Меню

Стабилизаторы что это химия

Что такое стабилизаторы?

Стабильность — свойство лекарственных средств сохранять физико-химические и м — б свойства в течение определенного времени с момента выпуска.

  • — физико-химических (дисперсных) систем:

желатоза; производные МЦ; микробные ПС; ПВП; бентониты, твин — 80 и др.

  • — химических веществ:

вещества, тормозящие гидролитические процессы (кислоты, щелочи, буферные системы); вещества, тормозящие о — в процессы (натрия метабисульфит, тиомочевина, трилон Б и др.)

  • — противомикробные стабилизаторы (консерванты):

металлорганические соединения; органические соединения (спирты фенолы, кислоты, сложные эфиры, соли четвертичных аммониевых соединений, эфирные масла).

Стабилизаторы физико-химических систем имеют большое значение для гетерогенных систем (суспензий и эмульсий), используемых в медицинской практике благодаря ценным свойствам: возможность изготовления и использования лекарственных препаратов из т/р или н/р лекарственных средств; продленность действия лекарственных веществ; осуществимость различных способов введения, в том числе и инъекционного. Так, стабильные суспензии бария сульфата, позволяют своевременно диагностировать изменения слизистой оболочки желудочно-кишечного тракта; эмульсии масла вазелинового необходимы для больных с атонией кишечника, для стимуляции его функции.

Стабилизаторы химических веществ используются в процессе изготовления и длительного хранения лекарственных препаратов. Этот вид стабилизации имеет большое значение для ЛФ, подвергающихся различным видам стерилизации, особенно термической. В данном случае используется химический метод стабилизации, который особенно необходим для жидких ЛФ. Стабилизаторы этой группы угнетают процессы гидролитического или о — в разложения лекарственных веществ. Особенно чувствительны к окислению ненасыщенные жиры и масла, соединения с альдегидными и фенольными группами. Реакции окисления могут быть ингибированы путем добавления небольших количеств вспомогательных веществ, называются антиоксидантами (противоокислителями). По механизму действия, АО делят на 3 группы:

  • 1. АО, которые ингибируют процесс окисления, реагируя со свободными радикалами первичных продуктов окисления, чем прекращают развитие цепной реакции.
  • 2. АО, которые имеют более низкий о — в потенциал, чем находящиеся в системе окисляющиеся соединения, и которые окисляются первыми.
  • 3. Синергисты АО, собственное а/о действие которое незначительно, однако они способствуют усилению действия других АО.

Противомикробные стабилизаторы (консерванты) используют для предохранения лекарственных препаратов от микробного воздействия. Консервирования не исключает соблюдения санитарных правил производственного процесса, которые должны способствовать максимальному снижени микробной контаминации лекарственных препаратов. Консерванты являются ингибиторами роста тех микроорганизмов, которые попадают в лекарственные препараты. Они позволяют сохранить стерильность лекарственных препаратов или предельно допустимое число непатогенных микроорганизмов в не стерильных ЛП. К консервантам предъявляются те же требования, что и к др. вспомогательным веществам.

В ГФ ХI в качестве антисептических веществ для инъекционных растворов, других ЛФ, сывороток и вакцин включены: хлорбутанолгидрат (0,05 — 0,5%); фенол (0,25 — 0,3%); хлороформ (0,5%); мертиолат (0,01%) нипагин (0,1%); нипазол, кислота сорбиновая (0,1 — 0,2%) и др. В отличие от предыдущих фармакопей, в ГФ ХI приведены консерванты, предназначенные для всех не инъекционных ЛФ.

Металлоорганические соединения ртути — например, мертиолат. Обладает высокой антимикробной активностью малых дозах не токсичны для человека. Мертиолат применяется для глазных капель (0,005%), глазных мазей (0,002%), инъекционных растворов (0,01%), мазей (0,1%).

  • — спирты (этиловый, бензиловый, хлорбутанолгидрат);
  • — фенолы (фенол, хлоркрезол);
  • — органические кислоты (бензойная и сорбиновая);
  • — сложные эфиры парагидроксибензойной кислоты;
  • — соли четвертичных аммониевых соединений;
  • — эфирные масла.

Спирт этиловый — экстрагент при получении настоек, экстрактов и концентратов из лекарственного растительного сырья. Одновременно выполняет роль консерванта. В эмульсиях этанол в количестве 10-12% от водной фазы, в галеновых и новогаленовых препаратах — до 20%.Наилучшими а/с свойствами обладает 70% этанол.

