Меню

Стабилизатор для электродвигателя постоянного тока

Регулировка и стабилизация частоты вращения двигателя постоянного тока

Описано несложное устройство, позволяющее регулировать частоту вращения вала двигателя постоянного тока и поддерживать её установленное значение при изменении механической нагрузки на вал.

При разработке физического прибора потребовалось изготовить низкоскоростной привод вращения платформы, несущей различные датчики и другое оборудование. Необходимы были возможность оперативной регулировки частоты вращения и её стабилизация при изменении механической нагрузки.

Первый вариант привода состоял из малогабаритного электродвигателя постоянного тока серии ДПМ с редуктором из однозаходного стального червяка и текстолитового зубчатого колеса. Датчиком частоты вращения служил насаженный на вал двигателя диск с прорезями, входившими в зазор открытой оптопары.

Сигнал оптопары поступал на узел стабилизации, состоящий из генератора образцовой частоты, частотного дискриминатора и прочих необходимых элементов. Устройство отлично «держало» назначенную частоту вращения, не реагируя на внешние возмущения.

Но выявился крупный недостаток, о котором разработчики и не догадывались в начале работы. Привод сильно шумел. Шум шариковых подшипников двигателя, червячной пары передавался на закреплённые на платформе датчики и почти полностью «убивал» полезные сигналы. Попытки амортизировать привод не привели к успеху, так как при изменении момента сопротивления платформы вращению механизм раскачивался и равномерность вращения терялась.

Выход был найден в использовании привода программирующих колёс от видеомагнитофона (рис. 1). Вал установленного в нём двигателя вращается в подшипниках скольжения, а червячная пара выполнена из материала, подобного капролону. Передаточное число механизма — 123, работает он практически бесшумно.

Рис. 1

Поскольку установить диск с прорезями в этом механизме оказалось очень сложно, пришлось изыскивать иной способ стабилизации частоты вращения. Была сделана попытка использовать узел стабилизатора частоты вращения двигателя от кассетного магнитофона. Однако этот узел хорошо стабилизировал только одно значение этой частоты. При попытке установить иное стабильность нарушалась. После долгого и бесполезного поиска приемлемого решения в литературе пришлось разрабатывать узел стабилизации самостоятельно.

Как известно, напряжение на выводах якоря двигателя постоянного тока складывается из падения напряжения на активном сопротивлении обмоток якоря и противоЭДС, прямо пропорциональной частоте вращения якоря. Эта ЭДС может служить мерилом частоты вращения. Но для этого нужно отделить её от падения напряжения на омическом сопротивлении обмотки.

Описанные в [1, 2] устройства, использующие противо ЭДС для стабилизации или регулирования частоты вращения двигателя либо хорошо поддерживают только одно установленное значение, либо, допуская регулировку частоты в широких пределах, не стабилизируют её при изменении нагрузки. Разработанное устройство отличается сочетанием обоих факторов — сохраняет произвольно установленную частоту вращения при изменении момента нагрузки.

Поставленная задача решается достаточно просто. В разработанном устройстве, схема которого изображена на рис. 2, последовательно с якорем двигателя М1 включён резистор R1, сопротивление которого в точности равно активному сопротивлению якоря. Если из напряжения на якоре вычесть падение напряжения на этом резисторе, получим напряжение, пропорциональное частоте вращения якоря. Операцию вычитания выполняет узел на ОУ DА2.1. Это напряжение поступает на один из входов усилителя сигнала рассогласования на ОУ DА2.2, на другой вход которого подано образцовое напряжение, соответствующее желаемой частоте вращения. ОУ управляет транзистором VT1, регулирующим напряжение питания двигателя М1.

Рис. 2

Для лучшего понимания процесса регулирования рассмотрим упрощённую схему устройства, изображённую на рис. 3. Из неё понятно, что активное сопротивление якоря г и резисторы R1—RЗ образуют измерительный мост, в диагональ которого включены входы ОУ DА2.1. Напряжение на выходе моста равно

0 При точном выполнении равенства00мост сбалансирован относительно напряжения питания двигателя U1 благодаря чему напряжение Uвых зависит только от противоЭДС якоря Е, т. е. от частоты его вращения. Изменение питающего напряжения U1 не разбалансирует мост, но вызывет изменение тока через двигатель, что приводит к изменению частоты его вращения и, соответственно, противоЭДС.

Рис. 3

Резистор R1 должен быть рассчитан на рассеивание мощности, равной максимальной мощности двигателя.

Необходимую частоту вращения устанавливают подстроенным резистором R5. Увеличение или уменьшение частоты вращения под нагрузкой свидетельствует о неточной балансировке моста. Её нужно добиться подборкой резисторов R1— R3.

Конденсатор С1 и резистор R6 предотвращают высокочастотную генерацию.

Транзистор VT1 и интегральный стабилизатор напряжения 7812 размещены на небольшом теплоотводе. Теоретически устройство нечувствительно к колебаниям напряжения питания, но напряжение на подстроенном резисторе R5, задающем частоту вращения, должно быть стабилизировано. По этой причине в устройстве применён интегральный стабилизатор напряжения DА1. Кроме того, встроенная в этот стабилизатор защита по току предохраняет двигатель и транзистор VТ1 от повреждения при случайном заклинивании механизма.

При испытаниях устройства выяснилось, что основное влияние на стабильность частоты вращения оказывают температурные изменения сопротивления обмотки двигателя, выполненной из медного провода, тогда как резистор R1 изготовлен из манганина. Вводить различного рода термокомпенсирующие цепи было сочтено излишним, так как обеспечить равенство температуры резистора и обмотки двигателя не представляется возможным из-за разных условий отвода от них тепла.

