2 (90°);
б) все гармонические составляющие в одном лепестке имеют одинаковый знак, а в соседних противоположный.
в) составляющие на частотах кратных скважности имеют начальную фазу равную нулю.
Спектры ПППИ при скважности q=3 представлены на рисунке 14.
Как видно из диаграмм спектр ПППИ является дискретным и неограниченным. Поэтому за ширину спектра принимают диапазон частот, в пределах которого находится два первых лепестка, т. к. в них содержится около 95% энергии сигнала:

Рисунок 14 — Спектральное представление ПППИ: а) временная диаграмма; б) спектральная диаграмма амплитуд; в) спектральная диаграмма фаз

Как видно из формулы ширина спектра ПППИ зависит только от длительности импульса и не зависит от его периода.
3. Непериодические сигналы.
Поскольку в непериодических сигналах нельзя выделить период, т. к. Т. то рассчитать и построить спектр тем же методом, что и для периодических сигналов нельзя. Однако знать спектр таких сигналов необходимо, т. к. все информационные сигналы являются непериодическими. Для построения спектра непериодического сигнала производят следующую процедуру: сигнал мысленно представляют как периодический с произвольным периодом, ддля которого строят спектр. Затем осуществляют предельный переход устремляя период к бесконечности (Т??) (рисунок 15). При этом частота первой гармоники и, соответственно, расстояние между гармоническими составляющими стремится к нулю (f1=1/Т), поэтому все составляющие сливаются друг с другом и образуют сплошной спектр.

Рисунок 15 — Импульсный сигнал u(t) и его представление периодическим сигналом

Форма спектра непериодических сигналов обозначается огибающей (сплошной линией) (рисунок 16).

Рисунок 16 — Спектральная диаграмма непериодического сигнала

Ряд Фурье, для таких сигналов, также нельзя записать, т. к. в этом случае амплитуда постоянной составляющей и коэффициенты ak и bk равны нулю. В этом случае значение сигнала в любой момент времени также равно нулю, что является не верным. Поэтому для таких сигналов используют преобразования Фурье:

Выражение (27) является обратным преобразованием, а (28) прямым преобразованием Фурье.
Величина S(?) является комплексной спектральной плотностью непериодического сигнала u(t). Она равна:

Читайте также:  Лабораторный преобразователь постоянного тока

где S(?) спектральная плотность амплитуд или амплитудный спектр непериодического сигнала, а ?(?) — фазовый спектр непериодического сигнала.
Спектральная плотность амплитуд непериодического сигнала на любой частоте ? равна суммарной амплитуде составляющих находящихся в малой полосе ?? в окрестностях частоты ? пересчитанных на 1 Герц.
Временные диаграммы и спектральные плотности амплитуд для прямоугольного и треугольного импульсов представлены на рисунке 18:

Рисунок 18 — Спектральное представление непериодических сигналов: а) прямоугольный импульс; б) треугольный импульс

Источник

Амплитудно-частотная характеристика (АЧХ). Спектр сигнала.

Аудиосигнал

При обсуждении переменного тока в одной из предыдущих статей (ссылка) мы познакомились с понятием гармонической (синусоидальной) функции. А бывают ли негармонические функции и сигналы и как с ними работать? В этом нам и предстоит сегодня разобраться 🙂 Кроме того, мы рассмотрим важнейшее понятие – амплитудно-частотную характеристику (АЧХ) сигналов.

Гармонические и негармонические сигналы.

И для начала давайте чуть подробнее разберемся, как же классифицируются сигналы. В первую очередь нас интересуют гармонические сигналы. Их форма повторяется через определенный интервал времени T , называемый периодом. Периодические сигналы в свою очередь делятся на два больших класса – гармонические и негармонические. Гармонический сигнал – это сигнал, который можно описать следующей функцией:

Здесь A – амплитуда сигнала, w – циклическая частота, а \phi – начальная фаза. Вы спросите – а как же синус? Разве синусоидальный сигнал не является гармоническим? Конечно, является, дело в том, что sin\alpha = cos(\frac<\pi><2>\medspace-\medspace \alpha) – то есть сигналы отличаются начальной фазой, соответственно, синусоидальный сигнал не противоречит определению, которое мы дали для гармонических колебаний 🙂

Вторым подклассом периодических сигналов являются негармонические колебания. Вот пример негармонического сигнала:

Негармонический сигнал

Как видите, несмотря на “нестандартную” форму, сигнал остается периодическим, то есть его форма повторяется через интервал времени, равный периоду.

