Меню

Спортивная физиология зоны мощности

Физиологическая характеристика зон максимальной и субмаксимальной мощности

2.2 Физиологическая характеристика зон максимальной и субмаксимальной мощности

Зона максимальной мощности. Максимальная скорость выполнения упражнения обеспечивается на 85-100% за счет анаэробного пути энергообеспечения, что обусловлено относительной инертностью кардиореспираторной системы (КРС). За столь короткое время она просто не успевает выйти на высокий уровень функционирования, вследствии чего в организме спортсмена образуется кислородный долг (КД), равный 10-15 литрам. Например, максимальная скорость в беге на спринтерских дистанциях достигается за 5-6 секунд, а максимальная ЧСС – только через 1 минуту. Полная ликвидация КД происходит спустя 30-40 минут после окончания работы.

Огромная нагрузка при работе в этой зоне ложится на структуры ЦНС (особенно нервных центров), высокий уровень возбудимости и лабильности которых определяют соответствующий темп движений. Функционирование сенсорных (особенно, двигательной сенсорной системы) и моторных нервных центров ЦНС на пределе своих возможностей приводит к быстрому утомлению ЦНС.

В связи с ограничением депо АТФ и КФ в организме огромная нагрузка ложиться на анаэробную систему энергообеспечения (5% алактатной и 95% лактатной). Запасов самой мощной фосфагенной (АТФ и КФ) системы хватает только на 5-6 секунд работы и для дальнейшего продолжения соревновательного упражнения подключается уже менее мощная система гликолиза. В результате концентрация молочной кислоты увеличивается до 5-7 мМоль/л (физиологическая норма 0,9-2,0 мМоль/л). Доля суммарных энергозатрат при выполнении данного упражнения в этой зоне мощности не велика и составляет около 80 ккал.

Зона субмаксимальной мощности. Время работы в этой зоне мощности в разных видах спорта колеблется от 30 секунд до 3-5 минут. Энергообеспечение мышечной работы осуществляется также преимущественно за счет анаэробных компонентов (20% алактатная и 55-40% лактатной). Несмотря на подключение кислородной системы энергообеспечения (12-25% от общего выхода энергии) КД во время работы не компенсируется, достигая 25 л. Увеличение концентрации уровня молочной кислоты в крови до 10 мМоль/л является одним из главных факторов сдвига pH в кислую сторону (до 6,9-6,4) – ацидоза.

К 4-5 минуте работы уровень работы КРС выходит на свой максимальный уровень функционирования. Нагрузка на КРС, так же как и в максимальной зоне, приходится на восстановительный период и направлена на ликвидацию КД. Восстановление происходит в среднем в течение 1,5-2 часов после работы (концентрации глюкозы в мышечной ткани – около 3-х дней). Огромная нагрузка так же ложится на ЦНС – приходится работать в условиях метаболического ацидоза в темпе, близком к максимальному.

2.3 Энергетическая характеристика скоростно-силовых упражнений

С энергетической точки зрения, все скоростно-силовые упражнения относятся к анаэробным. Предельная продолжительность их — менее 1-2 мин. Для энергетической характеристики этих упражнений используется два основных показателя: максимальная анаэробная мощность и максимальная анаэробная емкость (способность). Максимальная анаэробная мощность. Максимальная для данного человека мощность работы может поддерживаться лишь несколько секунд. Работа такой мощности выполняется почти исключительно за счет энергии анаэробного расщепления мышечных фосфагенов — АТФ и КрФ. Поэтому запасы этих веществ и особенно скорость их энергетической утилизации определяют максимальную анаэробную мощность. Короткий спринт и прыжки являются упражнениями, результаты которых зависят от максимальной анаэробной мощности,

Для оценки максимальной анаэробной мощности часто используется тест Маргарин. Он выполняется следующим образом. Испытуемый стоит на расстоянии 6 м перед лестницей и вбегает по ней, как только можно быстрее. На 3-й ступеньке он наступает на включатель секундомера, а на 9-й — на выключатель. Таким образом, регистрируется время прохождения расстояния между этими ступеньками. Для определения мощности необходимо знать выполненную работу — произведение массы (веса) тела испытуемого (кг) на высоту (дистанцию) между 3-й и 9-й ступеньками (м) и время преодоления этого расстояния (с). Например, если высота одной ступеньки равна 0,15 м, то общая высота (дистанция) будет равна 6 * 0,15 м =0,9 м. При весе испытуемого 70 кг и времени преодоления дистанции 0,5 с. мощность составит (70 кг*0,9 м)/0,5с = 126 кгм/а. В таблице 4 приводятся «нормативные» показатели максимальной анаэробной мощности для женщин, и мужчин.