И наконец, испытания готового устройства неожиданно выявили, что частота вращения приборной платформы под нагрузкой падает на 5…10 %. Оказалось, что виновато проскальзывание двух резиновых пассиков, соединяющих вал двигателя с червячным редуктором. Тщательной промывкой шкивов и пассиков, промывкой и смазкой всех подшипников скольжения указанный недостаток был устранён.

В результате достигнут коэффициент стабильности лучше 0,5 % при изменении нагрузки на выходном валу редуктора в пределах от 0 до 20 Н·см, что вполне удовлетворило предъявляемым требованиям.

Несомненное достоинство предложенного решения — его простота по сравнению с устройствами аналогичной точности. Недостаток — почти двукратный перерасход мощности, рассеиваемой на дополнительном резисторе.

ЛИТЕРАТУРА

  1. Шевченко В. И. и др. Кассетные магнитофоны (библиотека «Телевизионный и радиоприём. Звукотехника», вып. 90). — М.: Связь, 1977.
  2. Леоненко П. Стабилизатор частоты вращения. — Радио, 1988, № 7, с. 32.
Читайте также:  Реферат генератор переменного тока реферат генератор переменного тока

Автор: В. ХИЦЕНКО, Т. ЯКОВЛЕВ, г. Санкт-Петербург

Источник: Радио №4, 2015

Источник

Схема регулятора скорости вращения двигателя постоянного тока – для новичков в радиоделе

Традиционная схема стабилизатора частоты вращения вала электродвигателя постоянного тока в переносных кассетных магнитофонах, реализованная на двух транзисторах или на транзисторной микросборке и одном транзисторе, применяется нашей промышленностью уже более 15 лет в неизменном виде Современные радиоэлементы позволяют построить более простые в схемотехническом отношении стабилизаторы частоты вращения, но обладающие более совершенными характеристиками

Рис 331 Схема стабилизатора

В предлагаемом варианте стабилизатора использовано всего шесть радиоэлементов (не считая электродвигателя), но удалось добиться более высокой стабильности работы при изменении температуры окружающей среды и напряжения источника питания Диапазон питающих напряжений для данной схемы составляет 6..20 В При необходимости сместить диапазон регулирования скорости в область малых оборотов вала электродвигателя следует изменить полярность включения стабилитрона или заменить его другим, с меньшим напряжением стабилизации

Величина сопротивления резистора R3 зависит от сопротивления цепи якоря (Rя) применяемого двигателя н примерно равна 1,5 Rя Вместо микросхемы К140УД6 проверялась работа К140УД7 Транзистор КТ815А можно заменить транзисторами КТ815 и КТ817 с любым буквенным индексом Подстроечный резистор R1 типа CП5-2

П ЛЕОНЕНКО, г Кемерово, Радио

Как и в предыдущей главе, начнём рассказ с рассмотрения работы схемы

У коллекторных двигателей постоянного тока скорость вращения вала определяется, как правило, напряжением на двигателе Напряжение на двигателе и потребляемый им ток определят некоторое эквивалентное сопротивление, которое будет отличаться от измеренного омметром сопротивления обмотки двигателя Если у вас есть конкретный моторчик, для которого вы намерены создать схему стабилизации, то можно провести измерения и определиться с параметрами моделирования Если нет, то можно выбрать их «наугад», а позже привести к конкретному виду

С распределения напряжений в схеме и начнём

Обозначение резисторов на схеме ниже я не сохранил Двигатель заменил резистором R2 И, поскольку программа позволяет добавить много измерительных приборов, в количестве вольтметров я себя не ограничивал

Рис 332 Распределение напряжений в схеме

Рабочее напряжение стабилитрона КС133А – это 33В Если напряжение на двигателе стало больше, возрастает ток через стабилитрон, увеличивается падение напряжения на резисторе R2 При этом напряжение на выходе операционного усилителя уменьшается, что приводит к уменьшению тока базы транзистора VT1 и уменьшению напряжения на эмиттере транзистора, а, следовательно, на двигателе При уменьшении напряжения процессы проходят в обратном направлении Изменяя напряжение питания, можно получить следующие результаты:

Рис 333 Напряжения на двигателе при разных напряжениях питания

Напряжение на двигателе, измеряемое вольтметром Pr1 изменяется незначительно при существенном изменении напряжения питания

Эквивалентное сопротивление двигателя (ток через моторчик) будет зависеть от нагрузки на валу двигателя Ток будет возрастать с возрастанием нагрузки Возрастающий ток увеличит падение напряжения на резисторе R1 Что увеличит падение напряжения на резисторе R4 и приведёт к увеличению напряжения на выходе операционного усилителя, то есть, к увеличению напряжения на двигателе А это, в свою очередь, должно увеличить скорость вращения вала, замедлившегося от увеличения нагрузки на валу Увеличение нагрузки на валу я буду моделировать уменьшением сопротивления R2 с 30 до 20 Ом

Рис 334 Изменение напряжения на двигателе при изменении нагрузки

Резисторы R1 и R2 мы можем рассматривать как резисторы отрицательной обратной связи, а резисторы R5 и R4 как резисторы положительной обратной связи Отрицательная обратная связь должна следить за напряжением на двигателе при изменении питающего напряжения, а положительная менять напряжение на двигателе при изменении нагрузки на валу

Разобрав на модели работу схемы, постараемся реализовать подобную или похожую схему на микроконтроллере Вновь скажу, что менять операционный усилитель на микроконтроллер, я особенного смысла не вижу Но считаю, что полезно это выполнить хотя бы за компьютером

