Меню

Способность мышцы развивать максимальное напряжение

Как растут мышцы и как тренироваться, чтобы они росли?

Как растут мышцы, что запускает их рост и как мы можем это использовать на тренировках?

Организм не любит перемен и стремится оставаться в зоне комфорта — то есть, поддерживать гомеостаз и сохранять постоянство внутренней среды. Но если есть необходимость, он умеет приспосабливаться к новым условиям и развивать новые качества, чтобы переносить непривычный стресс легче.

Поднятие тяжестей — стресс для организма и угроза, к которым он пытается приспособиться, увеличивая мышцы и делая человека сильнее.

Этот принцип перегрузки — самое важное для роста мышц, вот почему нам приходится ходить в качалку несколько раз в неделю, годами, и постоянно увеличивать нагрузку, чтобы контролируемый стресс сохранялся. Если мы прекратим нагружать мышцы, от всех лишних, ненужных, не работающих больше волокон организм избавится — для него экономически не выгодно поддерживать и обслуживать то, что не используется.

Многие новички считают, что мышцы растут именно на тренировке, хотя, на самом деле, на тренировке происходит противоположное: там они разрушаются. Это похоже на ремонт дома: вам нужно разобрать старое, что установить новое. А растут мышцы в дни отдыха. На тренировке мы подвергаем мышцы стрессу (создаем стимул), а ремонт и укрепление происходит в течение 36-72 часов после. За это время мышцы не только восстанавливаются до прежнего уровня, но и вырастают немного сверх, «с запасом», чтобы в следующий раз было легче — это называется суперкомпенсацией.

Сегодня науке известно три основных механизма роста мышц, которые запускаются на тренировках. Все они — контролируемый стресс:

  • Механическое напряжение в мышце в ответ на большую нагрузку.
  • Метаболический стресс (закисление клетки продуктами распада гликогена).
  • Повреждение мышечных волокон.

Мышечное напряжение

Когда мы поднимаем большой вес, нам тяжело. Иногда можно чувствовать, что мышцы как будто готовы оторваться от кости — это и есть большое механическое напряжение в мышце, и оно считается самым важным в росте мышц.

Большая нагрузка — риск повреждения и гибели как конкретной мышечной клетки, так и всего организма. В ответ мозг принимает решение укреплять тело и с помощью анаболических гормонов дает сигнал к росту мышц и улучшает нервно-мышечные связи (сила).

Но кажется, что в величине нагрузки есть порог, за которым рост мышцы сходит на нет , и тогда другие факторы становятся все более важными. Вот почему у бодибилдеров мышцы объемнее, чем у пауэрлифтеров, хотя тренируются они с более легкими весами, а пауэрлифтеры намного сильнее.

Ещё известно, что работа с небольшими весами, но многоповторно и до отказа тоже эффективна для роста мышц: по мере того, как устают волокна, отвечающие за выносливость, подключаются белые (быстрые) волокна, которые обычно сразу подключаются при работе с большими весами и хорошо растут.

Повреждения волокон

Через 12-24 часа после интенсивной тренировки мышцы часто начинают слегка (или не слегка, если был перебор с нагрузкой) болеть. Причина — повреждения сократительных белков внутри мышечной клетки, а иногда и в оболочке клетки. Некоторая легкая (!) болезненность может косвенно влиять на рост мышц.

Ответ организма на повреждение в мышце можно сравнить с острой воспалительной реакцией на инфекцию. Иммунные клетки (нейтрофилы, макрофаги и другие) отправляются в поврежденную ткань, чтобы удалить остатки клеток и помочь сохранить структуру волокна. Организм так же вырабатывает сигнальные молекулы — цитокины. Все это приводит к ответной реакции, запускающей рост мышц, чтобы они смогли быть более устойчивы к будущим повреждениям.

Тем не менее, боль в мышцах — ни в коем случае не является необходимым условием для роста. Со временем мышцы, соединительная ткань и иммунная система становятся все более эффективными в борьбе с повреждением волокон. Чем дольше и интенсивнее вы тренируетесь, тем меньше боли вы можете чувствовать (если, конечно, нагрузка вдруг не окажется слишком большой).

Если после тренировки больно ходить, сидеть, поднимать и опускать руки, вы превысили способность организма к восстановлению. Цель — стимулировать, а не уничтожить.