Максимальная анаэробная емкость. Наиболее широко для оценки максимальной анаэробной, емкости используется величина максимального кислородного долга — наибольшего кислородного долга, который выявляется после работы предельной продолжительности (от 1 до 3 мин). Это объясняется тем, что наибольшая часть избыточного количества кислорода, потребляемого после работы, используется для восстановления запасов АХФ, КрФ и гликогена, которые расходовались в анаэробных процессах за время работы. Такие факторы, как высокий уровень катехоламинов в крови, повышенная температура тела и увеличенное потребление О2 часто сокращающимся сердцем и дыхательными мышцами, также могут быть причиной повышенной скорости потребления О2 во время восстановления после тяжелой работы. Поэтому имеется лишь весьма умеренная связь между величиной максимального долга и максимальной анаэробной емкостью.

В среднем величины максимального кислородного долга у спортсменов выше, чем у неспортсменов, и составляют у мужчин 10,5 л (140 мл/кг веса тела), а у женщин-5,9 л (95 мл/кг веса тела). У неспортсменов они равны (соответственно) 5 л (68 мл/кг веса тела) и 3,1 л (50 мл/кг веса тела). У выдающихся представителей скоростно-силовых видов спорта (бегунов на 400 и 800 м) максимальный кислородный долг может достигать 20 л (Н. И. Волков). Величина кислородного долга очень вариативна и не может быть использована для точного предсказания результата.

По величине алактацидной (быстрой) фракции кислородного долга можно судить о той части анаэробной (фосфагенной) емкости, которая обеспечивает очень кратковременные упражнения скоростно-силового характера (спринт). Простое определение емкости алактацидного кислородного долга состоит в вычислении величины кислородного долга за первые 2 мин восстановительного периода. Из этой величины можно выделить «фосфагенную фракцию» алактацидного долга, вычитая из алактацидного кислородного долга количество кислорода, используемого для восстановления запасов кислорода, связанного с миоглобином и находящегося в тканевых жидкостях:

емкость «фосфагенного» (АТФ + КФ) кислородного долга (кал/кг веса. тела) = [ (О2-долг 2мин — 550) * 0,6 * 5 ] / вес тела (кг)

Первый член этого уравнения — кислородный долг (мл), измеренный в течение первых 2 мин восстановления после работы предельной продолжительности 2- 3 мин; 550 — это приблизительная величина кислородного долга за 2 мин, который идет на восстановление кислородных запасов миоглобина и тканевых жидкостей; г 0,6 — эффективность оплаты алактацидного кислородного долга; 5 — калорический эквивалент 1 мл О2.

Типичная максимальная величина «фосфагенной фракции» кислородного долга — около 100 кал/кг веса тела, или 1,5-2 л О2-В результате тренировки скоростно-силового характера она может увеличиваться в 1,5-2 раза.

Наибольшая (медленная) фракция кислородного долга после работы предельной продолжительности в несколько десятков секунд связана с анаэробным гликолизом, т. е. с образованием в процессе выполнения скоростно-силового упражнения молочной кислоты, и потому обозначается как лактацидный кислородный долг. Эта часть кислородного долга используется для устранения молочной кислоты из организма путем ее окисления до СО2 и Н2О и ресинтеза до гликогена.

Для определения максимальной емкости анаэробного гликолиза можно использовать расчеты образования молочной кислоты в процессе мышечной работы. Простое уравнение для оценки энергии, образующейся за счет анаэробного гликолиза, имеет вид: энергия анаэробного гликолиза (кал/кг веса тела) = содержанию молочной кислоты в крови (г/л) * 0,76 * 222, где содержание молочной кислоты определяется как разница между наибольшей концентрацией ее на 4-5-й мин после работы (пик содержания молочной кислоты в крови) и концентрацией в условиях покоя; величина 0,76 — это константа, используемая для коррекции уровня молочной кислоты в крови до уровня ее содержания во всех жидкостях; 222 — калорический эквивалент 1 г продукции молочной кислоты.

Максимальная емкость лактацидного компонента анаэробной энергии у молодых нетренированных мужчин составляет около 200 кал/кг веса тела, что соответствует максимальной концентрации молочной кислоты в крови около 120 мг% (13 ммоль/л). У выдающихся представителей скоростно-силовых видов спорта максимальная концентрация молочной кислоты в крови может достигать 250-300 мг%, что соответствует максимальной лактацидной (гликолитической) емкости 400-500 кал/кг веса тела.