Итак Микроконтроллер устройство в своей основе цифровое Поэтому можно использовать такой принцип регулировки напряжения на двигателе:

Как и в других случаях с переменным напряжением, напряжение на двигателе будет действующим В данном случае средним за период колебаний

Уменьшая длительность импульса с высоким уровнем напряжения, увеличив при этом длительность импульса с низким уровнем напряжения, мы получим уменьшение среднего напряжения И наоборот

Такой принцип регулирования напряжения на двигателе наилучшим образом подходит для цифрового устройства

Конечно, как и в случае аналогового управления, схема пополнится управляющим транзистором

Рис 335 Принцип регулировки напряжения на коллекторном двигателе

Воспроизвести такое напряжение с помощью программы не составляет труда Мы собирали такую программу для генератора прямоугольных импульсов Ту часть аналоговой схемы, которая следит за напряжением питания, можно пока оставить без внимания: микроконтроллер лучше питать стабилизированным напряжением

Источник: Гололобов ВН,- Самоучитель игры на паяльнике (Об электронике для школьников и не только), – Москва 2012

Источник

Подборка схем регулятора оборотов двигателя постоянного тока

Производить регулировку скорости вращения вала коллекторного электродвигателя, имеющего малую мощность, можно подсоединяя последовательно в электроцепь его питания резистор. Но данный вариант создает очень низкий КПД, и к тому же отсутствует возможность осуществлять плавное изменение скорости вращения.

Основное, что этот способ временами приводит к полной остановке электродвигателя при низком напряжении питания. Регулятор оборотов электродвигателя постоянного тока, описанные в данной статье, не имеют эти недостатки. Данные схемы можно с успехом применять и для изменения яркости свечения ламп накаливания на 12 вольт.

Описание 4 схем регуляторов оборотов электродвигателя

Первая схема

На транзисторе VT1 (однопереходном) реализован генератор пилообразного напряжения (частота 150 Гц). Операционный усилитель DA1 играет роль компаратора, создающего ШИМ на базе транзистора VT2. В результате получается ШИМ регулятор оборотов двигателя.

Читайте также:  Тока бока мир секреты

Изменяют скорость вращения переменным резистором R5, который меняет длительность импульсов. Так как, амплитуда ШИМ импульсов постоянна и равна напряжению питания электродвигателя, то он никогда не останавливается даже при очень малой скорости вращения.

Вторая схема

Она схожа с предыдущей, но в роли задающего генератора применен операционный усилитель DA1 (К140УД7).

Этот ОУ функционирует как генератор напряжения вырабатывающий импульсы треугольной формы и имеющий частоту 500 Гц. Переменным резистором R7 выставляют частоту вращения электродвигателя.

Третья схема

Она своеобразная, построена на она на популярном таймере NE555. Задающий генератор действует с частотой 500 Гц. Ширина импульсов, а следовательно, и частоту вращения двигателя возможно изменять от 2 % до 98 %.

Слабым местом во всех вышеприведенных схемах является, то что в них нет элемента стабилизации частоты вращения при увеличении или уменьшении нагрузки на валу двигателя постоянного тока. Разрешить эту проблему можно с помощью следующей схемы:

Как и большинство похожих регуляторов, схема этого регулятора имеет задающий генератор напряжения, вырабатывающий импульсы треугольной формы, частота которых 2 кГц. Вся специфика схемы — присутствие положительной обратной связи (ПОС) сквозь элементы R12,R11,VD1,C2, DA1.4, стабилизирующей частоту вращения вала электродвигателя при увеличении или уменьшении нагрузки.

При налаживании схемы с определенным двигателем, сопротивлением R12 выбирают такую глубину ПОС, при которой еще не случаются автоколебания частоты вращения при изменении нагрузки.

Детали регуляторов вращения электродвигателей

В данных схемах возможно применить следующие замены радиодеталей: транзистор КТ817Б — КТ815, КТ805; КТ117А возможно поменять КТ117Б-Г или 2N2646; Операционный усилитель К140УД7 на К140УД6, КР544УД1, ТL071, TL081; таймер NE555 — С555, КР1006ВИ1; микросхему TL074 — TL064, TL084, LM324.

При использовании более мощной нагрузки, ключевой транзистор КТ817 возможно поменять мощным полевым транзистором, например, IRF3905 или ему подобный.

Источник



Простейший стабилизатор постоянного тока

Полупроводниковый прибор, о котором пойдет речь, предназначен для стабилизации тока на требуемом уровне, обладает низкой стоимостью и дает возможность упростить разработку схем многих электронных приборов. Попытаюсь немного восполнить недостаток информации о простых схемотехнических решениях стабилизаторов постоянного тока.

Немного теории

Идеальный источник тока обладает бесконечно большим ЭДС и бесконечно большим внутренним сопротивлением, что позволяет получить требуемый ток в цепи независящий от сопротивления нагрузки.

Условное графическое обозначение источника тока:

Условное графическое обозначение источника тока

Рассмотрение теоретических допущений о параметрах источника тока помогает понять определение идеального источника тока. Ток, создаваемый идеальным источником тока остается постоянным при изменении сопротивления нагрузки от короткого замыкания до бесконечности. Для поддержания величины тока неизменной значение ЭДС меняется от величины не равной нулю до бесконечности. Свойство источника тока, позволяющее получить стабильное значение тока: при изменении сопротивления нагрузки изменяется ЭДС источника тока таким образом, что значение тока остается постоянным.

beginner113-2.png

Реальные источники тока поддерживают ток на требуемом уровне в ограниченный диапазон напряжения, создаваемого на нагрузке и ограниченном сопротивление нагрузки. Идеальный источник рассматривается, а реальный источник тока может работать при нулевом сопротивлении нагрузки. Режим замыкания выхода источника тока не является исключением или трудно реализуемой функцией источника тока, это один из режимов работы, в который может безболезненно перейти прибор при случайном замыкании выхода и перейти на режим работы с сопротивлением нагрузки более нуля.

