Меню

Способность материала сопротивляться разрушению под действием напряжений возникающих от нагрузок

Прочность строительных материалов

Прочность – свойство материала сопротивляться разрушению под действием внутренних напряжений, вызванных внешними силами или другими факторами.

Прочность строительных материалов, как правило, оценивают временным сопротивлением или пределом прочности (R),определенным при данном виде деформации. Для хрупких материалов (природные камни, кирпич, бетон и др.) основной прочностной характеристикой является предел прочности при сжатии (RСЖ) и предел прочности при изгибе (RИЗГ),а для эластичных материалов(полимеры, древесина, металл) –предел прочности при растяжении (RР).

Численно предел прочности равен напряжению, соответствующему нагрузке, вызвавшей разрушение образца материала.

Предел прочности при сжатии (предел прочности при растяжении ) равен разрушающей силе, приходящейся на 1 м 2 первоначального сечения материала в момент разрушения образца:

,(18)

где и — соответственно предел прочности при сжатии и растяжении, МПа;

и — разрушающее усилие при сжатии и растяжении, Н;

— площадь поперечного сечения испытываемого образца, м 2 .

Предел прочности естественных или искусственных каменных материалов определяют путем испытания образцов материала стандартных формы и размеров. Поскольку материалы неоднородны по своей структуре, предел прочности определяют как средний результат испытания серии образцов, не менее трех. Форма стандартных образцов при определении предела прочности при сжатии ( ) — куб, цилиндр, призма; при растяжении ( ) – стержень, «восьмерка», призма.

Предел прочности при изгибе (МПа) определяют путем испытания образца материала в виде призм (балочек) на двух опорах. Их нагружают одной или двумя сосредоточенными силами до разрушения:

, (19)

где — предел прочности при изгибе, МПа;

— наибольший изгибающий момент, Н;

— момент сопротивления сечения образца, м 2 .

Предел прочности при изгибе вычисляют по формулам:

а) при одной сосредоточенной нагрузке

, (20)

б) при двух равных нагрузках, рассредоточенных симметрично оси балки

, (21)

где F— разрушающая нагрузка, Н;

— расстояние между опорами, м;

и — ширина и высота поперечного сечения балки, м.

Коэффициент конструктивного качества материала —равен отношению показателя прочности, МПа, к относительной плотности d:

. (22)

Лучшие конструкционные материалы имеют высокую прочность при малой плотности.

Коэффициент размягчения —отношение прочности материала, насыщенного водой , к прочности сухого материала :

. (23)

Коэффициент размягчения характеризует водостойкость материала, он изменяется от 0 (размокающие глины и др.) до 1 (металлы и др.). Природные и искусственные каменные материалы не применяют в строительных конструкциях, находящихся в воде, если их коэффициент размягчения меньше 0,8.

Хрупкость –свойство твердых тел разрушаться при механических воздействиях без значительной пластической деформации. Хрупкость присуща не только кристаллическим, но и стеклообразным и даже полимерным материалам, условно характеризуется «мерой хрупкости» , которая выражается отношением упругой деформации к предельной :

. (24)

На хрупкое состояние материала влияют в основном два внешних фактора: температурный и механический. Многие материалы при понижении температуры резко снижают свои пластические свойства, например битумные материалы (нефтяные битумы при температуре ниже 20 о С теряют пластичность и разрушаются хрупко), полимеры, металлы и др.

Эластичность(гибкость, тягучесть)– способность материала или изделия испытывать значительные упругие (обратимые) деформации без разрушения при сравнительно небольших усилиях (каучуки, резина, некоторые полимеры – эластомеры).

Упругие деформации эластомеров достигают 100% и более.

Твердость – свойство материала сопротивляться упругой и пластической деформации при вдавливании в него стандартного тела (более твердого) в условиях неравномерного сжатия.

Твердость – способность материала сопротивляться проникновению в него другого боле твердого тела.

Твердость– структурная характеристика материала и не всегда зависит от прочности материала. Для определения твердости существует несколько методов.