Читайте также:  Записать единицы измерения всех мощностей цепей переменного тока

Такая высокая лактацидная емкость обусловлена рядом причин. Прежде всего, спортсмены способны развивать более высокую мощность работы и поддерживать ее более продолжительно, чем нетренированные люди. Это, в частности, обеспечивается включением в работу большой мышечной массы (рекрутированием), в том числе быстрых мышечных волокон, для которых характерна высокая гликолитическая способность. Повышенное содержание таких волокон в мышцах высококвалифицированных спортсменов — представителей скоростно-силовых видов спорта — является одним из факторов, обеспечивающих высокую гликолитическую мощность и емкость. Кроме того, в процессе тренировочных занятий, особенно с применением повторно-интервальных упражнений анаэробной мощности, по-видимому, развиваются механизмы, которые позволяют спортсменам «переносить» («терпеть») более высокую концентрацию молочной кислоты (и соответственно более низкие значения рН) в крови и других жидкостях тела, поддерживая высокую спортивную работоспособность. Особенно это характерно для бегунов на средние дистанции.

Силовые и скоростно-силовые тренировки вызывают определенные биохимические изменения в тренируемых мышцах. Хотя содержание АТФ и КрФ в них несколько выше, чем в нетренируемых (на 20-30%), оно не имеет большого энергетического значения. Более существенно повышение активности ферментов, определяющих скорость оборота (расщепления и ресинтеза) фосфагенов (АТФ, АДФ, АМФ, КрФ), в частности миокиназы и креатин фосфокиназы (Яковлев Н. Н.).

Скоростно-силовые качества увеличиваются за счет увеличения силы или скорости сокращения мышц или обоих компонентов. Обычно наибольший прирост достигается за счет увеличения мышечной силы.

Для эффективного развития скоростно-силовых способностей необходимо учитывать их физиологические особенности. Прежде всего, необходима обращать внимание на сенситивные периоды развития. Для силы это возраст от 13-14 до 16-17 лет. В последующие годы (до 18-20 лет) темпы ее роста замедляются. Для быстроты это период 9-12 лет. В этом возрасте преимущество тренирующихся детей перед не занимающимися спортом особенно велико. Если в это время не развивать быстроту, то в последующие годы, возникшее отставание трудно ликвидировать.

Также следует учитывать энергообеспечение скоростно-силовой работы для того, чтобы предупредить утомление спортсмена и рационально построить тренировку.

На тренировке, помимо упражнений на развитие силы и скорости, следует применять скоростно-силовые упражнения. Они способствуют более лучшему развитию скоростно-силовых качеств.

1. Спортивная физиология. /Под ред. Я.М. Коца. — М.: ФИС, 1986. — 240с.

2. Васильева В.В. Физиология человека: Учеб. для ин-тов физ. культуры / В.В. Васильева, Э.В. Коссовская, Н.А. Стёпочкина. – М.: Физкультура и спорт, 1973.- 123с.

3. Гандельман А.Б. Физиологические основы спортивной тренировки: Учеб. пособие / А.Б. Гандельман, К.М Смирнов. – М.: Физкультура и спорт, 1970. – 207с.

4. Дедковский С. М. Скорость или выносливость? – М.: Физкультура и спорт, 1973. – 208с.

5. 3ациорский В.М. Физические качества спортсменов: Учеб. пособие / В.М. 3ациорский. – М.: Физкультура и спорт, 1970. – 200с.

6. Солодкой А. С. Физиология человека. Общая. Спортивная. Возрастная: Учеб / А.С. Солодкой, Е.Б. Сологуб. – М.: Терра-Спорт, Олимпия Пресс, 2001. – 520 с.

7. Холодов Ж.К., Теория и методика физического воспитания и спорта: Учеб. пособие для студ. высш. учеб. заведений. – 2-е изд., испр. и доп. / Ж.К. Холодов, В.С. Кузнецов. – М.: Издательский центр Академия, 2003. – 480 с.