Реальный источник тока используется совместно с источником напряжения. Сеть 220 вольт 50 Гц, лабораторный блок питания, аккумулятор, бензиновый генератор, солнечная батарея – источники напряжения, поставляющие электроэнергию потребителю. Последовательно с одним из них включается стабилизатор тока. Выход такого прибора рассматривается как источник тока.

beginner113-3.png

Простейший стабилизатор тока представляет собой двухвыводной компонент, ограничивающий протекающий через него ток величиной и точностью соответствующей данным фирмы изготовителя. Такой полупроводниковый прибор в большинстве случаев имеет корпус, напоминающий диод малой мощности. Благодаря внешнему сходству и наличию всего двух выводов компоненты этого класса часто упоминаются в литературе как диодные стабилизаторы тока. Внутренняя схема не содержит диодов, такое название закрепилось только благодаря внешнему сходству.

Примеры диодных стабилизаторов тока

Диодные стабилизаторы тока выпускаются многими производителями полупроводников.

1N5296
Производители: Microsemi и CDI

Ток стабилизации 0,91мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 1,29 В
Максимальное импульсное напряжение 100 В

beginner113-4.jpg

E-103
Производитель Semitec

Ток стабилизации 10 мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 4,2 В
Максимальное импульсное напряжение 50 В

beginner113-5.jpg

L-2227
Производитель Semitec

Ток стабилизации 25 мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 4 В
Максимальное импульсное напряжение 50 В

beginner113-6.jpg

От теории к практике

Применение диодных стабилизаторов тока упрощает электрические схемы и снижает стоимость приборов. Использование диодных стабилизаторов тока привлекательно не только своей простотой, но и повышением устойчивости работы разрабатываемых приборов. Один полупроводник этого класса в зависимости от типа обеспечивает стабилизацию тока на уровне от 0,22 до 30 миллиампер. Наименования этих полупроводниковых приборов по ГОСТу и схемного обозначения найти не удалось. В схемах статьи пришлось применить обозначение обычного диода.

При включении в цепь питания светодиода диодный стабилизатор обеспечивает требуемый режим и надежную работу. Одна из особенностей диодного стабилизатора тока – работа в диапазоне напряжений от 1,8 до 100 вольт позволяющая защитить светодиод от выхода из строя при воздействии импульсных и длительных изменений напряжения. Яркость и оттенок свечения светодиода зависят от протекающего тока. Один диодный стабилизатор тока может обеспечить режим работы нескольких последовательно включенных светодиодов, как показано на схеме.

Последовательно включенные светодиоды

Эту схему легко преобразовать в зависимости от светодиодов и напряжения питания. Один или несколько параллельно включенных диодных стабилизаторов тока в цепь светодиодов зададут ток светодиодов, а количество светодиодов зависит от диапазона изменения напряжения питания.

Читайте также:  Ток якоря при последовательном возбуждении

С помощью диодных источников тока можно построить индикаторный или осветительный прибор, предназначенный для питания от постоянного напряжения. Благодаря питанию стабильным током источник света будет иметь постоянную яркость свечения при колебаниях напряжения питания.

Использование резистора в цепи светодиода индикатора напряжения питания двигателя постоянного тока станка сверловки печатных плат приводило к быстрому выходу светодиода из строя. Применение диодного стабилизатора тока позволило получить надежную работу индикатора. Диодные стабилизаторы тока допускается включать параллельно. Требуемый режим питания нагрузок можно получить, меняя тип или включая параллельно требуемое количество этих приборов.

beginner113-8.png

При питании светодиода оптопары через резистор пульсации напряжения питания схемы приводят к колебаниям яркости, накладывающимся на фронт прямоугольного импульса. Применение диодного стабилизатора тока в цепи питания светодиода, входящего в состав оптопары, позволяет снизить искажение цифрового сигнала, передаваемого через оптопару и увеличить надежность канала информации.

Применение диодного стабилизатора тока задающего режим работы стабилитрона позволяет разработать простой источник опорного напряжения. При изменении питающего тока на 10 процентов напряжение на стабилитроне меняется на 0,2 процента, а так как ток стабилен, то величина опорного напряжения стабильна при изменении других факторов.

beginner113-9.png

Влияние пульсаций питающего напряжения на выходное опорное напряжение уменьшается на 100 децибел.

Внутренняя схема

Вольтамперная характеристика помогает понять работу диодного стабилизатора тока. Режим стабилизации начинается при превышении напряжения на выводах прибора около двух вольт. При напряжениях более 100 вольт происходит пробой. Реальный ток стабилизации может отклоняться от номинального тока на величину до десяти процентов. При изменении напряжения от 2 до 100 вольт ток стабилизации меняется на 5 процентов. Диодные стабилизаторы тока, выпускаемые некоторыми производителями, изменяют ток стабилизации при изменении напряжения до 20 процентов. Чем выше ток стабилизации, тем больше отклонение при увеличении напряжения. Параллельное включение пяти приборов, рассчитанных на ток 2 миллиампера, позволяет получить более высокие параметры, чем у одного на 10 миллиампер. Так как уменьшается минимальное напряжение стабилизации тока, то диапазон напряжения в котором работает стабилизатор увеличивается.

