Меню

Стабилизатор тока для тиристора

Простые линейные стабилизаторы тока для светодиодов своими руками

Известно, что яркость светодиода очень сильно зависит от протекающего через него тока. В то же время ток светодиода очень круто зависит от питающего напряжения. Отсюда возникают заметные пульсации яркости даже при незначительной нестабильности питания.

Но пульсации — это не страшно, гораздо хуже то, что малейшее повышение питающего напряжения может привести к настолько сильному увеличению тока через светодиоды, что они просто выгорят.

Чтобы этого не допустить, светодиоды (особенно мощные) обычно запитывают через специальные схемы — драйверы, которые по сути своей являются стабилизаторами тока. В этой статье будут рассмотрены схемы простых стабилизаторов тока для светодиодов (на транзисторах или распространенных микросхемах).

Стабилизаторы тока на транзисторах

Стабилизаторы тока на транзисторах

Для стабилизации тока через светодиоды можно применить хорошо известные решения:

На рисунке 1 представлена схема, работа которой основана на т.н. эмиттерном повторителе. Транзистор, включенный таким образом, стремится поддерживать напряжение на эмиттере в точности таким же, как и на базе (разница будет только в падении напряжения на переходе база-эмиттер). Таким образом, зафиксировав напряжение базы с помощью стабилитрона, мы получаем фиксированное напряжение на R1.

Далее, используя закон Ома, получаем ток эмиттера: Iэ = Uэ/R1. Ток эмиттера практически совпадает с током коллектора, а значит и с током через светодиоды.

Стабилизатор для светодиодов

Обычные диоды имеют очень слабую зависимость прямого напряжения от тока, поэтому возможно их применение вместо труднодоступных низковольтных стабилитронов. Вот два варианта схем для транзисторов разной проводимости, в которых стабилитроны заменены двумя обычными диодами VD1, VD2:

Ток через светодиоды задается подбором резистора R2. Резистор R1 выбирают таким образом, чтобы выйти на линейный участок ВАХ диодов (с учетом тока базы транзистора). Напряжение питания всей схемы должно быть не меньше, чем суммарное напряжение всех светодиодов плюс около 2-2.5 вольт сверху для устойчивой работы транзистора.

Например, если нужно получить ток 30 мА через 3 последовательно включенных светодиодов с прямым напряжением 3.1 В, то схему следует запитать напряжением не ниже 12 Вольт. При этом сопротивление резистора должно быть около 20 Ом, мощность рассеивания — 18 мВт. Транзистор следует подобрать с максимальным напряжением Uкэ не ниже напряжения питания, например, распространенный S9014 (n-p-n).

Сопротивление R1 будет зависеть от коэфф. усиления транзистора hfe и ВАХ диодов. Для S9014 и диодов 1N4148 достаточно будет 10 кОм.

Светодиодный светильник со стабилизацией тока

Применим описанный стабилизатор для совершенствования одного из светодиодных светильников, описанного в этой статье. Улучшенная схема будет выглядеть так:

Данная доработка позволяет значительно снизить пульсации тока и, следовательно, яркости светодиодов. Но главный плюс схемы заключается в нормализации режима работы светодиодов и защита их от бросков напряжения во время включения. Это приводит к существенному продлению срока службы светодиодной лампы.

LED-светильник со стабилизатором тока

Из осциллограмм видно, что добавив в схему стабилизатор тока для светодиода на транзисторе и стабилитроне, мы тут же уменьшили амплитуду пульсаций в несколько раз:

При указанных на схеме номиналах, на транзисторе рассеивается мощность чуть больше 0.5 Вт, что позволяет обойтись без радиатора. Если емкость балластного конденсатора увеличить до 1.2 мкФ, то на транзисторе будет падать

23 Вольт, а мощность составит около 1 Вт. В этом случае без радиатора не обойтись, но зато пульсации понизятся чуть ли не до нуля.

Вместо указанного на схеме транзистора 2CS4544, можно взять 2SC2482 или аналогичный с током коллектора больше 100 мА и допустимым напряжением Uкэ не менее 300 В (подойдут, например, старые советские КТ940, КТ969).

Желаемый ток, как обычно, задается резистором R*. Стабилитрон рассчитан на напряжение 5.1 В и мощность 0.5 Вт. В качестве светодиодов применены распространенные smd-светодиоды из китайской лампочки (а еще лучше взять готовую лампу и добавить в нее недостающие компоненты).

Стабилизатор тока светодиодов

Теперь рассмотрим схему, представленную на рисунке 2. Вот она отдельно:

Токовым датчиком здесь является резистор, сопротивление которого рассчитывается по формуле 0.6/Iнагр. При увеличении тока через светодиоды, транзистор VT2 начинает открываться сильнее, что приводит к более сильному запиранию транзистора VT1. Ток уменьшается. Таким образом происходит стабилизация выходного тока.