Спирт бензиловый — жидкость с приятным ароматическим запахом. 0,9% — для глазных капель, эмульсионных мазевых основ.

Хлорбутанолгидрат — бесцветные кристаллы с запахом камфары. Для консервирования экстракционных препаратов, соков свежих растений, органопрепаратов.

Фенол. 0,25 — 0,5% растворы фенола — для препаратов инсулина, вакцин и сывороток.

Хлоркрезол. В 10 — 13 раз активнее фенола, но менее токсичен. Для консервирования глазных капель (0,05%); инъекционных растворов (0-,1%), мазей (0,1 — 0,2%).

Кислота бензойная. Обычно применяется в виде натриевой соли. Используют для консервирования сиропа сахарного, эмульсии масла вазелинового, суспензий с а/б.

Кислота сорбиновая. Разрешена во многих странах для консервирования пищевых продуктов, безвредна даже в больших количествах. Для консервирования сиропов и экстрактов, натрия бромида, кальция хлорида, мазей и линиментов.

Сложные эфиры парагидроксибензойной кислоты

— парабены. Метиловый эфир — нипагин и пропиловый эфир — нипазол. Более сильное действие при сочетании 0,025г пропилового и 0,075г метилового эфиров (1:3). Малая токсичность парабенов позволяет использовать их для ЛП для внутреннего применения — сиропов, настоек, отваров, а/б, пероральных эмульсий, желатиновых капсул, мазей.

Читайте также:  Опора стабилизатора гольф 6

Представитель солей четвертичных аммониевых соединений (БАХ) бензалкония хлорид. Эффективен в отношении многих грамотрицательных, грамположительных бактерий и не обладает токсичностью.

В настоящее время почти во всех зарубежных странах применяется для консервирования глазных ЛФ, капель для носа, где требуются отсутствие раздражающего действия и быстрый бактерицидный эффект.

Отечественный консервант этой группы — диметилдодецилбензиламмония хлорид. (ДМДБАХ). По сравнению с БАХом ДМДБАХ активнее в отношении синегнойной палочки, которая обычно является представителем сопутствующей флоры при глазных заболеваниях.

Эфирные масла используют в качестве консервантов для ЛП наружного применения (мази, эмульсии, линименты). Эфирные масла содержащие фенольные соединения — лавровое, укропное, лавандовое, розовое, анисовое, лимонное. Они обладают не только консервирующими свойствами, но и бактерицидной активностью в отношении патогенной микрофлоры кожи, в том числе дрожжей, вызывающих кандидозы. Пример повышения стабильности ЛП при добавлении консервантов:

Источник



Х и м и я

Коллоидная химия

Коллоидная химия

Стабилизация коллоидных растворов.

Неустойчивость дисперсных систем

Дисперсные системы принципиально термодинамически не устойчивы.

На границе раздела фаз дисперсных систем происходят процессы, направленные на уменьшение свободной поверхностной энергии, приводящие к уменьшению дисперсности, т.е. к укрупнению частиц.

Поэтому происходит слияние мелких капель в туманах, дождевых облаках и эмульсиях, агрегация высокодисперсных частиц в более крупные образования.

Всё это приводит к разрушению дисперсных систем: туманы и облака проливаются дождями, эмульсии расслаиваются, коллоидные растворы коагулируют, т.е. разделяются на осадок дисперсной фазы (коагулят) и дисперсионную среду или, в случае вытянутых частиц превращаются в гель.

Способность раздробленных систем сохранять присущую им степень дисперсности называется агрегативной устойчивостью.

Способы стабилизации дисперсных систем

Предотвращение агрегации (объединения) первичных дисперсных частиц возможно в результате трёх факторов, влияющих на устойчивость дисперсных систем:

2. Электрического и

Кинетический фактор устойчивости

Необходимым условием слипания двух частиц дисперсной фазы является их сближение, достаточное для проявления сил притяжения.

Если частота столкновения коллоидных частиц мала, то дисперсная система может быть устойчивой. Это может иметь место при очень малой концентрации дисперсных частиц (например, в некоторых аэрозолях) или при очень большой вязкости дисперсионной среды, например в системах, где и дисперсная фаза, и дисперсионная среда – твёрдые вещества.

Мы подробнее рассмотри второй и третий факторы (электрический и структурно-механический), влияющие на устойчивость, именно потому что на основе их разработаны методы стабилизации дисперсных систем.