Таблица 1. Максимальная произвольная сила мышц (кг) в зависимости от возраста

Возраст, лет Разгибатели бедра Разгибатели ходеци Разгибатели стопы
12 62 24 39
13 74 31 49
14 85 37 55
15 96 41 59
16 106 44 68

Таблица 2. Результаты (см) в скоростно-силовых упражнениях у мальчиков в зависимости от возраста

Возраст, дет Прыжок вверх (толчком двух ног) Прыжок в длину Тройной прыжок (с места)
12 35 171 517
13 38 185 560
14 40 194 591
15 42 201 615
16 44 211 636

Таблица 3. Соотношение и площадь поперечного сечения быстрых и медленных мышечных волокон икроножной мышцы у американских легкоатлетов и у нетренированных мужчин (Д. Костилл и др., 1976)

Спортивная специализация и квалификация (спортивный результат) % быстрых волокон Площадь поперечного сечения, мкм2 % площади, занимаемой быстрыми
быстрых волокон медленных волокон волокнами
Спринт (n=2): 100 м-10,5с 76,0 (79,0 и 73,0)- 6034 5878 76,5
Прыжки в длину (n = 2): 7,52 и 8,41 м 53 3 (56,0 и 50,7) 6523 4718 62,2
Метание диска (n = 2): 60,9 и 61,3 м и толкание ядра (n = 2): 18,9 и 19,7 м 62,3 (87,0-48,0) 9483 7702 66,0
Бег на средние дистанции (n = 7): 800 м — 1.51,5 (1:48,9-1.54,1) 48,1 (59,5-30,6) 7117 6099 53,5
Нетренированные мужчины (n=11) 47,4 (62,0-26,8) 4965 5699 44,0

Таблица 4. Классификация показателей максимальной анаэробной мощности (кгм/с, 1 кгм/с = 9,8 Вт.)

Источник



Зоны мощности в спортивных упражнениях

Самарский Государственный Университет Путей Сообщения

Реферат на тему:

«Энергозатраты при физической нагрузке разной интенсивности»

Выполинла: Калашникова В.С

Группа Д-12

Проверила: Беленькая О.Н.

Самара, 2011

Содержание:

  1. Энергозатраты при физических нагрузках разной интенсивности.
  2. Зоны мощности в спортивных упражнениях.
  3. Участие в соревнованиях в процессе самостоятельных занятий.
  4. Гигиена питания, питьевого режима, уход за кожей.
  5. Гигиенические требования при проведении занятий: места занятий, одежда, обувь.
  6. Самоконтроль за эффективностью самостоятельных занятий. Профилактика травматизма.

Энергозатраты при физических нагрузках разной интенсивности.

Чем больше мышечная работа, тем сильнее возрастает расход энергии. Ну это и правильно по закону сохранения энергии: если энергия где – нибудь убудет, то она обязательно прибудет в виде или такой же, или другой энергии. В лабораторных условиях, в опытах с работой на велоэнергометре, при точно определённом сопротивлении вращению педалей была установлена прямая (линейная) зависимость расхода энергии от мощности работы, регистрируемой в килограммах или ваттах. Вместе с тем было выявлено, что не вся энергия, расходуемая человеком при совершении механической работы, используется непосредственно на эту работу, ибо большая часть энергии теряется в виде тепла.

Известно, что отношение энергии, полезно затраченной на работу, ко всей израсходованной энергии называется коэффициентом полезного действия (КПД). Считается, что наибольший КПД человека при привычной для него работе не превышает 0,30 –0,35. Следовательно, при самом экономном расходе энергии в процессе работы общие энергетические затраты организма минимум в 3 раза превышают затраты на совершение работы. Чаще же КПД равен 0,20 – 0,25, так как нетренированный человек тратит на одну и ту же работу больше энергии, чем тренированный. Так, экспериментально было установлено, что при одной и той же скорости передвижения разница в расходе энергии между тренированным спортсменом и нетренированным (новичком) может достигать 25 – 30%. Общее представление о расходе энергии (в Ккал) во время прохождения разных дистанций дают следующие цифры, определенные известным физиологом спорта В.С. Фарфелем:

Бег легкоатлетический.

М.
к/каллорий

Бег на коньках

М.
К/калорий

Плавание

М.
К/каллорий

Лыжные гонки

Км.
К/каллорий

Велогонки

Км.
К/калорий

Зоны мощности в спортивных упражнениях.

С ориентацией на мощность и расход энергии были установлены следующие зоны относительной мощности в циклических видах спорта:

1. Максимальная степень мощности.

В этой зоне продолжительность работы достигает всего лишь от 20 до 25 секунд. В эту категорию попадают такие виды спорта как: бег на 100 и 200 метров; Плавание на 50 метров; Велогонка на 200 метров с хода, при чём эти физические упражнения делаются при рекордном исполнении.

Читайте также:  График температуры по удельной мощности

2. Субмаксимальная степень мощности.

Эта степень немного ниже максимальной, и поэтому продолжительность работы при таких нагрузках может быть от 25 секунд до 3-5 минут. Сюда попадают: бег на 400, 800, 100, 1500 метров; плавание на 100, 200, 400 метров; бег на коньках на 500, 1500, 300 метров; а также велогонки на 300, 1000, 2000, 3000, 4000 метров.