Достоинства схемы — ее простота. К недостатку можно записать довольно большое падение напряжения (а следовательно и мощности) на транзисторе VT1. Это не критично при небольших токах (десятки и сотни миллиампер), однако дальнейшее увеличение тока через светодиоды потребует установки этого транзистора на радиатор.

Стабилизатор тока для светодиодов на полевом транзисторе (схема)

Также, вместо биполярного транзистора, можно применить p-канальный MOSFET. Схема, приведенная ниже, представляет собой мощный светильник на двух 10-ваттных светодиодах и 40-ваттном IRF9510 в корпусе ТО-220 (см. характеристики):

Ток через светодиоды задается подбором резистора R1. VT1 — любой маломощный. Светодиоды — Cree XM-L T6 10W (см. спецификацию) или аналогичные.

Транзистор VT2 и светодиоды необходимо разместить на общем радиаторе, площадью не менее 900 см 2 (это если без принудительного охлаждения). Использование термопасты обязательно. Ребра радиатора должен быть толстым и массивным, чтобы максимально быстро отводить тепло. Оцинкованные профили для гипсокартона, консервные банки из-под селедки и крышки от кастрюль категорически не подходят.

Если такая мощность не нужна, можно сократить количество светодиодов до одного. Но при этом придется понизить напряжение питания на 3-3.5 вольта. Иначе потребляемая мощность останется прежней, транзистор будет греться в два раза сильнее, а светить будет в два раза хуже.

Для снижения мощности правильнее было бы оставить оба светодиода, но уменьшить ток, например, до 2А — тогда мощность упадет с 20 до 12 Вт, а срок жизни светодиодов многократно возрастет. И площадь радиатора можно будет уменьшить до 600 см 2 .

Вместо IRF9510 можно взять, например, IRF9Z34N (19А, 55В) или NDP6020P (24А, 20В). Смотрите сами, какие есть в вашем распоряжении. Если совсем ничего нет, самое время закупиться по дешевке:

наименование характеристики цена
IRF9510 P-channel, 100V, 4A 209 руб. / 10 шт.
IRF9Z34N P-channel, 55V, 19A 124 руб. / 10 шт.
NDP6020P P-channel, 20V, 24A 120 руб. / 10 шт.
Cree XM-L T6 10W, 3A 135 руб. / шт.

Стабилизатор (генератор) тока на полевом транзисторе КП303Е

Ну а самая простейшая схема стабилизатора тока для светодиодов на полевом транзисторе состоит всего лишь из одного транзистора с закороченным накоротко затвором и истоком:

Выходная характеристика полевого транзистора

Вместо КП303Е подойдет, например, BF245C или аналогичный со встроенным каналом. Принцип действия схож со схемой на рисунке 1, только в качестве эталонного напряжения используется потенциал «земли». Величина выходного тока определяется исключительно начальным током стока (берется из даташита) и практически не зависит от напряжения сток-исток Uси. Это хорошо видно из графика выходной характеристики:

На схеме на рисунке 3 в цепь истока добавлен резистор R1, задающий некоторое обратное смещение затвора и позволяющий таким образом изменить ток стока (а значит и ток нагрузки).

Генератор (стабилизатор) тока на MOSFET

Пример самого простого драйвера тока для светодиода представлен ниже:

Здесь применен полевой транзистор с изолированным затвором и встроенным каналом n-типа BSS229. Точное значение выходного тока будет зависеть от характеристик конкретного экземпляра и сопротивления R1.

Это, в общем-то, все способы превратить транзистор в стабилизатор тока. Есть еще так называемое токовое зеркало, но применительно к светодиодным светильникам оно не подходит. Поэтому перейдем к микросхемам.

Стабилизаторы тока на микросхемах

Микросхемы позволяют добиться гораздо более высоких характеристик, чем транзисторы. Чаще всего для сборки стабилизатор тока для светодиодов своими руками используют прецизионные термостабильные источники опорного напряжения (TL431, LM317 и другие).

TL431

Схема включения TL431 в качестве стабилизатора тока

Типовая схема стабилизатора тока для светодиодов на TL431 выглядит так:

Так как микросхема ведет себя так, чтобы поддерживать на резисторе R2 фиксированное напряжение 2.5 В, то ток через этот резистор всегда будет равен 2.5/R2. А если пренебречь током базы, то можно считать, что I = IR2. И чем выше будет коэффициент усиления транзистора hfe, тем больше эти токи будут совпадать.