ВАХ диодного стабилизатора тока

Основой схемы диодного стабилизатора тока является полевой транзистор с p-n переходом. Напряжение затвор-исток определяет ток стока. При напряжении затвор-исток равному нулю ток через транзистор равен начальному току стока, который течет при напряжении между стоком и истоком более напряжения насыщения. Поэтому для нормальной работы диодного стабилизатора тока напряжение, приложенное к выводам должно быть больше некоторого значения от 1 до 3 вольт.

Полевой транзистор

Полевой транзистор имеет большой разброс начального тока стока, точно эту величину предсказать нельзя. Дешевые диодные стабилизаторы тока представляют собой отобранные по току полевые транзисторы, у которых затвор соединен с истоком.

При смене полярности напряжения диодный стабилизатор тока превращается в обычный диод. Это свойство обусловлено тем, что p-n переход полевого транзистора оказывается смещенным в прямом направлении и ток течет по цепи затвор-сток. Максимальный обратный ток некоторых диодных стабилизаторов тока может достигать 100 миллиампер.

Источник тока 0.5А и более

Для стабилизации токов силой 0,5-5 ампер и более применима схема, главный элемент которой мощный транзистор. Диодный стабилизатор тока стабилизирует напряжение на резисторе 180 Ом и на базе транзистора КТ818. Изменение резистора R1 от 0,2 до10 Ом изменяется ток, поступающий в нагрузку. С помощью этой схемы можно получить ток, ограниченный максимальным током транзистора или максимальным током источника питания. Применение диодного стабилизатора тока с наиболее возможным номинальным током стабилизации улучшает стабильность выходного тока схемы, но при этом нельзя забывать о минимально возможном напряжении работы диодного стабилизатора тока. Изменение резистора R1 на 1-2 Ом значительно меняет величину выходного тока схемы. Этот резистор должен иметь большую мощность рассеяния тепла, изменение сопротивления из-за нагрева приведет к отклонению выходного тока от заданного значения. Резистор R1 лучше собрать из нескольких параллельно включенных мощных резисторов. Резисторы, применённые в схеме должны иметь минимальное отклонение сопротивления при изменении температуры. При построении регулируемого источника стабильного тока или для точной настройки выходного тока резистор 180 Ом можно заменить переменным. Для улучшения стабильности тока транзистор КТ818 усиливается вторым транзистором меньшей мощности. Транзисторы соединяются по схеме составного транзистора. При использовании составного транзистора минимальное напряжение стабилизации увеличивается.

beginner113-12.png

Эту схему можно использовать для питания соленоидов, электромагнитов, обмоток шаговых двигателей, в гальванике, для зарядки аккумуляторов и других целей. Транзистор обязательно устанавливается на радиатор. Конструкция прибора должна обеспечивать хороший теплоотвод.

Если бюджет проекта позволяет увеличить затраты на 1-2 рубля и конструкция прибора допускает увеличение площади печатной платы, то использую параллельное объединение диодных стабилизаторов тока можно улучшить параметры разрабатываемого прибора. Соединенные параллельно 5 компонентов 1N5305 позволят стабилизировать ток на уровне 10 миллиампер, как и компонент СDLL257, но минимальное напряжение работы в случае пяти 1N5305 составит 1,85 вольт, что важно для схем с напряжением питания 3,3 или 5 вольт. Также к положительным свойствам 1N5305 относится его доступность, по сравнению с приборами производителя Semitec. Соединение параллельно группы стабилизаторов тока вместо одного позволяет снизить нагрев разрабатываемого прибора и отодвинуть верхнюю границу температурного диапазона.

Увеличение рабочего напряжения

Для использования диодных стабилизаторов тока при напряжениях более напряжения пробоя последовательно включается один или несколько стабилитронов, при этом область напряжений работы диодного ограничителя тока смещается на величину стабилизации напряжения стабилитроном. Схему можно использовать для грубого определения превышения порогового значения напряжения.

beginner113-13.png

Найти отечественные аналоги зарубежных диодных стабилизаторов тока не удалось. Вероятно с течением времени ситуация с отечественными диодными стабилизаторами тока изменится.

Источник

Стабилизатор для электродвигателя постоянного тока

Регулировка оборотов электродвигателя 220В, 12В и 24В

Для плавности увеличения и уменьшения скорости вращения вала существует специальный прибор – регулятор оборотов электродвигателя 220в. Стабильная эксплуатация, отсутствие перебоев напряжения, долгий срок службы – преимущества использования регулятора оборотов двигателя на 220, 12 и 24 вольт.

Способы изменения вращения зависят от модели электрической машины. Характеристики электрических машин отличаются: постоянного и переменного тока, однофазные, трехфазные. Поэтому говорить нужно о каждом случае отдельно.

Простейший вариант

Легче всего изменять обороты электродвигателя постоянного тока. Они меняются простым изменением напряжения питания. Причем неважно где: на якоре или на возбуждении, но это касается только маломощных машин с минимальной нагрузкой. В основном управление скоростью вращения производят по цепи якоря. Более того, здесь возможно реостатное регулирование, если мощность мотора небольшая, или есть довольно мощный реостат.

Это самый неэкономичный вариант. Механические характеристики двигателя с независимым возбуждением самые невыгодные из-за больших потерь, результатом чего является падение механической мощности, КПД.

Еще одна возможность – введение реостата в обмотку возбуждения. Рассматривая характеристики двигателя с независимым возбуждением, увидим, что регулирование скорости вращения возможно только в сторону увеличения оборотов. Это происходит ввиду насыщения обмотки.