Читайте также:  Что принимается за положительное направление напряжения

Твердость древесины, бетона, металлов и сплавов определяют, вдавливая в образцы стальной шарик. О величине твердости судят по глубине вдавливания шарика или по диаметру полученного отпечатка. Твердость природных материалов определяют по шкале твердости (метод Мооса), в которой десять специально подобранных минералов расположены в такой последовательности, когда следующий по порядку минерал оставляет черту (царапину), на предыдущем, а сам не прочерчивается.

2) Гипс (CaSO4·2H2O) — чертится ногтем

3) Кальцит (CaCO3) — легко чертится стальным ножом

4) Плавиковый шпат (CaF2) — чертится стальным ножом под

5) Апатит (Ca5[PO4]3F — чертится стальным ножом под

6) Полевой шпат (ортоклаз)

(K[AlSi3O8]) — слегка царапает стекло

7) Кварц (SiO2) — легко чертит стекло

Кварц, топаз, корунд, алмаз – применяются в качестве абразивных (истирающих и шлифующих) материалов.

От твердости материалов зависит их истираемость.

Истираемость –свойство материала изменяться в объеме и массе под воздействием истирающих усилий.

От сопротивления истираемости материалов зависит возможность их применения для устройства полов, ступеней, лестниц, тротуаров и дорог.

При эксплуатации, например, материалы верхнего слоя покрытия в полах и на дорогах воспринимают, кроме истирающих воздействий, ударные воздействия.

Сопротивление ударуматериалов оценивают пределом прочности при ударе.

Предел прочности при ударе, Дж/м 3 ,характеризуется количеством работы, затраченной на разрушение образца, отнесенного к единице объема материала.

Испытание материалов на удар производят на специальном приборе – копре.

Износ разрушение материала при совместном действии истирания и удара.

На износ материалы испытывают в специальных вращающихся барабанах со стальными шарами или без них.

Долговечность и надежность

5.1 Долговечность– свойство изделия сохранять работоспособность до предельного состояния с не обходимыми перерывами на ремонт. Предельное состояние определяется степенью разрушения изделия, требованиями безопасности или экономическими соображениями. Долговечность строительных изделий измеряют сроком службы без потери эксплуатационных качеств в конкретных климатических условиях и в режиме эксплуатации. Например, для железобетонных конструкций нормами предусмотрены три степени долговечности: 1-ая — не менее 100 лет, 2-ая – не менее 50 лет, 3-я — не менее 20 лет. Долговечность определяется совокупностью физических, механических и химических свойств материала. Ее нужно оценивать применительно к конкретным условиям эксплуатации. О долговечности судят, подвергая материалы испытаниям, которые по возможности воспроизводят воздействия в натуре. Моделирование воздействий среды в условиях лабораторных испытаний достаточно сложная задача. Лабораторные испытания сочетают с натурными испытаниями.

5.2 Надежность – проявление всех свойств материалов в процессе эксплуатации. Надежность складывается из долговечности, безотказности, ремонтопригодности и сохраняемости.

Безотказность – свойство изделия сохранять работоспособность в определенных режимах и условиях эксплуатации в течение некоторого времени без вынужденных перерывов на ремонт.

Ремонтопригодность – свойство изделия, характеризующее его приспособленность к восстановлению исправности и сохранению заданной технической характеристики в результате предупреждения, выявления и устранения отказов.

Сохраняемость — свойство изделия сохранять обусловленные эксплуатационные показатели в течение и после срока хранения и транспортирования, установленного технической документацией. Сохраняемость оценивают количественно временем хранения и транспортирования до возникновения неисправности.

Источник



Механические свойства строительных материалов

Прочность — свойство материала сопротивляться разрушению под действием напряжений. Предел прочности — напряжение соответствующей нагрузки, при которой происходит разрушение образца.

Основные характеристики стройматериалов

Прочность

Свойство материала сопротивляться разрушению под действием напряжений, возникающих от приложенных нагрузок.