R1 рассчитывается таким образом, чтобы обеспечить минимальный рабочий ток микросхемы — 1 мА.

Схема светильника без пульсаций (LED-лампа на TL431)

А вот пример практического применения TL431 в светодиодной лампе:

Читайте также:  Мост постоянного тока формула для определения неизвестного сопротивления

На транзисторе падает около 20-30 В, рассеиваемая мощность составляет менее 1.5 Вт. Кроме указанного на схеме 2SC4544 можно применить более мощный BD711 или старый советский КТ940А. Транзисторы в корпусе TO-220 не требуют установки на радиатор до мощностей 1.5-2 Вт включительно.

Резистор R3 служит для ограничения импульса зарядки конденсатора при включении питания. Ток через нагрузку задается резистором R2.

В качестве нагрузки Rн здесь выступают 90 белых чип-светодиодов 2835. Максимальная мощность при токе 60 мА составляет 0.2 Вт (24Lm), падение напряжения — 3.2 В. Также можно применить любые другие подходящие светодиоды, например, SMD5050.

Для увеличение срока службы мощность диодов специально занижена на 20% (0.16 Вт, ток 45 мА), соответственно, суммарная мощность всех светодиодов составляет — 14 Вт.

Хотя я бы рекомендовал найти светодиоды в точно таком же форм-факторе (2.8х3.5мм), но мощностью 0.5 Вт. Они и греться будут меньше и прослужат дольше.

Найти такие светодиоды, а также все необходимое для сборки схемы можно по этим ссылкам:

наименование характеристики цена
SMD 2835 LED, 3.3V, 0.15A, 0.5W 67 руб. / 100 шт.
2SC4544 NPN, 300V, 0.1A 10 руб. / шт.
BD711 NPN, 100V, 12A 120 руб. / 10 шт.
1N4007 1000V, 1A 51 руб. / 100 шт.
TL431A 36V, 100mA 87 руб. / 100 шт.

Разумеется, приведенную схему стабилизатора тока для светодиодов на 220 В можно пересчитать под любой необходимый ток и/или другое количество имеющихся в распоряжении светодиодов.

С учетом допустимого разброса напряжения 220 Вольт (см. ГОСТ 29322-2014), выпрямленное напряжение на конденсаторе C1 будет находиться в диапазоне от 293 до 358 В, поэтому он должен быть рассчитан на напряжение не менее 400 В.

Исходя из диапазона питающих напряжений, рассчитываются параметры остальных элементов схемы.

Например, резистор, задающий рабочий режим микросхемы DA1 должен обеспечивать ток не менее 0.5 мА при напряжении на С1 = 293 В. Максимальное количество светодиодов не должно превышать NLED = 100 мА). Отлично подойдут упомянутые выше 1N4007.

Как видите, схемка простейшая и не содержит каких-либо доростоящих компонентов. Вот текущие цены (и они, скорее всего, будут и дальше снижаться):

название характеристики стоимость
SMD 5630 LED, 3.3V, 0.15A, 0.5W 240руб. / 1000шт.
LM317 1.25-37V, >1.5A 112руб. / 10шт.
MB6S 600V, 0.5A 67руб. / 20шт.
120μF, 400V 18х30mm 560руб. / 10шт.

Таким образом, потратив в общей сложности 1000 руб., можно собрать десяток 30-ваттных (. ) не мерцающих (. ) лампочек. А так как светодиоды работают не на полную мощность, а единственный электролит не перегревается, то эти лампы будут практически вечными.

Вместо заключения

К недостаткам приведенных в статье схем следует отнести низкий КПД за счет бесполезной траты мощности на регулирующих элементах. Впрочем, это свойственно всем линейным стабилизаторам тока.

Низкий коэффициент полезного действия неприемлем для устройств, питающихся от автономных источников тока (светильники, фонарики и т.п.). Существенного повышения КПД (90% и более) можно добиться применением импульсных стабилизаторов тока.

Источник

Тиристорные и симисторные стабилизаторы напряжения: в чем отличие?

tiristornye-ili-simistornye

Эти два типа стабилизаторов напряжения относятся к электронным приборам. В них отсутствуют любые механические и электромеханические устройства. Они собраны полностью на полупроводниковых элементах, отличаются бесшумностью, высокой скоростью реакции на изменение напряжения и надёжностью. Такие стабилизаторы широко применяются в быту и на производстве.

Содержание:

Принцип работы электронных стабилизаторов

Принцип работы электронных стабилизаторов этого типа можно сравнить с принципом работы полупроводникового стабилизатора. В основе конструкции лежит использование мощного силового трансформатора. Только роль элементов переключающих его обмотки выполняют не электромагнитные реле, а мощные полупроводниковые ключи, собранные на тиристорах или симисторах.