3. Большая степень мощности.

Продолжительность работы достигает от 3-5 минут до 30 минут. Этой степени соответствуют: бег на 2, 3, 5, 10 километров; плавание на 800, 1500 метров; бег на коньках на 5, 10 километров; велогонки на 100 километров и более.

3. Умеренная степень мощности.

Продолжительность работы достигает даже свыше 30 минут! Физические упражнения, которые соответствуют этой степени мощности это: бег на 15 километров и более; спортивная ходьба на 10 километров и более; бег на лыжах на 10 километров и более, а также велогонки на 100 километров и более. Отсюда ясно проявляется закономерность: чем больше нагрузка, чем больше степень мощности, затрачиваемой на выполнение данных физических упражнений, тем меньше по продолжительности (минуты, секунды) и по количеству (например в метрах) спортсмен может работать на данном уровне нагрузок. И действительно. Как говорится, тише едешь, дальше будешь. Например, если при беге трусцой спортсмен пробегает километры и может держать темп очень долго, то на спринтерских дистанциях пробегаются всего лишь сотни метров и за меньшие промежутки времени. Или, например если штангист может небольшой вес держать минутами/десятками минут, то большие нагрузки буквально 2-5 секунд. Итак, эти четыре зоны относительной мощности предполагают деление множества различных дистанций на четыре группы: короткие, средние, длинные, сверхдлинные. Так в чём же суть разделения физических упражнений по зонам относительной мощности и как это связанно с энергозатратами при физических нагрузках разнойинтенсивности? Во-первых, мощность работы прямо зависит от её интенсивности, что было сказано выше. Во-вторых, высвобождение и расход энергии преодоления дистанций, входящих в различные зоны мощности, имеют существенно отличающиеся физиологические характеристики, которые представлены в таблице 2.

Зона относительной мощности работы

Показатель Максимальная Субмаксимальная Большая Умеренная
Предельная длительность От 20 до 25 с От 25 с до 3-5 мин От 3-5 до 30 мин Свыше 30 мин
Потребление кислорода Незначительная Возрастает к максимальной Максимальная Пропорциональна мощности
Кислородный долг Почти Субмаксимальная Субмаксимальная Максимальная Пропорциональна мощности
Вентиляция лёгких и кровообращение Незначительная Субмаксимальная Максимальная Пропорциональна мощности
Биохимические сдвиги Субмаксимальные Максимальная Максимальная Незначительная

Теперь перейдём к более детальному рассмотрению данных, приведённых в таблице.

Зона максимальной мощности: в её пределах может выполняться работа, требующая предельно быстрых движений. Ни при какой другой работе неосвобождается столько энергии, сколько при работе с максимальной мощностью. Кислородный запас в единицу времени самый большой, потребление организмом кислорода незначительно. Работа мышц совершается почти полностью за счёт бескислородного (анаэробного) распада веществ. Практически весь кислородный запрос организма удовлетворяется уже после работы, т.е. запрос во время работы почти равен кислородному долгу. Дыхание незначительно: на протяжении тех 10 –20 секунд, в течение которых совершается работа спортсмен либо не дышит, либоделает несколько коротких вдохов. Зато после финиша его дыхание ещё долгоусиленно, в это время погашается кислородный долг. Из-за кратковременности работы кровообращение не успевает усилиться, частота же сердечных сокращений значительно возрастает к концу работы. Однако минутный объём крови увеличивается ненамного, потому что не успевает вырасти систолический объём сердца. Зона субмаксимальной мощности: в мышцах протекают не только анаэробные процессы, но и процессы аэробного окисления, доля которых увеличивается к концу работы из-за постепенного усиления кровообращения. Интенсивность дыхания также всё время возрастает до самого конца работы. Процессы аэробного окисления хотя и возрастают на протяжении работы, всё же отстают от процессов бескислородного распада. Всё время прогрессирует кислородная задолженность. Кислородный долг к концу работы больше, чем при максимальной мощности. В крови происходят большие химические сдвиги. К концу работы в зоне субмаксимальной мощности резко усиливается дыхание и кровообращение, возникает большой кислородный долг и выраженные сдвиги в кислотно-щелочном и водно-солевом равновесии крови. Это может вызвать повышение температуры крови на 1 – 2 градуса, что может повлиять на состояние нервных центров. Зона большой мощности: интенсивность дыхания и кровообращения успевает уже в первые минуты работы возрасти до очень больших величин, которые сохраняются до конца работы. Возможности аэробного окисления более высоки, однако они всё же отстают от анаэробных процессов. Сравнительно большой уровень потребления кислорода несколько отстаёт от кислородного запроса организма, поэтому накопление кислородного долга всё же происходит. К концу работы он будет значителен. Значительны и сдвиги в химизме крови и мочи. Зона умеренной мощности: это уже сверхдлинные дистанции. Работа умеренной мощности характеризуется устойчивым состоянием, с чем связано усиление дыханияи кровообращения пропорционально интенсивности работы и отсутствие накопления продуктов анаэробного распада. При многочасовой работе наблюдается значительный общий расход энергии, сто уменьшает углеводные ресурсы организма. Итак, в результате повторных нагрузок определённой мощности на тренировочных занятиях организм адаптируется к соответствующей работе благодаря совершенствованию физиологических и биохимических процессов, особенностей функционирования систем организма. Повышается КПД при выполнении работы определенной мощности, повышается тренированность, растут спортивные результаты.