Читайте также:  Как правильно цешкой проверить напряжение

Прочность строительных материалов можно охарактеризовать пределом прочности при механическом воздействии: срезе, изгибании, растяжении, сжатии, срезе.

Предел прочности

Напряжение соответствующей нагрузки, при которой происходит разрушение образца.

Предел прочности — минимальная величина воздействия, при которой материал начинается разрушаться.

Прочность устанавливается в качестве маркировки.

Предельную величину определяют путем проведения различных испытаний образца материала. Среди стройматериалов наименьшим пределом прочности обладают тор-фоплиты — всего 0,5 Мпа.

Самый прочный материал — это высококачественная сталь — до 1000 Мпа.

Упругость

Свойство материала под воздействием нагрузок деформироваться и принимать после снятия напряжения исходные форму и размеры (резина). В отличии от хрупких тел упругие под воздействием внешних сил не разрушаются, а только деформируются.

При прекращении действия материал приобретает первоначальную форму. Ярким примером является резина. Если взять кусок этого материала и растянуть в разные стороны, то он удлинится, но стоит отпустить одну сторону — резина приобретет начальные размеры.

Пластичность

Свойство материала под воздействием нагрузки принимать другую форму и сохранять ее после снятия нагрузки.

Хрупкость

Свойство материала мгновенно разрушаться под действием сил (стекло, керамика). Под хрупкостью понимают способность вещества мгновенно разрушаться при незначительной деформации. Иными словами механическое воздействие на тело приводит к появлению трещин или раскалыванию. Примером хрупких материалов является стекло и керамика.

Сопротивление удару

Способность сопротивляться воздействию ударных нагрузок.

Твердость

Свойство материала сопротивляться проникновению в него другого более твердого материала (по шкале Мооса). Под твердостью понимается способность одного вещества оказывать сопротивление воздействию другого, более твердого. Для оценивания данного показатели принято использовать десятибалльную шкалу. Минимальную твердость имеет тальк-1, самый твердый материал — алмаз, с максимальным значением в 10 балов.

Износ

Разрушение материала под совместным воздействием ударных и истирающих усилий. Измеряется потерей массы в %.

Стираемость

Способность материала под действием силы трения терять свою массу и объем. Зачастую эту способность учитывают при организации дорожного покрытия, а также укладке полов в общественных местах.

При строительстве и ремонте зданий очень важно учитывать все свойства используемых материалов, так как от них будет зависеть срок службы и надежность конструкций.

Основные свойства стройматериалов:

Плотность

Представляет собой отношение массы материала к его объему в стандартных условиях, то есть с учетом пустот и пор. Чем больше количество пор, тем, соответственно меньше плотность вещества.

Плотность определяет массу строительной конструкции, ее теплопроводность и прочность.

Прочность строительного материала

Свойство вещества оказывать сопротивление нагрузке. Конструкции здания постоянно испытывают нагрузки разного рода, под которыми они сжимаются, растягиваются или сгибаются. Строительный материал ни в коем случае не должен терять свою структуру или разрушаться.

Теплопроводность

Характеризуется количеством тепла, которое проходит через толщину материала в один метр при разнице внешней и внутренней температуры в один градус по Цельсию.

Основными факторами, которые влияют на теплопроводность вещества — это показатель плотности степень влажности. Чем меньше их значение, тем меньше тепла пропускает материал.

Влажность

Количество влаги, которое содержится в порах материала, называют влажностью. Она рассчитывается в процентном соотношении к массе идеально сухого материала. Чем выше показатель влажности, тем меньше прочность материала и выше теплопроводность.

Водопроницаемость

Данный показатель показывает количество воды, которое может пройти через материал площадью один сантиметр за один час. Для расчета данного показателя используют специальные камеры, в которых создают условия приближенные к реальным. Например, чтобы рассчитать водопроницаемость наружных плит их помещают под установку, которая имитирует косой дождь. Кровельные материалы испытывают на выносливость: то есть помещают под струю воды и рассчитывают время, через которое на другой стороне вещества появятся следы влаги.

