Меню

Срез напряжение при срезе

Техническая механика

Сопротивление материалов

Сдвиг (срез)

Напряжения при сдвиге

Сдвигом называют такой вид деформации, при которой в любом поперечном сечении бруса возникает только поперечная сила.
Деформацию сдвига можно наблюдать, например, при резке ножницами металлических полос или прутков, при пробивании отверстия в заготовках на штампе (рис. 1).

Рассмотрим брус площадью поперечного сечения А, перпендикулярно оси которого приложены две равные и противоположно направленные силы F; линии действия этих сил параллельны и находятся на относительно небольшом расстоянии друг от друга.
Для определения поперечной силы Q применим метод сечений (рис. 2).
Во всех точках поперечного сечения действуют распределенные силы, равнодействующую которых определим из условия равновесия оставленной части бруса:

Σ Y = 0 » F – Q = 0,

откуда поперечная сила Q может быть определена, как:

Поперечная сила есть равнодействующая внутренних касательных сил в поперечном сечении бруса при сдвиге.
Очевидно, что при сдвиге в поперечном сечении возникают только касательные напряжения τ.

Предполагаем, что эти касательные напряжения равномерно распределены по сечению, и, следовательно, могут быть вычислены по формуле:

На основании полученной формулы можно сделать вывод, что форма сечения на величину напряжения при деформации сдвига не влияет.

Расчеты на прочность при сдвиге

Условие прочности детали конструкции заключается в том, что наибольшее напряжение, возникающее в ней (рабочее напряжение), не должно превышать допускаемое.
Расчетная формула при сдвиге:

читается следующим образом: касательное напряжение при сдвиге не должно превышать допускаемое. (при обозначении предельно допустимых напряжений применяют квадратные скобки: [τ] или [σ] )
По этой расчетной формуле проводят проектный и проверочный расчеты и определяют допускаемую нагрузку.

Деформация сдвига, доведенная до разрушения материала, называется срезом (применительно к металлам) или скалыванием (применительно к неметаллам).
Допускаемое напряжение на срез выбирают для пластичных материалов в зависимости от предела текучести.
В машиностроении для штифтов, болтов, шпонок и других деталей, работающих на срез принимают [τ ср] = (0,25….0,35) σ т, где σ т – предел текучести материала изделия.

При расчетах на срез в случае, если соединение осуществляется несколькими одинаковыми деталями (болтами, заклепками и т. д.), полагают, что все они нагружены одинаково. Расчеты соединений на срез обычно сопровождают проверкой прочности этих соединений на смятие.

Читайте также:  Стабилизатор напряжения прогресс 12000l

Деформация Гука при сдвиге

Для установления параметров, характеризующих деформацию при сдвиге, рассмотрим элемент бруса в виде параллелепипеда abcd, на грани которого действуют только касательные напряжения τ, а противоположную грань параллелепипеда представим жестко защемленной (рис. 3).

Деформация сдвига в указанном элементе заключается в перекашивании прямых углов параллелепипеда за счет поступательного перемещения грани bc по отношению к сечению, принятому за неподвижное.
Деформация сдвига характеризуется углом γ (гамма) и называется углом сдвига, или относительным сдвигом. Величина bb 1, на которую смещается подвижная грань относительно неподвижной, называется абсолютным сдвигом.
Относительный сдвиг γ выражается в радианах.

Напряжения и деформации при сдвиге связаны между собой зависимостью, которая называется закон Гука при сдвиге.
Закон Гука при сдвиге справедлив лишь в определенных пределах нагрузок и формулируется так: касательное напряжение прямо пропорционально относительному сдвигу.

Математически закон Гука для деформации сдвига можно записать в виде равенства:

Коэффициент пропорциональности G характеризует жесткость материала, т. е. способность сопротивляться упругим деформациям при сдвиге, и называется модулем сдвига или модулем упругости второго рода.

Модуль упругости выражается в паскалях; для различных материалов его величина определена экспериментально и ее можно найти в специальных справочниках.
При проведении ответственных расчетов на срез величина модуля упругости для каждого соединения определяется опытным путем, непосредственно перед расчетом, либо берется из справочника с применением увеличенного запаса прочности.

Следует отметить, что между тремя упругими постоянными (модулями упругости) E, G и ν существует следующая зависимость:

Принимая для сталей ν ≈ 0,25, получаем: G ст ≈ 0,4 Е ст .

Материалы раздела «Сопротивление материалов»:

Источник



Срез (сдвиг) и смятие

Срезом называют деформацию, представляющую собой смещение поперечных плоскостей тела под действием силы параллельной этой плоскости.

Касательные напряжения при срезе (напряжения среза) определяются по формуле

где — действительные напряжения среза;

— допускаемые напряжения растяжения (сжатия);

Смятием называют деформацию, представляющую собой нарушение первоначальной формы поверхности под действием силы перпендикулярной к этой поверхности.

Читайте также:  Повторяющееся импульсное обратное напряжение что это

Нормальные напряжения при смятии (напряжения смятия) определяются по формуле

Определить напряжения среза и смятия для заклепки соединяющей три детали. Известны диаметр заклепки , усилие действующее на соединение

Запишем условие прочности на срез для заклепки

В соединении 3-х деталей напряжения среза возникают в двух сечениях круглой формы.