Большинство устойчивых дисперсных систем кроме дисперсной фазы и дисперсионной среды, содержат ещё третий компонент, являющийся стабилизатором дисперсности.

Стабилизатором могут быть как ионы, так и молекулы, в связи с чем различают два механизма стабилизации дисперсных систем: электрический и молекулярно-адсорбционный (структурно-механический).

В основе обоих механизмов лежит адсорбция, но в случае электрического механизма на поверхности коллоидных частиц происходит адсорбция ионов, а в случае молекулярно-адсорбционного механизма — адсорбция молекул.

Электрическая стабилизация дисперсных систем

Электрическая стабилизация дисперсных систем связана с возникновением двойного электрического слоя на границе раздела фаз. (Подробнее об этом см. раздел: Коллоидные частицы. Строение коллоидной мицеллы. ).

Такая стабилизация имеет основное значение для получения устойчивых лизолей и суспензий в полярной среде, например, в воде.

В любом гидрозоле все коллоидные частицы имеют одинаковый знак заряда. Однако коллоидная мицелла в целом электронейтральна в результате образования двойного электрического слоя.

Поэтому электростатическое отталкивание между коллоидными частицами (электрический фактор устойчивости) возникает только при достаточном их сближении, когда происходит перекрывание их ионных атмосфер.

Потенциальная энергия электростатического отталкивания тем больше, чем больше перекрывание диффузных частей двойного электрического слоя двойного электрического слоя коллоидных частиц, т.е. чем меньше расстояние между ними и чем больше величина двойного электрического слоя.

Кроме электростатического отталкивания, между коллоидными частицами, как и между молекулами любого вещества, действуют межмолекулярные силы притяжения, среди которых наибольшую роль играют дисперсионные силы.

Потенциальная энергия взаимодействия (U) между коллоидными частицами представляет собой алгебраическую сумму потенциальной энергии электростатического отталкивания () и потенциальной энергии дисперсионного притяжения () между ними:

Если силы отталкивания преобладают над силами притяжения, то дисперсионная система устойчива.

И наобортот, если силы притяжения оказываются выше, то происходит слипание сталкивающихся при броуновском движении коллоидных частиц в более крупные агрегаты и их дальнейшая седиментация (оседание). Коллоидный раствор коагулирует, т.е. разделяется на коагулят (осадок) и дисперсионную среду.

Читайте также:  Стабилизаторы для рентгеновских аппаратов

Таким образом, при стабилизации дисперсных систем добиваются того, чтобы силы отталкивания между коллоидными частицами преобладали над силами межмолекулярного притяжения.

В случае электрической стабилизации это осуществляется поддержанием относительно высокого электрического потенциала гранулы коллоидной частицы (так называемого ζ-потенциала).

Коллоидные частицы, которые не имеют электрического заряда или имеют малый заряд легко и быстро коагулируют.

Электрическая стабилизация частиц может быть достигнута добавлением в золь электролита. При этом очень важное значение будет иметь количество добавленного электролита, поскольку электролит, с одной стороны, может стабилизировать золь, а с другой – их избыточное добавление ведёт к коагуляции золей.

Молекулярно-адсорбционная стабилизация дисперсных систем. Структурно-механический фактор

Молекулярно-адсорбционная стабилизация дисперсных систем играет большую роль в устойчивости дисперсий как в водной, так и в неводных средах.

Дисперсные системы в неводных средах в принципе менее устойчивы, чем в водной среде. В неполярной и не содержащей воды дисперсионной среде частицы дисперсной фазы лишены электрического заряда. Электрический фактор стабилизации отсутствует.

Между дисперсными частицами существуют только силы взаимного притяжения. Ослабление этих сил, приводящее к стабилизации дисперсных систем, может происходить в результате образования вокруг коллоидных частиц адсорбционных слоёв из молекул дисперсионной среды и растворённых в ней веществ.

Такие слои ослабляют взаимное притяжение частиц дисперсной фазы и создают структурно-механический барер, препятствующий их сближению.

Стабилизация дисперсных систем за счёт сольватации дисперсной фазы молекулами дисперсионной среды возможна как в полярных, так и в неполярных средах.

Так, гидратация частиц глины и кремневой кислоты имеет существенное значение для устойчивости суспензий глин и золя кремневой кислоты в водной среде.

Однако, стабилизация дисперсных систем значительно более эффективна при добавлении к ним поверхностно-активных веществ (ПАВ) и высокомолекулярных соединений, адсорбирующихся на границе раздела фаз.