Итак, реостатное регулирование скорости вращения аппарата независимого возбуждения оправдано в системах с минимальной нагрузкой. Лучше всего, когда работа при таком включении буде периодической.

Источник



Схема регулятора скорости вращения двигателя постоянного тока – для новичков в радиоделе

Традиционная схема стабилизатора частоты вращения вала электродвигателя постоянного тока в переносных кассетных магнитофонах, реализованная на двух транзисторах или на транзисторной микросборке и одном транзисторе, применяется нашей промышленностью уже более 15 лет в неизменном виде Современные радиоэлементы позволяют построить более простые в схемотехническом отношении стабилизаторы частоты вращения, но обладающие более совершенными характеристиками

Рис 331 Схема стабилизатора

В предлагаемом варианте стабилизатора использовано всего шесть радиоэлементов (не считая электродвигателя), но удалось добиться более высокой стабильности работы при изменении температуры окружающей среды и напряжения источника питания Диапазон питающих напряжений для данной схемы составляет 6..20 В При необходимости сместить диапазон регулирования скорости в область малых оборотов вала электродвигателя следует изменить полярность включения стабилитрона или заменить его другим, с меньшим напряжением стабилизации

Величина сопротивления резистора R3 зависит от сопротивления цепи якоря (Rя) применяемого двигателя н примерно равна 1,5 Rя Вместо микросхемы К140УД6 проверялась работа К140УД7 Транзистор КТ815А можно заменить транзисторами КТ815 и КТ817 с любым буквенным индексом Подстроечный резистор R1 типа CП5-2

П ЛЕОНЕНКО, г Кемерово, Радио

Как и в предыдущей главе, начнём рассказ с рассмотрения работы схемы

У коллекторных двигателей постоянного тока скорость вращения вала определяется, как правило, напряжением на двигателе Напряжение на двигателе и потребляемый им ток определят некоторое эквивалентное сопротивление, которое будет отличаться от измеренного омметром сопротивления обмотки двигателя Если у вас есть конкретный моторчик, для которого вы намерены создать схему стабилизации, то можно провести измерения и определиться с параметрами моделирования Если нет, то можно выбрать их «наугад», а позже привести к конкретному виду

С распределения напряжений в схеме и начнём

Обозначение резисторов на схеме ниже я не сохранил Двигатель заменил резистором R2 И, поскольку программа позволяет добавить много измерительных приборов, в количестве вольтметров я себя не ограничивал

Рис 332 Распределение напряжений в схеме

Рабочее напряжение стабилитрона КС133А – это 33В Если напряжение на двигателе стало больше, возрастает ток через стабилитрон, увеличивается падение напряжения на резисторе R2 При этом напряжение на выходе операционного усилителя уменьшается, что приводит к уменьшению тока базы транзистора VT1 и уменьшению напряжения на эмиттере транзистора, а, следовательно, на двигателе При уменьшении напряжения процессы проходят в обратном направлении Изменяя напряжение питания, можно получить следующие результаты:

Рис 333 Напряжения на двигателе при разных напряжениях питания

Читайте также:  Путь тока при пуске двигателя

Напряжение на двигателе, измеряемое вольтметром Pr1 изменяется незначительно при существенном изменении напряжения питания

Эквивалентное сопротивление двигателя (ток через моторчик) будет зависеть от нагрузки на валу двигателя Ток будет возрастать с возрастанием нагрузки Возрастающий ток увеличит падение напряжения на резисторе R1 Что увеличит падение напряжения на резисторе R4 и приведёт к увеличению напряжения на выходе операционного усилителя, то есть, к увеличению напряжения на двигателе А это, в свою очередь, должно увеличить скорость вращения вала, замедлившегося от увеличения нагрузки на валу Увеличение нагрузки на валу я буду моделировать уменьшением сопротивления R2 с 30 до 20 Ом

Рис 334 Изменение напряжения на двигателе при изменении нагрузки

Резисторы R1 и R2 мы можем рассматривать как резисторы отрицательной обратной связи, а резисторы R5 и R4 как резисторы положительной обратной связи Отрицательная обратная связь должна следить за напряжением на двигателе при изменении питающего напряжения, а положительная менять напряжение на двигателе при изменении нагрузки на валу

Разобрав на модели работу схемы, постараемся реализовать подобную или похожую схему на микроконтроллере Вновь скажу, что менять операционный усилитель на микроконтроллер, я особенного смысла не вижу Но считаю, что полезно это выполнить хотя бы за компьютером

Итак Микроконтроллер устройство в своей основе цифровое Поэтому можно использовать такой принцип регулировки напряжения на двигателе:

Как и в других случаях с переменным напряжением, напряжение на двигателе будет действующим В данном случае средним за период колебаний

Уменьшая длительность импульса с высоким уровнем напряжения, увеличив при этом длительность импульса с низким уровнем напряжения, мы получим уменьшение среднего напряжения И наоборот

Такой принцип регулирования напряжения на двигателе наилучшим образом подходит для цифрового устройства

Конечно, как и в случае аналогового управления, схема пополнится управляющим транзистором

Рис 335 Принцип регулировки напряжения на коллекторном двигателе

Воспроизвести такое напряжение с помощью программы не составляет труда Мы собирали такую программу для генератора прямоугольных импульсов Ту часть аналоговой схемы, которая следит за напряжением питания, можно пока оставить без внимания: микроконтроллер лучше питать стабилизированным напряжением

Источник: Гололобов ВН,- Самоучитель игры на паяльнике (Об электронике для школьников и не только), – Москва 2012

Источник

Простейший стабилизатор постоянного тока

Полупроводниковый прибор, о котором пойдет речь, предназначен для стабилизации тока на требуемом уровне, обладает низкой стоимостью и дает возможность упростить разработку схем многих электронных приборов. Попытаюсь немного восполнить недостаток информации о простых схемотехнических решениях стабилизаторов постоянного тока.