Есть люди, которые никогда не испытывают никакого дискомфорта после тренировок, но тоже растут, потому что микроповреждения могут быть и без боли.

Метаболический стресс

Даже если не все знают, что это такое, всем знакомо сильное жжение в мышце во время упражнений от

12 повторений в подходе и выше.

Что такое метаболический стресс? Долгое мышечное сокращение пережимает сосуды и «запирает» кровь в клетках. В клетку временно не поступает новая кровь с кислородом и из нее не уходят продукты метаболизма (лактат, ионы водорода, неорганический фосфат). Происходит своего рода химическое отравление клетки, появляется риск ее гибели, и в ответ на это организм снова принимает решение укрепляться.

Есть версия, что на рост мышц может влиять и «пампинг» — отек мышцы после тренировки, придающий ей объем на несколько часов. Ученые предполагают, что избыток воды в клетке растягивает ее. Клетка воспринимает это снова как угрозу своей целостности и посылает анаболические сигналы, которые запускают рост.

Как это применить на практике?

Хотя умеренно-большие веса (свои для каждого человека), которы еще называются субмаксимальными, — один из самых важных факторов роста мышц, он не единственный. Иначе самые сильные люди на планете были бы самыми мускулистыми, но это не так.

Для роста мышц более эффективно стать сильным в самых разных диапазонах повторений: низких (до 6), средних (6-12) и высоких (12-20 повторений до отказа).

Некоторые упражнения лучше подходят для создания пампинга и метаболического стресса. Обычно это упражнения, где мышца испытывает максимальное напряжение, будучи в сокращенном виде. Это разная изолированная работа на мышцу с небольшим весом, на тренажерах, с резиновыми лентами — многоповторно и с коротким отдыхом между подходами. Пример для ягодиц — ягодичный мостик. Пример для плеч: подъёмы гантелей на в стороны.

Читайте также:  Преобразователи напряжения для зарядных устройств

Другие упражнения лучше всего создают максимальное напряжение в мышце. Обычно это приседания, тяги, выпады, подтягивания и тд. В них же мышцы испытывают максимальную нагрузку, растягиваясь. Именно такие упражнения чаще всего вызывают боль в мышцах на утро.

Все это можно совместить на одной тренировке: начать с тяжелых базовых упражнений и закончить изоляцией до жжения. Можно разнести по разным тренировкам: одну сделать тяжелой, с комплексными упражнениями. Другую — «легкой» многоповторной (легкой она, конечно, не будет — терпеть жжение в мышце иногда сложнее, чем преодолевать большой вес).

О нагрузке

Мы помним: чтобы мышцы росли, нужно все время делать чуть больше того, к чему мышцы привыкли. Тогда они становятся сильнее и больше, чтобы нагрузку переносить легче. Если человек привык лежать на диване, то приседания с весом тела — уже приличная нагрузка. Если долго поднимать штангу одного и того же веса, мышцы и к этому привыкают и перестают расти — это новая зона комфорта. Любые изменения в организме — результат адаптации к непривычным, тяжелым условиям.

За нагрузку на тренировке отвечают:
– тренировочный объем (количество повторений и особенно подходов на мышцу);
– интенсивность (рабочий вес, нагрузка на мышцу на единицу времени). И то, и другое можно повышать со временем. Вот как это может выглядеть (цифры для примера):

Вы делаете упражнение: 3 подхода, 8 повторений в каждом до отказа, вес 10 кг (общий тоннаж 240 кг).
Через какое-то время мышцы привыкают, становится легко, и вы можете сделать уже 10 раз с тем же весом: 3 подхода х 10 повт х 10 кг (300 кг).
Через какое-то время вы можете сделать 12 раз с тем же весом: 3 подхода х 12 повт х 10 кг (360 кг).
Если нет цели выходить за 12 повторений, можно увеличить рабочий вес и вернуться к восьми повторениями: 3 подхода х 8 повт х 13 кг (312 кг)
Теперь вы снова с этим весом постепенно идете вверх до 12 повторений:
3 подхода х 12 повт х 13 кг (468 кг).

Дальше можно снова увеличить вес, вернуться к восьми повторениям и идти вверх:
3 подхода х 8 повторений х 15 кг (360 кг)
⠀Или не увеличивать веса, а увеличить нагрузку через повторения и подходы:
4 подхода х 8 повторений х 13 кг (416 кг)

4 подхода х 12 повторений х 13 кг (624 кг)

Конечно, вы не должны повышать нагрузку на каждой тренировке, но общая тенденция «делать больше» со временем должна быть, и для этого важно вести дневник тренировок.