Адсорбционные слои ПАВ и высокомолекулярных соединений, обладая упругостью и механической прочностью, надёжно предотвращают слипание дисперсных частиц.

Образование таких молекулярно-адсорбционных твёрдообразных поверхностных слоёв советский физик П.А. Ребиндер назвал структурно-механическим фактором стабилизации дисперсных систем.

Этот механизм играет основную роль при получении предельно устойчивых высококонцентрированных пен, эмульсий, коллоидных растворов и суспензий не только в неводных, но и в водных средах.

Для структурно-механической стабилизации дисперсий в водной среде применяют мыла щелочных металлов, белки, крахмал, а в неводных средах – мыла щелочноземельных металлов, смолы каучуки. Такие вещества называют защитными коллоидами.

Источник

Стабилизатор — это вещество, добавление которого в дисперсную систему повышает ее агрегативную устойчивость, т. е. препятствует слипанию частиц.

В качестве стабилизаторов суспензий применяют:

Механизм их стабилизирующего действия различен, в зависимости от природы стабилизатора реализуется один, а чаще несколько факторов устойчивости, аналогично тому, как это происходит в лиофобных золях. Отметим возможные факторы устойчивости:

Если стабилизатор является ионогенным веществом (распадается в растворе на ионы), то обязательно действует электростатический фактор устойчивости: на поверхности частиц образуется двойной электрический слой, возникает электрокинетический потенциал и соответствующие электростатические силы отталкивания, препятствующие слипанию частиц. Электростатическое отталкивание частиц описано теорией. Если это ионогенное вещество — низкомолекулярный неорганический электролит, то его стабилизирующее действие ограничивается только этим фактором. Если же ионогенное вещество — коллоидное ПАВ или полиэлектролит, то реализуются и другие факторы устойчивости, рассмотрим их подробнее.

СТАБИЛИЗИРУЮЩЕЕ ДЕЙСТВИЕ КОЛЛОИДНЫХ ПАВ

Стабилизирующее действие коллоидных ПАВ определяется их способностью адсорбироваться на межфазной поверхности, образуя адсорбционные пленки. Вследствие высокой поверхностной активности концентрация ПАВ в поверхностном слое в десятки тысяч раз превышает объемную концентрацию, поэтому в адсорбционных пленках, так же как и в мицеллах ПАВ, происходит ассоциация неполярных групп. Строение адсорбционного слоя зависит от:

• природы межфазной поверхности (границы: «твердая частица-жидкая среда»);

• степени заполнения поверхности;

• наличия в дисперсионной среде различных добавок. Изменение строения адсорбционного слоя отражается на его защитных свойствах.

Коллоидное ПАВ, имея дифильное строение, способно адсорбироваться как на полярных, так и на неполярных поверхностях, лиофилизируя их.

В соответствии с правилом уравнивания полярностей Ребиндера стабилизирующее действие ПАВ проявляется тем заметнее, чем больше первоначальная разница в полярностях твердой частицы и жидкой дисперсионной среды. Таким образом, при использовании в качестве стабилизатора коллоидного ПАВ реализуется адсорбционно-сольватный фактор устойчивости. Например, чтобы получить суспензию сажи в воде, используют олеат натрия, который неполярным углеводородным радикалом адсорбируется на частицах сажи, а полярная группа, направленная в сторону воды, ею гидратируется и тем самым поверхность частицы становится смачиваемой водой (гидрофилизируется), суспензия стабилизируется. Аналогичный процесс мы проводим, когда моем руки, загрязненные сажей, или моем посуду после жирной пищи.

Читайте также:  Стабилизатор rucelf srw 10000 d навесной

Олеат натрия можно использовать и для стабилизации суспензии силикагеля (SiO 2) в бензоле (неполярная жидкость):

В этом случае олеат натрия будет адсорбироваться на поверхности твердой частицы своей полярной группой, направляя углеводородный радикал в сторону бензола. Тем самым поверхность силикагеля становится гидрофобной, бензол ее смачивает, и суспензия стабилизируется.1

Но лучший стабилизирующий эффект достигается при более специфическом выборе ПАВ. Подбор ПАВ для стабилизации суспензий различного типа сходен с подбором ПАВ для стабилизации прямых и обратных эмульсий. Если необходимо стабилизировать суспензию полярных частиц в неполярной жидкости, то используется коллоидное ПАВ с низкими значениями чисел ГЛБ, обычно 3-6, т. е. малорастворимые в воде, известны случаи стабилизации ПАВ с 30 атомами углерода в цепи.