Источник

Характеристика динамических физических упражнений по зонам мощности (В.С.Фарфель)

date image2015-04-01
views image11730

facebook icon vkontakte icon twitter icon odnoklasniki icon

Одинаковая физическая нагрузка вызывает не одинаковые физиологические реакции у людей разного пола и возраста, различной спортивной подготовленности, у одного и того же человека в разных условиях. Поэтому в качестве классификационного признака чаще используют показатели физиологической нагрузки. Одним из таких показателей является предельное время выполнения упражнений.

В.С.Фарфель, проанализировав по данным мировых рекордов в различных циклических видах спорта зависимость скорости преодоления разных дистанций и предельное время, выделил 4 зоны относительной мощности: максимальной, субмаксимальной, большой и умеренной.

1. Зона максимальной мощности− она характерна для небольшой группы динамических упражнений циклического характера (л/а бег на 100-200м; бег на 110м с барьерами (у мужчин) и 80м у женщин; плавание на 25м). Предельное время выполнения- 10-30 сек. Такая работа относится к анаэробным алактатным нагрузкам, т.е. выполняется на 90-95% за счет энергии фосфагенной системы – АТФ и КрФ.

Единичные энерготраты предельные– достигают 4 ккал/с, суммарные – минимальны (около 80 ккал).

Физиологические сдвиги:огромный кислородный запрос (КЗ) (на 1 мин

40 л) во время работы удовлетворяется крайне незначительно, но кислородный долг не успевает достичь большой величины из-за кратковременности нагрузки (КД= 7-8л). Потребление кислорода (ПК) составляет 1-1,5л/мин и поэтому КД удовлетворяется по окончанию работы, за счет увеличения легочной вентиляции (ЛВ= 7-10 л/мин).

Короткий рабочий период недостато­чен для заметных сдвигов в системах дыхания и кровообращения, однако в силу высокого уровня предстартового возбуждения частота сердечных сокращений (ЧСС) достигает уровня 200 уд/мин; минутный объем крови (МОК) достигает не более 15-18 л/мин; величина систолического давления (СД) возрастает до 150-170 мм.рт.ст, а диастолическго давления (ДД) до 80-90 мм.рт.ст; частота дыхания (ЧД) составляет 14-20 циклов/мин; незначительно повышается уровень молочной кислоты, но состав крови значительно не изменяется.

Факторами утомленияпри выполнении работы данной мощности являются: угнетение ЦНС мощным потоком импульсов; расход запасов АТФ и КФ, повышение содержания тормозного медиатора (ГАМК) в структурах мозга. Т.о. ведущими системами организма при работе в этой зоне мощности являются ЦНС и двигательный аппарат.

2. Зона субмаксимальной мощности− она характерна для циклических упражнений, предельное время выполнения которых от 30 секунд до 3-5 мин. В спорте — это преодоление средних дистанций: бег на 400, 800, 1,5км; плавание 100-400м. Работа совершается в аэробных (источник- глюкоза), но чаще в анаэробных условиях (источник — мышечный гликоген).

Читайте также:  Мощность электрошокера у полицейских

С увеличением дистанции скорость локомоций в этой зоне резко падает, и, соответственно, быстро снижаются единичные энерготраты (от 1,5 до 0,6 ккал/с). Суммарные энерготраты возрастают (до 450 ккал).