Большое количество тиристорных стабилизаторов представлено на сайте официального партнера компании Энергия — ВольтМаркет.ру.

Если вы хотите приобрести симисторный стабилизатор, тогда посмотрите варианты на сайте компании по этой ссылке.

Поскольку все жилые дома, а также офисы и большинство общественных учреждений питаются по двухпроводной линии, состоящей из одной фазы и нуля, то для питания различных технических устройств используется однофазный тиристорный стабилизатор напряжения. Стабилизатор напряжения состоит из следующих элементов:

  • Входной фильтр напряжения сети;
  • Плата управления и контроля;
  • Трансформатор;
  • Силовые ключи;
  • Устройство индикации.

simistornyj

Очень часто в линиях электропитания переменного тока могут наводиться импульсные высокочастотные помехи, а так же короткие (5-15 мск) выбросы напряжения. Всё это может привести к нарушениям в работе электронной техники, поэтому напряжение на входе стабилизатора проходит через фильтр. Он собран на дросселях, выполненных на ферритовых кольцах и конденсаторах. Такой L/C фильтр препятствует проникновению на вход стабилизатора напряжения сетевых наводок.

Силовой трансформатор имеет секционированную вторичную обмотку, что позволяет менять коэффициент трансформации в ступенчатом режиме, и, следовательно, управлять величиной выходного напряжения. Однофазный симисторный стабилизатор напряжения собран по аналогичной схеме, а вся разница между этими стабилизаторами заключается в типе полупроводниковых ключей.

Плата управления и контроля постоянно анализирует величину напряжения сети и при её отклонении в любую сторону, с помощью электронных ключей переключает секции вторичной обмотки, изменяя тем самым величину напряжения на выходе стабилизатора. Переключающими элементами являются тиристоры или симисторы.

Схема симисторного стабилизатора напряжения может иметь до 15 переключаемых ступеней, что обеспечивает высокую точность установки напряжения на выходе. Для питания платы управления и контроля в схеме стабилизатора предусмотрен дополнительный трансформатор и выпрямитель.

Для удобства пользователей, стабилизаторы напряжения оборудованы светодиодной индикацией режимов работы:

  • «Сеть»;
  • «Нагрузка»;
  • «Перегрузка»;
  • «U вх. min»;
  • «U вх.max».

Кроме этого стабилизатор может иметь цифровой дисплей, на который выводятся данные о напряжении на входе, на выходе и частота сети переменного тока.

Большое количество тиристорных стабилизаторов представлено на сайте официального партнера компании Энергия — ВольтМаркет.ру.

Если вы хотите приобрести симисторный стабилизатор, тогда посмотрите варианты на сайте компании по этой ссылке.

Тиристорный стабилизатор

tiristornyj

Тиристорный стабилизатор напряжения представляет собой трансформаторное устройство, в котором выравнивание напряжения осуществляется с помощью переключения обмоток силового трансформатора с помощью электронных ключей. Тиристор – это полупроводниковый прибор являющийся аналогом электромагнитного реле. Он имеет анод, катод и управляющий электрод.

Поскольку тиристор проводит ток только в одном направлении, то для работы в цепях переменного тока применяется встречно-параллельное соединение тиристоров. Следовательно, один ключ, подключающий часть обмотки трансформатора, будет состоять из двух тиристоров.

Тиристорный стабилизатор может обеспечить достаточно большую точность установки напряжения. Это достигается увеличением числа переключающих ступеней. Практические схемы электронных стабилизаторов на тиристорах могут обеспечить точность стабилизации порядка 3-5%.

Стабилизатор такого типа обладает следующими положительными качествами:

  • Высокая скорость стабилизации;
  • Хорошая защита от внешних помех;
  • Большой диапазон регулировки;
  • Высокая надёжность устройства.

При своих достоинствах, тиристорный стабилизатор напряжения имеет определённые недостатки, которые заметно ограничивают его сферу применения.

Большой выбор тиристорных стабилизаторов напряжения отечественного производства смотрите на сайте официального представителя компании Энергия по этой ссылке.

Отрицательные стороны:

  • Ограничение работы с реактивными нагрузками;
  • Потеря мощности при заниженных входных напряжениях;
  • Высокая стоимость;
  • Сложный ремонт.