В пищевой промышленности для этих целей используются липоиды (лецитин), ланолин и т. д.

Если необходимо стабилизировать суспензию неполярных частиц в полярной жидкости, то применяются коллоидные ПАВ с высокими значениями чисел ГЛБ, обычно 8-13, т. е. достаточно хорошо растворимые в воде, такие соединения содержат 10-18 атомов углерода в цепи.

Максимум стабилизирующих свойств наблюдается у ПАВ с 14-16 атомами углерода (так называемый максимум Донана). В пищевой промышленности для этих целей часто используют пропиловый спирт, соли высших карбоновых кислот и т. д.

СТАБИЛИЗИРУЮЩЕЕ ДЕЙСТВИЕ ВМС И ПОЛИЭЛЕКТРОЛИТОВ

Строго говоря, в качестве стабилизаторов дисперсных систем, в том числе и суспензий, можно использовать только такие ВМС, которые являются поверхностно-активными веществами и их надо было бы называть поверхностно-активными высокомолекулярными веществами (ПАВМС или ВМПАВ). Чтобы оказать защитное действие, молекулам полимера необходимо адсорбироваться на поверхности частицы, а это может произойти только в том случае, .если при этом уменьшится поверхностное натяжение на границе раздела фаз. Эти вещества отличаются от коллоидных ПАВ тем, что для них характерно возникновение структурно-механического фактора устойчивости.

Таким образом, если в качестве стабилизатора применяются ВМС, то механизм их действия аналогичен механизму коллоидной защиты лиофобных золей: адсорбция молекул полимера на твердых частицах приводит к возникновению защитной оболочки, обладающей механической прочностью и упругостью, причем отмечено, что адсорбция ВМС является необратимой. Для этого вокруг частицы должен существовать избыток макромолекул, необходимый для образования насыщенного монослоя или даже полислоя. Электронномикроскопические снимки непосредственно доказали наличие таких защитных оболочек. Например, адсорбционные слои метилцеллюлозы на частицах полистирола имеют толщину 70-100 А ˚ . Таким образом, возникает структурно-механический фактор устойчивости,полностью предотвращающий коагуляцию частиц и возникновение между ними непосредственного контакта. Он играет главную роль в обеспечении агрегативной устойчивости суспензий. Обычно он сопровождается энтропийным фактором устойчивости ,вклад которого достаточно велик. Это обусловлено тем, что при сближении частиц, стабилизированных молекулами ВМС, уменьшается число возможных конформаций молекул полимера, а это приводит к уменьшению энтропии системы, поэтому частицы стремятся оттолкнуться друг от друга.

Если в качестве ВМС используются полиэлектролиты, то к этим двум факторам добавляется и третий — электростатический фактор устойчивости. Полиэлектролиты-стабилизаторы применяются для водных суспензий, т. е. для стабилизации гидрофобных частиц в полярных жидкостях. Наиболее распространенные водорастворимые полиэлектролиты — это белковые вещества, альгинаты, карбоксиметилцеллюлоза, алкилполиамин и т. д.

При использовании ВМС в качестве стабилизаторов суспензий надо помнить о таком явлении как сенсибилизация. Сенсибилизация — явление уменьшения агрегативной устойчивости системы при добавлении к ней высокомолекулярных соединений.

Ранее это явление рассматривалось в отношении лиофобных золей, но оно характерно и для суспензий. Сенсибилизация, как правило, обнаруживается при малом содержании макромолекул в дисперсионной среде и объясняется образованием между отдельными частицами мостиков стабилизатора. В суспензиях каолина и полистирола возникновение мостиков доказано электронномикроскопическими исследованиями: концентрациям метилцеллюлозы до 1-2% от веса твердой фазы обычно отвечает неустойчивое, а выше 4% — устойчивое состояние суспензии.

Таким образом, решающее влияние на защитное действие макромолекул оказывает соотношение между количеством полимера и удельной поверхностью частиц.

Для стабилизации суспензии полистирола необходима поверхностная концентрация метилцеллюлозы 6 · 10 -4 г/м 2 . Аналогичные соотношения установлены и для других ВМС.

В заключение можно сказать, что агрегативная устойчивость суспензий в сильной степени зависит от специфического взаимодействия макромолекул с поверхностью частиц дисперсной фазы. Следовательно, выбор ВМС для стабилизации суспензии носит, во многом, эмпирический характер.

Источник