Источник



Физиологические свойства скелетной мышцы. Сила и работа мышц.

date image2017-12-16
views image7049

facebook icon vkontakte icon twitter icon odnoklasniki icon

Скелетная мускулатура является составной частью опорно-двигательного аппарата человека. При этом мышцы выполняют следующие функции:

1) обеспечивают определенную позу тела человека;

2) перемещают тело в пространстве;

3) перемещают отдельные части тела относительно друг друга;

4) являются источником тепла, выполняя терморегуляционную функцию.

Свойства скелетной мышцы:

1) Возбудимость — способность отвечать на действие раздражителя изменением ионной проводимости и мембранного потенциала. В естественных условиях этим раздражителем является медиатор ацетилхолин, который выделяется в пресинаптических окончаниях аксонов мотонейронов. В лабораторных условиях часто используют электрическую стимуляцию мышцы. При электрической стимуляции мышцы первоначально возбуждаются нервные волокна, которые выделяют ацетилхолин, т.е. в данном случае наблюдается непрямое раздражение мышцы. Это обусловлено тем, что возбудимость нервных волокон выше мышечных. Для прямого раздражения мышцы необходимо применять миорелаксанты — вещества, блокирующие передачу нервного импульса через нервно-мышечный синапс;

2) Низкая проводимость (10-13 м/с) — способность проводить потенциал действия вдоль и вглубь мышечного волокна по Т-системе;

3) Сократимость — способность укорачиваться или развивать напряжение при возбуждении;

4) Эластичность — способность развивать напряжение при растягивании.

5) Рефрактерность – отсутствие или снижение возбудимости нерва или мышцы после предшествующего возбуждения. Занимает по времени больший отрезок, чем у нервного волокна.

6) Лабильность – функциональная подвижность, скорость протекания элементарных циклов возбуждения в нервной и мышечной тканях

Основными показателями, характеризующими деятельность мышц, являются их сила и работоспособность.

Сила мышц. Сила — мера механического воздействия на мышцу со стороны других тел, которая выражается в ньютонах или кг-силах. При изотоническом сокращении в эксперименте сила определяется массой максимального груза, который мышца может поднять (динамическая сила); при изометрическом — максимальным напряжением, которое она может развить (статическая сила).

Одиночное мышечное волокно развивает напряжение в 100-200 кг-сил во время сокращения.

Степень укорочения мышцы при сокращении зависит от силы раздражителя, морфологических свойств и физиологического состояния. Длинные мышцы сокращаются на большую величину, чем короткие.

Незначительное растяжение мышцы, когда напрягаются упругие компоненты, является дополнительным раздражителем, увеличивает сокращение мышцы, а при сильном растяжении сила сокращения мышцы уменьшается.

Напряжение, которое могут развивать миофибриллы, определяется числом поперечных мостиков миозиновых нитей, взаимодействующих с нитями актина, так как мостики служат местом взаимодействия и развития усилия между двумя типами нитей. В состоянии покоя довольно значительная часть поперечных мостиков взаимодействует с актиновыми нитями. При сильном растяжении мышцы актиновые и миозиновые нити почти перестают перекрываться и между ними образуются незначительные поперечные связи.

Величина сокращения снижается также при утомлении мышцы.

Изометрически сокращающаяся мышца развивает максимально возможное для нее напряжение в результате активации всех мышечных волокон. Такое напряжение мышцы называют максимальной силой. Максимальная сила мышцы зависит от числа мышечных волокон, составляющих мышцу, и их толщины. Они формируют анатомический поперечник мышцы, который определяется как площадь поперечного разреза мышцы, проведенного перпендикулярно ее длине. Отношение максимальной силы мышцы к ее анатомическому поперечнику называется относительной силой мышцы, измеряемой в кг/см2.

Читайте также:  Блок питания выдает меньшее напряжение без нагрузки

Физиологический поперечник мышцы — длина поперечного разреза мышцы, перпендикулярного ходу ее волокон.

В мышцах с параллельным ходом волокон физиологический поперечник совпадает с анатомическим. У мышц с косыми волокнами он будет больше анатомического. Поэтому сила мышц с косыми волокнами всегда больше, чем мышц той же толщины, но с продольными волокнами. Большинство мышц домашних животных и особенно птиц с косыми волокнами перистого строения. Такие мышцы имеют больший физиологический поперечник и обладают большей силой.