Дело в том, что стабилизаторы напряжения собранные на тиристорах выдают на выходе форму напряжения далёкую от синусоидальной. Она может иметь форму трапеции или меандра. Питание электродвигателей от такого стабилизатора, особенно асинхронного типа, может привести к выходу мотора из строя. Существуют модели стабилизаторов, которые выдают нормальную форму напряжения на выходе, но такие устройства имеют сложную электронную схему и стоят заметно дороже. В связи с этим сфера применения данных стабилизаторов уже ограничивается, их нельзя будет использовать в качестве стабилизаторов для циркуляционных насосов в системах отопления, скважинах, и т. д.

sxema-tirstornogo-stabilizatora

Тиристорный стабилизатор напряжения при работе сам является источником помех, поэтому к нему не рекомендуется подключать измерительную аппаратуру высокой точности.

Симисторный стабилизатор

simistornyj-stabilizator

В этом устройстве в качестве электронных ключей, управляющих переключением секций силового трансформатора, используются симисторы. Это полупроводниковые приборы, объединяющие в одном корпусе два тиристора. Симистор, или симметричный тиристор, проводит ток в двух направлениях, поэтому силовой ключ выполнен на одном полупроводниковом приборе.

Читайте также:  Meanwell как источник тока

Симисторный стабилизатор напряжения имеет ряд недостатков по сравнению с тиристорными устройствами. Стабилизатор очень критичен к выбросам напряжения при работе с индуктивной нагрузкой. Вместе с тем он обеспечивает высокую точность регулирования.

Если вы хотите приобрести симисторный стабилизатор, тогда посмотрите варианты на сайте официального представителя компании Энергия по этой ссылке.

В отличие от электромагнитных реле, симисторы переключаются за короткий промежуток времени, а отсутствие контактов и других механических элементов делает такие стабилизаторы очень надёжными. Мощные электронные ключи сильно нагреваются в процессе работы, поэтому симисторы монтируются на радиаторы, что увеличивает габариты прибора. Для лучшего охлаждения электронных компонентов симисторный стабилизатор напряжения оборудуется вентилятором.

Мощный электронный стабилизатор

energiya-tiristornyj-stabilizator

Одним из лидеров в производстве энергетических систем является компания «Энергия», она применяет в своих разработках инновационные технологии, что позволяет свести до минимума некоторые недостатки тиристорных стабилизаторов напряжения.

Однофазный тиристорный стабилизатор «Энергия Classic 12 000» представляет собой современное и надёжное устройство с высокими параметрами. Устройство работает в интервале входных напряжений от 125 до 254 вольт. Предельно допустимые величины могут составлять 60 вольт по минимуму и 265 вольт по максимуму. Стабилизатор имеет переключающую схему на 12 ступеней, выполненную на мощных тиристорах. Время переключения не превышает 20 мс.

Этот, и большое количество других тиристорных стабилизаторов представлено на сайте официального партнера компании Энергия — ВольтМаркет.ру.

Если вы хотите приобрести симисторный стабилизатор, тогда посмотрите варианты на сайте компании по этой ссылке.

Стабилизатор имеет защиту от пониженного напряжения, повышенного напряжения и перегрузки. При температуре силового трансформатора свыше 120°C так же срабатывает защита и стабилизатор отключается. Допустимая кратковременная перегрузка до 180%, может составлять 0,3 секунды. Входной фильтр подавляет все виды высокочастотных и импульсных помех. При питании нагрузки с нормальным напряжением сети используется система «байпас». Данный стабилизатор компании Энергия рассчитан на эксплуатацию в отапливаемом помещении с уровнем влажности не более 80%.

Источник

Тиристорные стабилизаторы

Тиристорные стабилизаторы напряжения дороже релейных и сервоприводных, но при этом набирают все большую популярность, в чем их плюсы разберемся вместе со СтабЭксперт.ру.

Принцип работы

Тиристорные стабилизаторы работают по тому же ступенчатому принципу, что и релейные, рассмотренные ранее. Отличие заключается в том, что роль контактов электромеханических реле играют электронные управляемые ключи — тиристоры.

Тиристор представляет собой полупроводниковый прибор, имеющий три электрода — анод, катод и электрод управления. И в зависимости от наличия сигнала управления, он может находиться в закрытом или открытом состоянии. Проводимость в данной схеме имеет односторонний характер. В открытом состоянии движение электрического тока происходит от анода к катоду. Для использования этих электронных ключей в схемах переменного тока обычно поступают следующим образом. Два тиристора соединяют по так называемой встречно-параллельной схеме, то есть, анод одного прибора соединяют с катодом другого и наоборот.

В результате получается комбинированный ключ, обеспечивающий проводимость в обоих направлениях. Аналогично релейным приборам, каждый тиристорный ключ управляет только одной отпайкой вторичной обмотки автотрансформатора и одновременное открытие нескольких ключей не допускается.

Управление тиристорными ключами осуществляется электронным блоком. Алгоритм работы системы управления аналогичен тому, что применяется в релейных стабилизаторах. Система осуществляет постоянный контроль уровня напряжения и при его отклонении подаёт сигнал на открывание соответствующего ключа.