Немного теории

Идеальный источник тока обладает бесконечно большим ЭДС и бесконечно большим внутренним сопротивлением, что позволяет получить требуемый ток в цепи независящий от сопротивления нагрузки.

Условное графическое обозначение источника тока:

Условное графическое обозначение источника тока

Рассмотрение теоретических допущений о параметрах источника тока помогает понять определение идеального источника тока. Ток, создаваемый идеальным источником тока остается постоянным при изменении сопротивления нагрузки от короткого замыкания до бесконечности. Для поддержания величины тока неизменной значение ЭДС меняется от величины не равной нулю до бесконечности. Свойство источника тока, позволяющее получить стабильное значение тока: при изменении сопротивления нагрузки изменяется ЭДС источника тока таким образом, что значение тока остается постоянным.

beginner113-2.png

Реальные источники тока поддерживают ток на требуемом уровне в ограниченный диапазон напряжения, создаваемого на нагрузке и ограниченном сопротивление нагрузки. Идеальный источник рассматривается, а реальный источник тока может работать при нулевом сопротивлении нагрузки. Режим замыкания выхода источника тока не является исключением или трудно реализуемой функцией источника тока, это один из режимов работы, в который может безболезненно перейти прибор при случайном замыкании выхода и перейти на режим работы с сопротивлением нагрузки более нуля.

Реальный источник тока используется совместно с источником напряжения. Сеть 220 вольт 50 Гц, лабораторный блок питания, аккумулятор, бензиновый генератор, солнечная батарея – источники напряжения, поставляющие электроэнергию потребителю. Последовательно с одним из них включается стабилизатор тока. Выход такого прибора рассматривается как источник тока.

Читайте также:  Практическая работа мощность цепи переменного тока

beginner113-3.png

Простейший стабилизатор тока представляет собой двухвыводной компонент, ограничивающий протекающий через него ток величиной и точностью соответствующей данным фирмы изготовителя. Такой полупроводниковый прибор в большинстве случаев имеет корпус, напоминающий диод малой мощности. Благодаря внешнему сходству и наличию всего двух выводов компоненты этого класса часто упоминаются в литературе как диодные стабилизаторы тока. Внутренняя схема не содержит диодов, такое название закрепилось только благодаря внешнему сходству.

Примеры диодных стабилизаторов тока

Диодные стабилизаторы тока выпускаются многими производителями полупроводников.

1N5296
Производители: Microsemi и CDI

Ток стабилизации 0,91мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 1,29 В
Максимальное импульсное напряжение 100 В

beginner113-4.jpg

E-103
Производитель Semitec

Ток стабилизации 10 мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 4,2 В
Максимальное импульсное напряжение 50 В

beginner113-5.jpg

L-2227
Производитель Semitec

Ток стабилизации 25 мА ± 10%
Минимальное напряжение на выводах в режиме стабилизации 4 В
Максимальное импульсное напряжение 50 В

beginner113-6.jpg

От теории к практике

Применение диодных стабилизаторов тока упрощает электрические схемы и снижает стоимость приборов. Использование диодных стабилизаторов тока привлекательно не только своей простотой, но и повышением устойчивости работы разрабатываемых приборов. Один полупроводник этого класса в зависимости от типа обеспечивает стабилизацию тока на уровне от 0,22 до 30 миллиампер. Наименования этих полупроводниковых приборов по ГОСТу и схемного обозначения найти не удалось. В схемах статьи пришлось применить обозначение обычного диода.

При включении в цепь питания светодиода диодный стабилизатор обеспечивает требуемый режим и надежную работу. Одна из особенностей диодного стабилизатора тока – работа в диапазоне напряжений от 1,8 до 100 вольт позволяющая защитить светодиод от выхода из строя при воздействии импульсных и длительных изменений напряжения. Яркость и оттенок свечения светодиода зависят от протекающего тока. Один диодный стабилизатор тока может обеспечить режим работы нескольких последовательно включенных светодиодов, как показано на схеме.

Последовательно включенные светодиоды

Эту схему легко преобразовать в зависимости от светодиодов и напряжения питания. Один или несколько параллельно включенных диодных стабилизаторов тока в цепь светодиодов зададут ток светодиодов, а количество светодиодов зависит от диапазона изменения напряжения питания.

С помощью диодных источников тока можно построить индикаторный или осветительный прибор, предназначенный для питания от постоянного напряжения. Благодаря питанию стабильным током источник света будет иметь постоянную яркость свечения при колебаниях напряжения питания.

Использование резистора в цепи светодиода индикатора напряжения питания двигателя постоянного тока станка сверловки печатных плат приводило к быстрому выходу светодиода из строя. Применение диодного стабилизатора тока позволило получить надежную работу индикатора. Диодные стабилизаторы тока допускается включать параллельно. Требуемый режим питания нагрузок можно получить, меняя тип или включая параллельно требуемое количество этих приборов.

beginner113-8.png

При питании светодиода оптопары через резистор пульсации напряжения питания схемы приводят к колебаниям яркости, накладывающимся на фронт прямоугольного импульса. Применение диодного стабилизатора тока в цепи питания светодиода, входящего в состав оптопары, позволяет снизить искажение цифрового сигнала, передаваемого через оптопару и увеличить надежность канала информации.