Наиболее сильными являются многоперистые мышцы, затем идут одноперистые, двухперистые, полуперистые, веретенообразные и продольноволокнистые.

Много, -одно, -и двухперистые мышцы имеют большую силу и выносливость (мало утомляются), но ограниченную способность к укорачиванию, а остальные виды мышц хорошо укорачиваются, но быстро утомляются.

Сравнительным показателем силы разных мышц является абсолютная мышечная сила — отношение максимальной силы мышцы к ее физиологическому поперечнику, т.е. максимальный груз, который поднимает мышца, деленный на суммарную площадь всех мышечных волокон. Она определяется при тетаническом раздражении и при оптимальном исходном растяжении мышцы. У сельскохозяйственных животных абсолютная сила скелетных мышц колеблется от 5 до 15 кг-сил, в среднем 6-8 кг-сил на 1см2 площади физиологического поперечника. В процессе мышечной работы поперечник мышцы увеличивается и, следовательно, возрастает сила данной мышцы.

Работа мышц. Работа мышц внешне выражается либо в фиксации части тела, либо в движении. В первом случае говорят о так называемой статической работе, а во втором – о динамической работе.

Статическая работа мышц есть следствие равенства моментов сил и называется еще удерживающей работой. При такой работе форма мышцы, ее размеры, возбуждение и напряжение относительно постоянны.

Динамическая работа мышц сопровождается движением и есть следствие разности моментов сил. В зависимости от того, какой момент окажется большим, различают два вида динамической работы мышц: преодолевающую и уступающую. Превалирование момента силы мышцы или группы мышц приводит к преодолевающей работе, а уменьшение момента силы мышцы – к уступающей работе.

Различают еще баллистическую работу мышц, которая является разновидностью преодолевающей работы: мышца совершает быстрое сокращение и последующее расслабление, после которого костное звено продолжает движение по инерции.

(10) Виды и режимы сокращения скелетной мышцы. Одиночное мышечное сокращение, его фазы. Тетанус и его виды. Оптимум и пессимум раздражения.

У скелетной мышцы выделяют одиночное сокращение и суммированное сокращение (тетанус).

Одиночное сокращение — это сокращение, которое возникает на одиночный стимул, достаточный для вызова возбуждения мышцы.

Фазы одиночного мышечного сокращения:

1. Латентный период. Представляет собой сумму временных задержек, обусловленных возбуждением мембраны мышечного волокна, распространением ПД по Т-системе внутрь волокна, образованием инозитолтрифосфата, повышением концентрации внутриклеточного кальция и активации поперечных мостиков. Для портняжной мышцы лягушки латентный период составляет около 2 мс.

2. Период укорочения, или развития напряжения.

3. Период расслабления, когда уменьшается концентрация ионов Са2+ и головки миозина отсоединяются от актиновых филаментов.

При воздействии на мышцу ритмических раздражений высокой частоты наступает сильное и длительное сокращение мышцы, которое называется тетаническим сокращением, или тетанусом.

Тетанус может быть зубчатым (при частоте раздражений 20-40 Гц) или гладким (при частоте 50 Гц и выше). Амплитуда тетанического сокращения в 2–4 раза выше амплитуды одиночного сокращения при той же силе раздражения.

Гладкий тетанус возникает тогда, когда очередной импульс раздражения действует на мышцу до начала фазы расслабления. При очень большой частоте раздражений каждое очередное раздражение будет попадать на фазу абсолютной рефрактерности и мышца вообще не будет сокращаться. Высота мышечного сокращения при тетанусе зависит от ритма раздражения, а также от возбудимости и лабильности, которые изменяются в процессе сокращения мышцы. Тетанус наиболее высокий при оптимальном ритме, когда каждый последующий импульс действует на мышцу в фазу экзальтации, вызванной предыдущим импульсом. В этом случае создаются наилучшие условия (оптимум силы и частоты раздражения, оптимум ритма) для работы мышцы.

При тетанических сокращениях мышечные волокна утомляются больше, чем при одиночных сокращениях. Поэтому даже в пределах одной мышцы происходит периодическая смена частоты импульсации (вплоть до полного исчезновения) в разных двигательных единицах.

Для скелетной мышцы характерны два основных режима сокращения — изометрический и изотонический.