Топ-3 популярных марок

Плюсы и минусы

Тиристорные стабилизаторы напряжения обладают рядом преимуществ по сравнению с устройствами релейного типа, основными из которых являются:

  • более высокая скорость переключения ступеней, т.е. тиристоров по сравнению с электромеханическими реле. Благодаря этому качеству тиристорные приборы быстрее реагируют на изменение напряжения;
  • стабилизаторы с электронными ключами не имеют механических контактов и движущихся частей, что обеспечивает их бОльшую искробезопасность (не абсолютную!) и более длительный эксплуатационный ресурс.

Общим недостатком всех регуляторов ступенчатого типа, переключающих отводы вторичной обмотки автотрансформатора (и релейных в том числе), является неизбежность наличия определённой погрешности регулирования. Проблема заключается в следующем. СтабЭксперт.ру напоминает, что проектировщики при создании оборудования этого типа всегда ищут компромисс между пределами регулирования напряжения и погрешностью этого самого регулирования.

Предел регулирования зависит от количества витков между крайними выводами обмотки, подключаемыми к нагрузке контактами реле или электронными ключами. Точность же стабилизации определяется числом витков одной секции, составляющей ступень регулирования. Таким образом, при большом диапазоне регулирования получить низкую погрешность можно, если разделить этот диапазон на большое количество ступеней с малым числом витков. Однако стабилизатор с большим числом отводов обмотки автотрансформатора и ключевых элементов становится тяжёлым, громоздким и дорогим.

Для дома

Нужно понимать, что для дома даже погрешность релейных моделей в 8-10% является приемлемой и большинство приборов «переваривают» такие отклонения спокойно. У тиристорных точность работы выше, она обычно 3-5%, казалось бы, зачем это в быту? Но наряду с этим они реагирует быстрее, как писали ранее и перегрузки, в моменте, терпят гораздо бОльшие, а это важно при пусковых токах насосов, станков и пр. Ну и дорогая аудио- и видео-техника тяготеет к хорошему питанию.

Пример

В качестве примера, рассмотрим стабилизаторы от одного производителя: тиристорные Энергия Classic и Энергия Ultra имеют точность работы 5 и 3% соответственно, а перегрузку терпят в 180%. Представители релейного сегмента Энергия Voltron работают с точностью 5% и способны вытерпеть кратковременную перегрузку в 110%.

Тиристорные трехфазные стабилизаторы

Тиристорные стабилизаторы, на данный момент, выпускают только однофазные, но для сети 380 В приобретается модульный комплект из 3-х однофазных приборов, а если появляется прибор требующий ровно 380 В, то докупается блок контроля сети.

Источник



Тиристорный стабилизатор — плюсы и минусы устройства

Содержание статьи (ссылки кликабельны):

Использование различных электроприборов является одним из обязательных условий нашей жизни. Каждый из таких приборов предназначен для выполнения определенной функции, и осуществляя ее, упрощает и совершенствует нашу жизнь.

Однако всегда есть явление, которое создает препятствия в работе электрических приборов. Этим явлением являются перепады напряжения в линиях электропередач.

Такие перепады являются весьма неприятными для наших электроприборов, поскольку большой скачок тока в лучшем случае ухудшает качество их работы, а в худшем случае вызывает фатальные последствия для отдельных компонентов электроприборов.

Для того, чтобы такой скачок не мог повлиять на работу, а также на состояние наших электроприборов, необходимо использовать стабилизатор напряжения. Сегодня есть много видов стабилизаторов, однако наибольшей эффективностью могут похвастаться тиристорные стабилизаторы.

Эти стабилизаторы обеспечивают плавное выравнивание напряжения и по принципу работы являются похожими на релейные приборы. Главная особенность, которая отличает их от всех стабилизаторов, состоит в наличии тиристорных ключей. Эти ключи являются полупроводниками.

Внутреннее устройство

Для того чтобы понять, что представляет собой и каким образом работает этот стабилизатор, рассмотрим его устройство и опишем особенности работы его составных элементов.

Итак, сняв верхнюю крышку корпуса таких стабилизационных приборов, мы можем увидеть:

  1. Автоматический трансформатор.
  2. Электронные схемы, которые вместе образуют механизм управления.
  3. Собственно тиристорные ключи.
  4. А также различные светодиодные индикаторы.

Как работает трансформатор

Как и в большинстве стабилизаторов напряжения, так и в приборе нашего типа главным элементом является автоматический трансформатор. Именно он осуществляет процесс нормализации тока.