Применение диодного стабилизатора тока задающего режим работы стабилитрона позволяет разработать простой источник опорного напряжения. При изменении питающего тока на 10 процентов напряжение на стабилитроне меняется на 0,2 процента, а так как ток стабилен, то величина опорного напряжения стабильна при изменении других факторов.

beginner113-9.png

Влияние пульсаций питающего напряжения на выходное опорное напряжение уменьшается на 100 децибел.

Внутренняя схема

Вольтамперная характеристика помогает понять работу диодного стабилизатора тока. Режим стабилизации начинается при превышении напряжения на выводах прибора около двух вольт. При напряжениях более 100 вольт происходит пробой. Реальный ток стабилизации может отклоняться от номинального тока на величину до десяти процентов. При изменении напряжения от 2 до 100 вольт ток стабилизации меняется на 5 процентов. Диодные стабилизаторы тока, выпускаемые некоторыми производителями, изменяют ток стабилизации при изменении напряжения до 20 процентов. Чем выше ток стабилизации, тем больше отклонение при увеличении напряжения. Параллельное включение пяти приборов, рассчитанных на ток 2 миллиампера, позволяет получить более высокие параметры, чем у одного на 10 миллиампер. Так как уменьшается минимальное напряжение стабилизации тока, то диапазон напряжения в котором работает стабилизатор увеличивается.

Читайте также:  Тока бока мир секреты

ВАХ диодного стабилизатора тока

Основой схемы диодного стабилизатора тока является полевой транзистор с p-n переходом. Напряжение затвор-исток определяет ток стока. При напряжении затвор-исток равному нулю ток через транзистор равен начальному току стока, который течет при напряжении между стоком и истоком более напряжения насыщения. Поэтому для нормальной работы диодного стабилизатора тока напряжение, приложенное к выводам должно быть больше некоторого значения от 1 до 3 вольт.

Полевой транзистор

Полевой транзистор имеет большой разброс начального тока стока, точно эту величину предсказать нельзя. Дешевые диодные стабилизаторы тока представляют собой отобранные по току полевые транзисторы, у которых затвор соединен с истоком.

При смене полярности напряжения диодный стабилизатор тока превращается в обычный диод. Это свойство обусловлено тем, что p-n переход полевого транзистора оказывается смещенным в прямом направлении и ток течет по цепи затвор-сток. Максимальный обратный ток некоторых диодных стабилизаторов тока может достигать 100 миллиампер.

Источник тока 0.5А и более

Для стабилизации токов силой 0,5-5 ампер и более применима схема, главный элемент которой мощный транзистор. Диодный стабилизатор тока стабилизирует напряжение на резисторе 180 Ом и на базе транзистора КТ818. Изменение резистора R1 от 0,2 до10 Ом изменяется ток, поступающий в нагрузку. С помощью этой схемы можно получить ток, ограниченный максимальным током транзистора или максимальным током источника питания. Применение диодного стабилизатора тока с наиболее возможным номинальным током стабилизации улучшает стабильность выходного тока схемы, но при этом нельзя забывать о минимально возможном напряжении работы диодного стабилизатора тока. Изменение резистора R1 на 1-2 Ом значительно меняет величину выходного тока схемы. Этот резистор должен иметь большую мощность рассеяния тепла, изменение сопротивления из-за нагрева приведет к отклонению выходного тока от заданного значения. Резистор R1 лучше собрать из нескольких параллельно включенных мощных резисторов. Резисторы, применённые в схеме должны иметь минимальное отклонение сопротивления при изменении температуры. При построении регулируемого источника стабильного тока или для точной настройки выходного тока резистор 180 Ом можно заменить переменным. Для улучшения стабильности тока транзистор КТ818 усиливается вторым транзистором меньшей мощности. Транзисторы соединяются по схеме составного транзистора. При использовании составного транзистора минимальное напряжение стабилизации увеличивается.

beginner113-12.png

Эту схему можно использовать для питания соленоидов, электромагнитов, обмоток шаговых двигателей, в гальванике, для зарядки аккумуляторов и других целей. Транзистор обязательно устанавливается на радиатор. Конструкция прибора должна обеспечивать хороший теплоотвод.

Если бюджет проекта позволяет увеличить затраты на 1-2 рубля и конструкция прибора допускает увеличение площади печатной платы, то использую параллельное объединение диодных стабилизаторов тока можно улучшить параметры разрабатываемого прибора. Соединенные параллельно 5 компонентов 1N5305 позволят стабилизировать ток на уровне 10 миллиампер, как и компонент СDLL257, но минимальное напряжение работы в случае пяти 1N5305 составит 1,85 вольт, что важно для схем с напряжением питания 3,3 или 5 вольт. Также к положительным свойствам 1N5305 относится его доступность, по сравнению с приборами производителя Semitec. Соединение параллельно группы стабилизаторов тока вместо одного позволяет снизить нагрев разрабатываемого прибора и отодвинуть верхнюю границу температурного диапазона.

Увеличение рабочего напряжения

Для использования диодных стабилизаторов тока при напряжениях более напряжения пробоя последовательно включается один или несколько стабилитронов, при этом область напряжений работы диодного ограничителя тока смещается на величину стабилизации напряжения стабилитроном. Схему можно использовать для грубого определения превышения порогового значения напряжения.

beginner113-13.png

Найти отечественные аналоги зарубежных диодных стабилизаторов тока не удалось. Вероятно с течением времени ситуация с отечественными диодными стабилизаторами тока изменится.

Источник