Изометрический режим проявляется в том, что в мышце во время ее активности нарастает напряжение (генерируется сила), но из-за того, что оба конца мышцы фиксированы (например, мышца пытается поднять большой груз), она не укорачивается.

При изотоническом режиме мышца первоначально развивает напряжение (силу), способную поднять данный груз, а потом укорачивается (меняет свою длину, сохраняя напряжение, равное весу поднимаемого груза).

Оптимум – уровень силы или частоты раздражений, при котором осуществляется максимальная деятельность органа или ткани. Явление О. описано Н. Введенским, который на нервно-мышечном препарате лягушки установил, что нарастание до некоторого предела частоты или силы раздражений усиливает длительное, слитное сокращение мышцы — тетанус. О. объясняют тем, что в этих случаях каждое последующее раздражение падает на мышцу в период повышенной её возбудимости, вызванной предыдущим раздражением.

Пессимум — угнетение деятельности органа или ткани, вызываемое чрезмерной частотой или силой наносимых раздражений. Это явление было описано Н. Введенским. Исследуя особенности проведения нервного импульса в нервно-мышечном препарате лягушки, он обнаружил, что усиление тетануса, вызываемое постепенным возрастанием частоты или силы раздражений, при дальнейшем их учащении или усилении, внезапно сменяется расслаблением мышцы и полным торможением её активности. Введенский трактовал это явление с позиций разработанной им теории парабиоза. Согласно этой теории, работоспособность нервных окончаний, передающих импульсы мышце, после прохождения волны возбуждения резко падает, и для восстановления их работоспособности требуется некоторое время (в нервно-мышечном препарате икроножной мышцы лягушки — 0,02—0,03 сек). Это время определяет функциональные возможности нервных окончаний — их лабильность. Если интервал между раздражениями меньше этого необходимого периода, то есть если он превышает лабильность нервных окончаний, в них развивается своеобразное стойкое нераспространяющееся возбуждение — парабиоз, блокирующее проведение нервных импульсов к мышце и тормозящее тем самым её активность, предохраняя от переутомления. Описываемое явление носит обратимый характер: снижение интенсивности раздражения восстанавливает мышечное сокращение.

Читайте также:  Транспорт электрической энергии при любом уровне напряжения составляет

Источник

Способность мышцы развивать максимальное напряжение

Храповой механизм сокращения мышцы.Кривая «длина-напряжение» для одиночного саркомера в условиях изометрического сокращения.
Видно, что максимальная сила сокращения развивается при длине саркомера 2,0-2,2 мкм.
Вверху справа показано относительное расположение актиновых и миозиновых нитей при разной длине саркомера, соответственно точкам от А до Г.

Верхняя кривая на рисунке выше подобна кривой на рисунке ниже, но показывает напряжение целой интактной мышцы, а не одиночного мышечного волокна. Целая мышца содержит большое количество соединительной ткани; кроме того, саркомеры в разных частях мышцы не всегда сокращаются с одинаковой силой. В результате данная кривая по сравнению с кривой для отдельного мышечного волокна имеет в определенной степени иные размерности, но демонстрирует ту же основную форму наклона в области нормального диапазона сокращения.

мышечное сокращениеСвязь между длиной и напряжением мышцы до мышечного сокращения и во время него.

На рисунке выше видно, что при длине мышцы, соответствующей ее состоянию покоя (т.е. когда длина саркомера около 2 мкм), активация мышцы приводит к ее сокращению, сила которого близка к максимальной. Однако увеличение напряжения, происходящее во время сокращения и называемое активным напряжением, снижается по мере растяжения мышцы за пределы ее нормальной длины (т.е. за пределы длины саркомера примерно в 2,2 мкм). Это демонстрируется на рисунке уменьшением длины стрелки при длине мышцы больше нормы.

Без нагрузки скелетная мышца сокращается чрезвычайно быстро, достигая максимума примерно за 0,1 сек для усредненной мышцы. При наличии нагрузки по мере ее возрастания скорость сокращения постепенно снижается. Когда нагрузка возрастает до величины, равной максимальной силе, которую способна развить мышца, скорость сокращения становится нулевой, и в результате укорочения мышцы нет, несмотря на ее активацию.

мышечное сокращениеСвязь между нагрузкой и скоростью сокращения в скелетной мышце с поперечным сечением 1 см 2 и длиной 8 см.