Площадь круга , подставляем ее в условие прочности, получим.

Запишем условие прочности на смятие для заклепки

В соединении 3-х деталей напряжения смятия возникают на боковых поверхностях заклепки площадь которых будет определяться:

Для верхней и нижней поверхностей:

Для средней поверхности:

Тогда напряжения смятия

Для верхней и нижней поверхностей:

Для средней поверхности:

Изгиб

Изгиб представляет собой такую деформацию, при которой происхо­дит искривление оси прямого бруса или изменение кривизны кривого бру­са.

Изгиб называют чистым если изгибающий момент является единст­венным внутренним усилием, возникающим в поперечном сечении бруса (балки).

Изгиб называют поперечным, если в поперечных сечениях бруса наряду с изгибающими моментами возникают также и поперечные силы.

При изгибе в сечении деталей возникают нормальные напряжения , которые распределяются по закону треугольника, причем в нижних волокнах – напряжения сжатия, а в верхних – напряжения растяжения (для схемы показанной на рисунке).

Напряжения изгиба определяются по формуле

На практике изгиб тела вызывает не только внешние изгибающие моменты, но и поперечные силы, действующие на тело. Для нахождения наиболее нагруженного поперечного сечения строят эпюры изгибающих моментов.

При построении эпюр изгибающих моментов используются следующие правила:

1 Тело разбивается на участки, границами которых служат точки приложения внешних сил и моментов и реакции опор;

2 Построение ведется последовательно, по участкам, путем проведения сечений, проходящих через середину участка и отбрасывания части тела лежащей за сечением. Для неотброшенной части тела составляется зависимость по которой изменяется изгибающий момент и определяется его значение в начале и конце участка;

4 Построение эпюры ведется о стороны растянутых волокон;

5 Если в рассматриваемом сечении приложен внешний момент, то на эпюре наблюдается скачек на величину этого момента.

Построение эпюр изгибающих моментов рассмотрим на примере.

Проверить на прочность балку постоянного сечения, показанную на рисунке, если известно, что осевой момент сопротивления ее сечения м 3 , а допускаемые напряжения изгиба МПа.

Читайте также:  Ток покоя усилителя напряжения

Источник

Rimoyt.com

Темы: машиностроение, САПР, 3d моделирование, техническое образование, промышленные предприятия, технические вузы

  • Rimoyt.com
  • Contacts
  • Сайты
  • Книги
  • Идеи
  • 2020
  • Guestbook
  • ВТУЗы России
  • Специальности
  • Предприятия
  • ГОСТы, ЕСКД
  • Видео
  • Игры, VR, IT
  • Новости регионов
  • Яндекс-новости
  • Новости стран
  • Авто, Кино, Спорт
  • Веселое, Креатив
  • СМИ, газеты
  • Техника, Наука, Природа
  • English
  • Espano
  • Hindi
  • Chinese
  • Детали машин
  • Сопромат
  • Материаловедение
  • Теоретическая механика
  • Математика
  • Метрология
  • Физика
  • Химия
  • Теория машин и механизмов
  • Технология конструкционных материалов
  • Начертательная геометрия
  • Инженерная графика
  • Электротехника
  • Электроника
  • Информатика
  • Гидравлика
  • Математика 5,6,7,8,9,10,11
  • Геометрия 7, 8, 9, 10, 11
  • Физика 7, 8, 9, 10, 11
  • Химия 8, 9, 10, 11
  • Игры 90-2000
  • Виртуальные путешествия
  • Детям 3030 здрвь

Срез — разрушение соединительных деталей под действием поперечных нагрузок (т.е. перпендикулярных осям этих деталей).

Например, разрушение штифта может произойти при штифтовом соединении двух деталей, которые нагружены двумя противоположно направленными силами. Вместо штифта может быть шпонка, болт, шпилька, заклепка.

Допущения при расчете на срез:
— в поперечном сечении детали, где может быть срез, возникает только поперечная сила Q
— касательные напряжения распределены по поперечному сечению равномерно
— при соединении несколькими одинаковыми деталями – все они нагружены одинаково

— расчетное напряжение среза
Q = F/i – поперечная сила в сечении
i – число соединительных деталей (например, число заклепок)
Aср – площадь поперечного сечения срезаемой детали (заклепки)
— допускаемое напряжение

Три вида расчетов на срез:
— проверочный
— проектировочный – определение числа соединительных деталей или размеров деталей
— определение допускаемой нагрузки

Смятие – разрушение от давления между поверхностями соединительной детали и отверстия (при штифтовом, шпоночном соединениях и т.д.). При изменении формы отверстия от давления соединение разрушается.

Допущения при расчете на срез:
— силы давления распределены по поверхности смятия равномерно
— силы давления перпендикулярны поверхности смятия

Условие прочности при расчете на смятие:

F/i – нагрузка на один соединительный элемент
i – число соединительных элементов
Aсм – площадь смятия

Источник