Для работы с такими сигналами и их исследования существует определенная методика, которая заключается в разложении сигнала в ряд Фурье. Суть методики состоит в том, что негармонический периодический сигнал (при выполнении определенных условий) можно представить в виде суммы гармонических колебаний с определенными амплитудами, частотами и начальными фазами. Важным нюансом является то, что все гармонические колебания, которые участвуют в суммировании, должны иметь частоты, кратные частоте исходного негармонического сигнала. Возможно это пока не совсем понятно, так что давайте рассмотрим практический пример и разберемся чуть подробнее 🙂 Для примера используем сигнал, который изображен на рисунке чуть выше. Его можно представить следующим образом:

Давайте изобразим все эти сигналы на одном графике:

Разложение сигнала в ряд Фурье

Функции u_1(t) , u_2(t) называют гармониками сигнала, а ту из них, период которой равен периоду негармонического сигнала, называют первой или основной гармоникой. В данном случае первой гармоникой является функция u_1(t) (ее частота равна частоте исследуемого негармонического сигнала, соответственно, равны и их периоды). А функция u_2(t) = 1.5 sin(2t) представляет из себя ни что иное как вторую гармонику сигнала (ее частота в два раза больше). В общем случае, негармонический сигнал раскладывается на бесконечное число гармоник:

В этой формуле U_k – амплитуда, а \phi_k – начальная фаза k-ой гармоники. Как мы уже упомянули чуть ранее, частоты всех гармоник кратны частоте первой гармоники, собственно, это мы и видим в этой формуле 🙂 U_0 – это нулевая гармоника, ее частота равна 0, она равна среднему значению функции за период. Почему среднему? Смотрите – среднее значения функции синуса за период равно 0, а значит при усреднении в этой формуле все слагаемые, кроме U_0 будут равны 0.

Амплитудный спектр сигнала.

Совокупность всех гармонических составляющих негармонического сигнала называют спектром этого сигнала. Различают фазовый и амплитудный спектр сигнала:

  • фазовый спектр сигнала – совокупность начальных фаз всех гармоник
  • амплитудный спектр сигнала – амплитуды всех гармоник, из которых складывается негармонический сигнал

Давайте рассмотрим амплитудный спектр поподробнее. Для визуального изображения спектра используют диаграммы, представляющие из себя набор вертикальных линий определенной длины (длина зависит от амплитуды сигналов). На горизонтальной оси диаграммы откладываются частоты гармоник:

Амплитудный спектр сигнала

По горизонтальной оси могут откладываться как частоты в Гц, так и просто номера гармоник, как в данном случае. А по вертикальной оси – амплитуды гармоник, тут все понятно. Давайте построим амплитудный спектр сигнала для негармонического колебания, которое мы рассматривали в качестве примера в самом начале статьи. Напоминаю, что его разложение в ряд Фурье выглядит следующим образом:

Пример построения спектра сигнала

У нас есть две гармоники, амплитуды которых равны, соответственно, 2 и 1.5. Поэтому на диаграмме две линии, длины которых соответствуют амплитудам гармонических колебаний. Фазовый спектр сигнала строится аналогично, за той лишь разницей, что используются начальные фазы гармоник, а не амплитуды.

Итак, с построением и анализом амплитудного спектра сигнала мы разобрались! Давайте перейдем к следующей теме сегодняшней статьи – к понятию амплитудно-частотной характеристики.

Читайте также:  По какому закону изменяется переменный ток график которого изображен рис 2

Амплитудно-частотная характеристика (АЧХ).

АЧХ является важнейшей характеристикой многих цепей и устройств – фильтров, усилителей звука и т. д. Даже простые наушники имеют свою собственную амплитудно-частотную характеристику. Что же она показывает?

АЧХ – это зависимость амплитуды выходного сигнала от частоты входного сигнала. Как мы выяснили в первой части статьи, негармонический периодический сигнал можно разложить в ряд Фурье. Но нас сейчас интересует, в первую очередь, аудио-сигнал, и выглядит он следующим образом:

Аудио-сигнал

Как видите, ни о какой периодичности здесь не идет и речи! Но, к счастью, существуют специальные алгоритмы, которые позволяют представить звуковой сигнал в виде спектра входящих в него частот. Мы сейчас не будем подробно разбирать эти алгоритмы, это тема для отдельной статьи 🙂 Просто примем тот факт, что они позволяют нам осуществить такое преобразование с аудио-сигналом.