Читайте также:  При нажатии просаживается напряжение

Морозоустойчивость

Свойство влажного материала сохранять свою структуру при неоднократной заморозке. Испытания проходят по такому алгоритму: материал напитывают влагой и помещают в морозильную камеру. Далее процесс заморозки чередуется с разморозкой. В зависимости от количества циклов, которое может выдержать вещество ем присваивается соответствующие значения при маркировке.

Огнестойкость

Способность материала сохранять свою структуру при воздействии высоких температур. Предел огнестойкости определяется как время, через которое конструкция уже не сможет сохранять свою прочность.

Строительные материалы классифицируют по нескольким параметрам в зависимость от их способности гореть, воспламеняться и тлеть.

  1. Трудносгораемые материалы. Вещества, которые прекращают процесс тления и горения, если убрать источник огня.
  2. Несгораемые. Материала, которые не горят и не обугливаются.
  3. Сгораемые. Все остальные материалы.

Дата публикации статьи: 15 февраля 2016 в 20:36
Последнее обновление: 20 февраля 2021 в 20:29

Источник

Механические свойства строительных материалов

Прочность. Прочность — способность материала сопротивляться разрушению под влиянием внутренних напряжений, возникающих в результате действия на материал внешних нагрузок или других факторов. В построенном здании почти все конструкции испытывают нагрузки (вес частей здания, вес оборудования, вес мебели и др.), вследствие чего в материалах конструкций возникают напряжения, противодействующие внешним силам.

Основными показателями, характеризующими прочность материала, являются сопротивление сжатию, растяжению, изгибу. Прочность материала при сжатии и растяжении характеризуется его пределом прочности. Предел прочности, или временное сопротивление, — напряжение в материале образца, соответствующее нагрузке, при которой он разрушается.

Предел прочности различных материалов при сжатии и растяжении меняется в широких пределах — от 0,5 до 1000 МПа и более. Для многих материалов предел прочности при сжатии резко отличается от предела прочности при растяжении. Одинаково хорошо сопротивляются сжатию и растяжению такие материалы, как сталь, древесина. Плохо сопротивляются растяжению каменные материалы: природный камень, кирпич, бетон и т.п.

Примером прочности конструкции при изгибе может служить мост, доска через канаву, а также балка, на которую опираются плиты перекрытия, стропила крыши.

Твердость. Твердость — это способность материалов сопротивляться проникновению в него другого более твердого тела. Твердость не всегда соответствует прочности материала. Существуют несколько способов определения твердости. Например, твердость каменных материалов оценивают шкалой Мооса, состоящей из десяти минералов, расположенных по степени возрастания их твердости. Показатель твердости испытуемого материала находится между показателями твердости двух соседних минералов, из которых один чертит, а другой сам чертится этим материалом.

Шкала твердости Мооса

  1. Тальк или мел (легко чертится ногтем).
  2. Гипс или каменная соль (чертится ногтем).
  3. Кальцит или ангидрит (легко чертится стальным ножом).
  4. Плавиковый шпат (чертится стальным ножом под небольшим нажимом).
  5. Апатит (сталь) (чертится стальным ножом под большим нажимом).
  6. Полевой шпат (слегка царапает стекло, стальным ножом не чертится).
  7. Кварц (легко чертит стекло, стальным ножом не чертится).
  8. Топаз.
  9. Корунд.
  10. Алмаз.

Износ. Износ — это разрушение материала при совместном действии истирания и удара. Прочность при износе оценивается потерей в массе, выраженной в процентах. Износу подвергаются строительные материалы дорожных покрытий, полов промышленных предприятий, аэродромов и др.

Сопротивление удару. Сопротивление удару имеет большое значение для строительных материалов, применяемых в дорожных покрытиях и полах. Испытание материалов на удар производят на специальном приборе — копре.

Источник