Снижение скорости сокращения при увеличении нагрузки связано с тем фактом, что нагрузка на сокращающуюся мышцу противостоит силе, развиваемой мышцей при сокращении. Следовательно, общая сила, доступная для развития скорости укорочения, соответственно уменьшается.

При сокращении против нагрузки мышца выполняет работу. Это значит, что энергия перемещается от мышцы к внешней нагрузке, чтобы поднять объект до большей высоты или преодолеть сопротивление движению.

В математическом выражении работа определяется следующим уравнением:

где W — производимая работа, L — нагрузка и D — расстояние движения против нагрузки.

Источником энергии, необходимой для выполнения работы, являются химические реакции в мышечных клетках во время сокращения, которые приведены в следующих разделах.

Источники энергии для мышечного сокращения

Мы уже знаем, что мышечное сокращение зависит от энергии, поставляемой АТФ. Большая часть этой энергии тратится на приведение в действие храпового механизма, с помощью которого поперечные мостики тянут актиновые нити. Однако небольшое количество энергии необходимо: (1) для откачивания ионов кальция из саркоплазмы в саркоплазматический ретикулум после завершения сокращения; (2) на активное перемещение ионов натрия и калия через мембрану мышечного волокна с целью поддержания соответствующей ионной среды для распространения потенциалов действия по волокну.

Концентрация АТФ в мышечном волокне (примерно 4 ммоль/л) достаточна для поддержания максимального сокращения в течение не более 1-2 сек. АТФ расщепляется с формированием АДФ и выделением энергии, которая передается механизму сокращения мышечного волокна. В течение следующей доли секунды АДФ рефосфорилируется, формируя новую молекулу АТФ, что позволяет мышце продолжать свое сокращение. Существуют несколько источников энергии для восстановления АТФ.

Первым источником энергии, используемым для восстановления АТФ, является креатинфосфат — вещество с высокоэнергетической фосфатной связью, подобной связям АТФ. Высокоэнергетическая фосфатная связь креатинфосфата имеет несколько большее количество свободной энергии, чем каждая связь АТФ. Креатинфосфат немедленно расщепляется, и освобожденная энергия вызывает связывание нового фосфата с АДФ, восстанавливая АТФ. Однако общее количество креатинфосфата в мышечном волокне также очень незначительно — примерно в 5 раз больше, чем АТФ. Следовательно, общий запас энергии в виде АТФ и креатинфосфата в мышце способен обеспечить максимальное сокращение в течение лишь 5-8 сек.

Вторым важным источником энергии, используемым для восстановления как АТФ, так и креатинфосфата, является гликолиз гликогена, предварительно накопленного в мышечных клетках. Быстрое ферментативное разрушение гликогена до пировиноградной кислоты, а затем до молочной кислоты освобождает энергию, которая используется для превращения АДФ в АТФ. Затем АТФ может участвовать непосредственно в обеспечении энергией дополнительного мышечного сокращения, а также в восстановлении запасов креатинфосфата.

Механизм гликолиза имеет двойное значение. Во-первых, гликолитические реакции могут происходить даже при отсутствии кислорода, и мышечное сокращение может поддерживаться в течение нескольких секунд, а иногда более 1 мин, даже если доставка кислорода из крови не доступна. Во-вторых, скорость образования АТФ с помощью гликолиза примерно в 2,5 раза выше, чем при образовании АТФ в реакциях питательных веществ клетки с кислородом. Однако конечных продуктов гликолиза в мышечных клетках накапливается так много, что примерно через 1 мин гликолиз также теряет способность поддерживать максимальное мышечное сокращение.

Третьим и решающим источником энергии является окислительный метаболизм, т.е. комбинирование кислорода с конечными продуктами гликолиза и различными другими клеточными питательными веществами с освобождением энергии. Более 95% всей энергии, используемой мышцей для непрерывного длительного сокращения, извлекается из этого источника. Потребляемыми питательными веществами являются углеводы, жиры и белки. Для чрезвычайно длительной максимальной мышечной активности, продолжающейся в течение многих часов, основная часть энергии получается из жиров, но при мышечной активности длительностью 2-4 ч до половины энергии может получаться из накопленных углеводов.

Видео физиология мышц и мышечного сокращения — профессор, д.м.н. П.Е. Умрюхин

Редактор: Искандер Милевски. Дата обновления публикации: 18.3.2021

Источник