Соответственно, мы можем построить диаграмму амплитудного спектра звукового сигнала. А пройдя через какую-либо цепь (к примеру, через наушники при воспроизведении звука) сигнал будет изменен. Так вот амплитудно-частотная характеристика как раз и показывает, какие изменения будет претерпевать входной сигнал при прохождении через ту или иную цепь. Давайте обсудим этот момент чуть поподробнее…

Итак, на входе мы имеем ряд гармоник. Амплитудная-частотная характеристика показывает, как изменится амплитуда той или иной гармоники при прохождении через цепь. Рассмотрим пример АЧХ:

АЧХ

Разберемся поэтапно, что же тут изображено… Начнем с осей графика АЧХ. По оси y мы откладываем величину выходного напряжения (или коэффициента усиления, как на данном рисунке). Коэффициент усиления мы откладываем в дБ, соответственно величина, равная 0 дБ, соответствует усилению в 1 раз, то есть амплитуда сигнала остается неизменной.

По оси x откладываются частоты входного сигнала. Таким образом, в рассматриваемом случае для всех гармоник, частоты которых лежат в интервале от 100 до 10000 Гц, амплитуда не изменится. А сигналы всех остальных гармоник будут ослаблены.

На графике отдельно отмечены частоты f_1 и f_2 . Их отличительной особенностью является то, что сигнал гармоник данных частот будет ослаблен в 1.41 раза (3 дБ) по напряжению. Это соответствует уменьшению по мощности в 2 раза . Полосу частот между f_1 и f_2 называют полосой пропускания. Получается следующая ситуация – сигналы всех гармоник, частоты которых лежат в пределах полосы пропускания устройства/цепи будут ослаблены менее, чем в 2 раза по мощности.

Практические примеры АЧХ аудио-устройств.

Частотный диапазон аудио-устройств обычно разбивают на низкие, средние и высокие частоты. Приблизительно это выглядит так:

  • 20 Гц – 160 Гц – область низких частот
  • 160 Гц – 1.28 КГц – область средних частот
  • 1.28 КГц – 20.5 КГц – область высоких частот

Именно такую терминологию обычно можно встретить в разных программах-эквалайзерах, используемых для настройки звука. Теперь вы знаете, что красивые графики из таких программ являются именно амплитудно-частотными характеристиками, с которыми мы познакомились в сегодняшней статье 🙂

В завершении статьи посмотрим на пару АЧХ, полученных в программном эквалайзере:

Реальная АЧХ

Здесь мы можем видеть амплитудно-частотную характеристику усилителя. Причем усилены будут преимущественно средние частоты диапазона.

Реальная АЧХ 2

А здесь ситуация совсем другая – низкие и верхние частоты усиливаются, а в области средних частот для гармоник с частотой 500 Гц мы наблюдаем значительное ослабление.

Реальная АЧХ 2

А здесь усиливаются только низкие частоты. Аудио-аппаратура с такой АЧХ будет обладать высоким уровнем басов 🙂

На этом мы заканчиваем нашу сегодняшнюю статью… Спасибо за внимание и ждем вас на нашем сайте снова!

Источник



9.3.1 Преобразование гармонического сигнала. Спектр тока

Характеристика НЭ на нижнем участке может быть представлена полиномом:

где — ток, обусловленный постоянным смещением, — переменное напряжение сигнала на входе. При подаче на вход гармонического напряжения

D выходной ток будет меняться по закону:

Закон изменения тока уже не является гармоническим (см.рис.1).

После тригонометрических преобразований можно выражение для тока привести к виду, удобному для построения спектра (рис.2):

откуда амплитуды составляющих равны соответственно:

Многоточия отражают приращения амплитуд за счет членов полиномов более высоких степеней.

Таким образом можно отметить следующие особенности преобразования гармонического сигнала:

  • постоянная составляющая тока и все четные гармоники включают в себя четные степени амплитуды входного сигнала;
  • амплитуды нечетных составляющих тока являются суммой членов, обусловленных нечетными степенями полинома.

В качестве нелинейных элементов могут быть использованы биполярные транзисторы или специальные диоды, имеющие протяженный нелинейный участок. Для определения участка ВАХ, где она квадратична, можно построить график . Линейный участок этой характеристики и определяет квадратичный участок ВАХ. Экспериментально квадратичный участок НЭ можно определить, подавая гармонический сигнал разной амплитуды и измеряя постоянное напряжение на выходе детектора или амплитуду гармоники на выходе в заданной рабочей точке. Линейный участок полученной амплитудной характеристики даст возможность выбора режима работы нелинейного элемента, на квадратичном участке ВАХ.

© Андреевская Т.М., РЭ, МГИЭМ, 2004

Источник