Схема простейшего трансформатора

Схема работы простейшего трансформатора

Для того, чтобы понять, каким образом трансформатор тиристорного стабилизатора стабилизирует ток, рассмотрим его строение. Этот главный элемент тиристорных приборов состоит из двух обмоток, а именно первичной и вторичной.

На первичную поступает входной ток. Далее этот ток проходит на вторичную обмотку и из нее попадает в любой электроприбор.

Обе обмотки представляют собой определенное количество витков проволоки. Количество витков на каждой из них может быть разным.

Рассмотрим работу обмоток на примере. Будем считать, что количество витков в обеих обмотках является равным 20. Если ток с напряжением в 200 вольт пройдет через 20 витков первичной обмотки и 20 витков вторичной обмотки, то на выходе он будет иметь такое же напряжение.

Читайте также:  Знак опасность поражения электрическим током где устанавливается

В том случае, когда он пройдет через 20 витков первой обмотки и 10 витков вторичной обмотки, напряжение на выходе будет не 200, а 100 вольт. Таким образом происходит уменьшение напряжения.

Для того, чтобы увеличить напряжение (в нашем случае 200 вольт до 220), нужно подключить еще один виток второй обмотки, т.е. ток должен проходить через 21 виток (в нашем примере это невозможно, поскольку вторая обмотка имеет только 20 витков). Таковым является общий принцип работы трансформатора.

На практике каждая обмотка имеет сотни витков. При этом максимальное количество витков во второй обмотке должно быть большим, чем количество витков в первой обмотке. Надобность этого отчетливо видна на вышеуказанном примере.

В вас может возникнуть вопрос, каким же образом можно подключать то или иное количество витков? Для того, чтобы можно было подключать определенное количество витков, производитель делает выводы от определенного витка второй обмотки.

Количество этих выводов может быть разным. Собственно на конце каждого такого вывода и находятся тиристоры. Они и осуществляют подключение определенного количества витков.

В результате получается так, что, когда нужно повысить напряжение, происходит подключение дополнительного количества витков. Когда стабилизатор напряжения, который относится к тиристорному типу, должен снизить напряжение, происходит отключение определенного количества витков.

витки в стабилизаторе

Стоит обратить внимание на тот факт, что все витки являются как бы поделенными на группы. Подсоединение каждой из группы осуществляется через выводы.

Грубо говоря, если количество витков равно цифре 100 и выводов пять, то подключение одного вывода означает, что ток проходит через 20 витков. В данном случае напряжение изменится на определенную фиксированную величину, то есть на определенную степень. Собственно такое изменение напряжения и называется ступенчатой стабилизацией.

На практике в некоторых стабилизаторах подключение одного определенного количества витков приводит к увеличению или уменьшению напряжения на 15-20 вольт. Чем больше выводов (то есть в отдельной группе становится меньше витков), тем на меньшую величину изменяется выходное напряжение при подключении одного вывода.

Подытоживая, отметим, что при росте/падении напряжения на входе происходит отключение/подключение определенного вывода второй обмотки благодаря работе тиристоров. Между переключениями обмоток наблюдается интересный факт: насколько меняется ток на входе, настолько же он меняется на выходе.

На практике выглядит так: на входе есть напряжение в 180 вольт и на выходе обеспечивается 220. Когда напряжение растет, например до 185, на выходе напряжение возрастает до 225-ти.

Далее происходит переключение обмотки и на выходе снова становится 220. Конечно, величина изменений выходного тока определяется особенностями различных моделей тиристорных стабилизаторов напряжения, которые используются дома.

Для этих стабилизаторов она может колебаться от 2 до 10 вольт.

Полезный совет: при переключении тиристоров можно будет заметить небольшое мерцание ламп накаливания. Данный факт является следствием вышеописанного процесса выравнивания тока и он не означает, что тиристорный стабилизатор сломался. Это стандартный режим его работы.
В общем, тиристорные стабилизаторы обеспечивают уровень выходного напряжения, который колеблется в пределах 214-226 вольт. Это является высоким показателем их работы.

Особенности работы тиристоров

Как уже отмечалось, главным отличием тиристорного стабилизатора напряжения от других приборов для стабилизации напряжения является наличие в его схеме тиристорных ключей. Их работа также сопровождается определенными особенностями.

Их включение/выключение может приводить к искажению синусоидальной формы тока. Учитывая это, микроконтроллер должен включать/выключать любой тиристор, когда ток находится в нулевой точке синусоиды.

Для осуществления этого алгоритм электронной схемы предусматривает проведение измерения напряжения в несколько десятков раз и определение момента включения тиристора. Сам процесс занимает не более одной микросекунды, поэтому он никоим образом не приводит к долгому выравниванию тока.