Физиологические сдвиги:ЧСС увеличивается до 180 уд/мин (может 200-220 уд/мин); МОК= до 25л/мин; СД= 180-190мм.рт.ст; ДД= 100-110 мм.рт.ст.; ЧД= 40-60 циклов/мин; легочная вентиляция (ЛВ) повышается до 100-150 л/мин; МПК (максимальное потребление кислорода) составляет 5-7 л/мин; КД= 20-25л/мин (очень большой); кислородный запрос больше потребления кислорода (КЗ > ПК) и составляет от 25 до 8,5 л/мин.

Изменения в крови: увеличивается уровень лактата до 20-25 мМоль/л (увеличение по сравнению с уровнем покоя в 25 раз), рН крови снижается до 7,4- 7,0 и ниже; увеличивается кол-во лейкоцитов (в 2 раза- 10000-11000); увеличивается число эритроцитов и гемоглобина на 10-15%, усиливается миогенный тромбоцитоз (в 2 и более раз); ускоряется свертывание крови.

Во время выполнения данной работы наблюдается резкий недостаток кислорода, происходят выраженные метаболические сдвиги, в результате чего происходит рассогласование в деятельности внутренних органов и аппарата движения (возникает «мертвая точка»). Выключение мышечного насоса после работы приводит к уменьшению притока крови к сердцу, в результате чего возникает гравитационный шок.

Факторы утомления: изменившаяся внутренняя среда организма, гипоксия, закисление крови; угнетение ЦНС мощным потоком импульсов. Т.о. ведущими физиологическими системами обеспечения работы в этой зоне мощности являются кислородтранспортные системы – кровь, кровообращение и дыхание, а также ЦНС.

3.Зона большой мощностиотносятся циклические упражнения с преодолени­ем длинных дистанций: бег на 3000, 5000, 10000 м; плавание на 800, 1500 м; бег на коньках 5000, 10000 м; лыжные гонки 5, 10 км; гребля 1,5, 2 км и др. Время выполнения данной работы — от 5-6 минут до 20-30 мин. Работа осуществляется в аэробно-анаэробных условиях (в анаэробных условиях — источник — мышечный гликоген, который расщепляется до молочной кислоты, а в аэробных условиях он расщепляется до СО2 и Н2О).

Единичные энерготраты невысоки (0,5-0,4 ккал/с), но суммарные энерготраты достигают 750-900 ккал.

Физиологические сдвиги:ЧСС возрастает до 160-180 уд/мин (до 200 уд/мин); МОК составляет 30-35 л/мин; СД= 150-160мм.рт.ст.; ДД= 100-115мм.рт.ст.; ЧД= 40-50/мин; ЛВ= 120-140 л/мин; МПК= около 5 л/мин; КД= 12-15 л/мин. Кислородный запрос не удовлетворяется, поэтому возникает ложное устойчивое состояние.

Сдвиги в крови: снижается уровень глюкозы (до 80млМоль/л), увеличивается уровень лактата (до 10-20 мМоль/л), поэтому снижается рН крови, (закисляется), увеличивается кол-во лейкоцитов до 12-15000мл³.

Обильное потоотделение предохраняет организм от перегревания. С потом удаляется часть молочной кислоты и других продуктов обмена веществ.

Причины утомления: дискоординация моторных и вегетативных функций («мертвая точка, второе дыхание»); высокая напряженность нейроэндокринной системы, нарушение гомеостаза. Т.о. ведущее значение в этой зоне большой мощности имеют функции кардиореспираторной системы, а также системы терморегуляции и желез внутренней секреции.

4. Зона умеренной мощности− относятся: легкоатлетический бег от 20км и больше, спортивная ходьба на 10-50км, лыжные гонки от 15 км. Время их выполнения — от 30-40мин до нескольких часов. Энергообеспечение осуществляется почти исключительно аэробным путем, причем по мере расходования глюкозы происходит переход на окисление жиров.

Единичные энерготраты незначитель­ны (до 0,3 ккал/с), зато суммарные энерготраты огромны (до 2-3 тыс. ккал и более).

Особенностью этой зоны является то, что кислородный запрос равен потреблению кислорода (КЗ=ПК).

Физиологические сдвиги:ЧСС составляет 150-170 уд/мин; МОК возрастает до 20-25 л/мин; СД= 150-160мм.рт.ст.; ДД=110-115мм.рт.ст.; ЧД= 30-60 циклов/мин; ЛВ= 60-120л/мин; МПК= 3-5л/мин; КД= 12-15 л/мин, но к концу дистан­ции составляет менее 4 л.

В крови: увеличивается кол-во лейкоцитов (до 12-15 тыс.), концентрация лактата не превышает нор­мы (около 4-10мМоль/л), закисляется кровь. Резко снижается кол-во глюкозы (до 70 мМоль — в 2 раза), что резко нарушает функ­ции ЦНС, координацию движений, ориентацию в пространстве, а в тяжелых случаях вызывает потерю сознания.

Факторы утомления: высокие суммарные энергетические затраты, истощение запасов гликогена в скелетных мышцах и миокарде, монотонность работы- все это приводит к развитию запредельного торможения в ЦНС.

Т.о. ведущее значение в зоне умеренной мощности имеют большие запасы углеводов, предотвращающие гипогликемию, и функциональная устойчивость ЦНС к монотонии, противостоящая развитию запредельного торможения.

Вопросы для самоконтроля:

1. Что такое физические упражнения?

2. Перечислите признаки, по которым осуществляется классификация физических упражнений?

3. Перечислите виды физических упражнений по признаку физиологических зон мощности.

4. Перечислите виды физических упражнений по признаку интенсивности выполняемой нагрузки.

5. Какие виды упражнений по объему активной мышечной массы Вам известны? Приведите примеры.

6. Как классифицируются физические упражнения согласно энергетическому критерию обеспечения мышечной деятельности?

7. Что такое поза? Какие виды поз Вам известны?

8. Что такое малые и большие статические усилия? В каких видах спорта они встречаются?

9. В чем суть феномена статических усилий (феномена Линдгарда)?

10. Какие упражнения относятся к динамическим?

11. Какие виды динамических упражнений в соответствии с общей кинематической характе­ристикой упражнений Вам известны?

12. Охарактеризуйте анаэробные физические упражнения?

13. Охарактеризуйте аэробные физические упражнения?

14. Как влияет кратковременность выполнения нагрузки максимальной мощности на показатели кардиореспираторной системы?

15. Перечислите факторы утомленияпри выполнении работы максимальной мощности.

16. Какие физиологические сдвиги происходят в организме при выполнении работы субмаксимальной мощности?

17. Какие физиологические сдвиги происходят в организме при выполнении работы большой мощности?

18. Перечислите факторы утомленияпри выполнении работы умеренной мощности.

Рекомендуемая литература:

1. Смирнов В.М. Физиология физического воспитания и спорта / В.М.Смирнов, В.И.Дубровский. – М.: Владос, 2002.– 480 с.

2. Уилмор Дж.Х., Костилл Д.Л. Физиология спорта и двигательной активности; пер. с англ./ Дж.Х.Уилмор, Д.Л.Костилл.− Киев: Олимпийская литература, 1997. – 628 с.

3. Фомин Н.А. Физиологические основы двигательной активности / Н.А.Фомин, Ю.Н.Вавилов. – М.: Физкультура и спорт, 1991. – 385 с.

физиологическая характеристика состояний организма ПРИ СПОРТИВНОЙ ДЕЯТЕЛЬНОСТИ

1.Роль эмоций при спортивной деятельности и механизмы их проявления.

2. Характеристика предстартового периода при спортивной деятельности:

2.1. Предстартовое состояние.

2.2. Разминка.

3. Характеристика основного (рабочего) периода при спортивной деятельности:

3.2. «Мертвая точка» и «Второе дыхание».

3.3. Устойчивое состояние.

3.4. Утомление.

3.5. Физиологическая характеристика перетренированности и перенапряжения.

4. Характеристика восстановительного периода при спортивной деятельности.

При выполнении тренировочного или соревновательного упражнения в функциональном состоянии спортсмена происходят значительные изменения. В непрерывной динамике этих изменений можно выделить три основных периода: предстартовый, основной (рабочий) и восстановительный.

Предстартовое состояние характеризуется функциональными изменениями, предшествующими началу работы (выполнению упражнения).

В рабочем периоде отмечаются быстрые изменения функций в самый начальный период работы− состояние врабатывания и следующее за ним относительно неизменное (а точнее, медленно изменяющееся) состояние основных физиологических функций, так называемое устойчивое состояние. В процессе выполнения упражнения развивается утомление, которое проявляется в снижении работоспособности, т. е. невозможности продолжать упражнение на требуемом уровне интенсивности, или в полном отказе от продолжения данного упражнения.

Восстановление функций до исходного, предрабочего уровня характеризует состояние организма на протяжении определенного времени после прекращения упражнения.

Каждый из указанных периодов в состоянии организма характеризуется особой динамикой физиологических функций различных систем, органов и всего организма в целом. Наличие этих периодов, их особенности и продолжительность определяются прежде характером, интенсивностью и продолжительностью выполняемого упражнения, условиями его выполнения, а также степенью тренированности спортсмена.

Источник