Также в это же время процессор определяет, является ли включенным, или выключенным тиристор, чтобы затем дать правильную команду.

Примечательным фактом является то, что тиристоры боятся перегрузки и во время таких ситуаций они перегорают. Для устранения такого сценария при появлении чрезмерной нагрузки микроконтроллер дает команду на выключение тока, то есть отключение стабилизатора.

Еще одна особенность кроется в том, что во время своей работы тиристоры сильно греются. Учитывая это, производители обязаны ставить радиаторы для охлаждения.

Такие особенности работы тиристоров и трансформатора приводят к тому, что тиристорные приборы должны обладать мощными электронными схемами.

Типы тиристорных стабилизаторов

Сегодня на рынке можно увидеть одно- и двухкаскадные тиристорные стабилизаторы напряжения. Однокаскадным стабилизатором является такой, который регулирует напряжение в один этап.

Двухкаскадные проводят нормализацию тока в два этапа. В течение первого происходит грубое выравнивание. На втором этапе выходной ток получает идеальные характеристики.

Двухкаскадная система регулирования позволяет использовать тиристоры с большей эффективностью, поскольку растет количество комбинаций их включения. Так, если на обоих каскадах находятся по четыре тиристоры, то их можно включать шестнадцатью способами.

Конечно, с ростом количества тиристоров на каскадах, растет количество их способов включения.

Двухкаскадный способ регулирования тока является несколько медленным однокаскадного. Он занимает до 20 миллисекунд, тогда как 1-каскадный длится 10 миллисекунд.

Преимущества и недостатки

Итак, зная детальное строение и особенности работы тиристорного стабилизатора можно определить, какими достоинствами и недостатками он обладает.
К преимуществам относятся:

  1. Отсутствие шума при нормализации тока.
  2. Один тиристор может сработать более 1 млрд. раз, что является очень высоким показателем.
  3. Во время размыкания не образуется дуговой разряд.
  4. Небольшой уровень энергопотребления.
  5. Небольшие габариты.
  6. Высокая скорость выравнивания напряжения.
  7. Высокий уровень точности нормализации напряжения (до ± 3 процентов).
  8. Возможность работы при очень низких или высоких уровнях напряжения (120-300 вольт).

Что касается недостатков тиристорного стабилизатора, то они кроются:

  • в ступенчатом способе стабилизации тока;
  • в микрокотроллерном управлении. Его осуществляет электронная схема, которая является аналогом процессора компьютера. Соответственно она также требует стабильного тока и может «подвисать»;
  • в высокой цене (она является следствием дорогих тиристоров и электронных схем управления).

Как подключить?

Использование тиристорных стабилизаторов напряжения в доме позволит уберечь технику от изменений тока в течение многих лет. Однако перед использованием его нужно подключить.

В зависимости от назначения тиристорные стабилизаторы могут подключаться после счетчика и распределительного щитка (то есть будут подавать стабильный ток на весь дом), или же перед отдельным прибором.

В первом случае тиристорные приборы имеют большую мощность и их подключают через клеммы. В этом случае к клеммам подключаются входные, выходные провода, а также заземляющий. При подключении как входящих, так и выходных проводов соблюдается правило: к фазной клемме подсоединяют фазный кабель, к нулевой — нулевой кабель. Также необходимым условием является осуществление заземления.

Большинство моделей, которые предназначены для подачи питания для одного прибора, имеют кабель и розетки. Благодаря кабелю стабилизатор подключается к сети. Далее к розетке, расположенной на нем, подсоединяют вилки кабелей подключаемых приборов.

Полезный совет: для того, чтобы заземлить такой тиристорный стабилизатор, вилку его кабеля всего-то нужно вставить в трехполюсную розетку.

Условия эксплуатации

Тиристорные стабилизаторы выгодны не только тем, что не создают шума, но и тем, что являются неприхотливыми к окружающим условиям. Так, многие модели могут работать в условиях, когда температура воздуха превышает -40 градусов Цельсия и является меньшей +40 градусов Цельсия.

Полезный совет: будет лучше, если тиристорный стабилизатор не использовать при морозной температуре, даже если он может работать в таких условиях. Идеальной температурой для работы будет такая, которая превышает +5 градусов Цельсия.

Тиристорный стабилизатор может отлично работать в помещении, уровень влажности в котором не является большим 80-ти процентов. Некоторые производители предлагают стабилизаторы с устойчивостью к высшим уровням влажности. Однако их делают на заказ.

Конечно, близ тиристорного устройства не должно находиться легковоспламеняющихся предметы, а также вокруг него должно быть пространство в как минимум пять сантиметров.

Техобслуживание сводится к очистке вентиляционных отверстий и проверке качества крепления входных и выходных проводов.

Источник