Меню

Стенд для проверки мощности двс

Стенды испытания двигателей

Испытательные стенды для двигателей двс

При испытаниях технических объектов, связанных с вращающимися узлами приходится опираться на термины, для которых в русском языке нет соответствующих определений. Проблема эта не нова. Инновации, к сожалению, идут к нам пока из англоязычной научно-технической среды, и привносят соответствующую терминологию в наш язык обыкновенные переводчики. И если термин «нечистоты» (inpurities), применительно к полупроводникам был довольно быстро исправлен на «примеси», то с расширением файла (file extension) мы маемся уже не один десяток лет.

Так что нельзя сказать, что никогда не было и вот опять: Динамометры для измерения механической мощности. Что это такое, вроде бы очень знакомое, но вне закона, вне стандартов. С этим понятием, как и с множеством других из чрезвычайно важной отрасли испытаний, а также кратким введением в методы и средства испытаний двигателей предлагается ознакомиться в ниже следующей статье.

Почему слово «ДИНАМОМЕТР» мы заключаем в кавычки?

Потому что на нашем сайте мы придерживаемся официальной технической терминологии, которая трактует термин динамометр, как устройство для измерения силы, или момента силы, если последняя приложена через рычаг известной длины. А «Динамометры» о которых будет идти речь — это измерители механической мощности (двигателя) на испытательном стенде, содержащие управляемый имитатор нагрузки и датчик угловой скорости от которых эта мощность зависит. Это понятие более узкое и под него подходят все приборы для измерения механической мощности, передаваемой через валы от двигателей/приводов к исполнительным механизмам. Правильно было бы назвать их официально измерителями механической мощности и выпустить соответствующий стандарт. Или дополнить существующие Госты на динамометры, добавив к ним и измерители механической мощности. Тогда от кавычек можно будет оказаться.

Кратко о разновидностях измерителей механической мощности.

Можно выделить из их числа так называемые «brake-динамометры», которые позволяют измерить на испытательном стенде чистую выходную мощность двигателя внутреннего сгорания, не включая в неё потери на трение, на вспомогательное оборудования, например, генератор и пр. Они подразделяются на гидравлические — на основе гидротормозов, вихретоковые и гистерезисные устройства измерения механической мощности двигателей на испытательных стендах и при мониторинге состояния двигателей на основе электромагнитных тормозов. Гидравлические «динамометры» по сути являются гидравлическими насосами, у которых рабочий вал крутится двигателем. Нагрузка на двигатель изменяется при открытии или закрытии клапана, который изменяет давление в гидравлическом насосе. Для управления давлением применяются прецизионные клапаны.

Вихретоковые «динамометры» основаны на легко управляемых электромагнитных имитаторах нагрузки. Двигатель на испытательном стенде вращает диск в пространстве между электромагнитными катушками. Электрический ток проходит через катушки окружающие диск, и индуцирует магнитное сопротивление движению диска, жестко закрепленного на валу. Изменяющийся ток изменяет нагрузку на двигатель. «Динамометр» оказывает сопротивление вращению двигателя. Если он подключен к выходному валу двигателя, он называется двигатель — «динамометром». Если к ведущим колесам автомобиля, его называют шасси -«динамометром». Сила, действующая на корпус «динамометра», уравновешивается механическим сопротивлением опорного элемента с датчиком силы (например, тензодатчиком). Таким образом, измерение момента двигателя на испытательном стенде происходит реактивным способом, для которого характерна наибольшая инерционность.

При использовании датчиков момента серии TM происходит прямое бесконтактное измерение крутящего момента, но и здесь инерционность проявляет себя.

Особым видом электромагнитных тормозов являются гистерезисные. Принцип их действия основан на том, что при повороте ротора из материала с выраженной широкой петлей гистерезиса относительно электромагнита статора затрачивается энергия на перемагничивание материала (специальной кольцевой втулки) ротора. Материал этой втулки обладает низкой электропроводностью, чтобы не возникали вихревые токи. Чем же они мешают работе работе тормозов? А тем, что нарушают уникальное свойство гистерезисных тормозов — постоянство передаваемого момента. Часто применяемый режим испытаний двигателя на испытательном комплексе — стабилизация момента, требует обычно применения ПИД-регулятора. А при этом тормозном устройстве регулятор не нужен. Что касается мощности тормоза, то он скорее всего будет уступать вихретоковому. Здесь же содержится и ответ на часто задаваемый начинающими испытателями вопрос, почему не используется в качестве управляемого тормоза на стенде электрогенератор. Ведь это бы решило все проблемы с отводом энергии торможения с испытательного стенда и даже снизило затраты электроэнергии. Причина в трудности управления режимами такого тормоза, хотя работы в этом направлении ведутся.

Инфрастуктура испытательного стенда двигателя.

Некоторые компоненты измерителя механической мощности обычно размещаются в устройстве вблизи друг от друга: вал и подшипники, тормозящий механизм со свободно подвешенным корпусом, тензодатчик и импульсный датчик угловой скорости со схемой вихретокового измерителя мощности. Вообще говоря, требуется также инфраструктура для охлаждения тормозящего устройства, которое преобразует энергию торможения в тепло. Задача решается с помощью теплообменника или циркуляцией воды или воздуха, что не указано на схеме. Весь стенд размещается на прочной раме, которая соединяется с рамой испытываемого двигателя. Величина силы (F) снимаемой с тензодатчика может быть преобразована в момент умножением на расстояние от оси вала до опорной точки тензорезисторного моста (для случая реактивного датчика крутящего момента).

Если момент выражен в Нм, а угловая скорость вала в радианах в секунду ,то мощность на валу вычисляется по формуле:

Контроллеры для измерителей мощности.

Для испытаний двигателя на стенде необходим контроллер. Это электронное устройство, обладающее возможностью управлять нагрузкой двигателя, например, с помощью изменения тока подаваемого на катушки электромагнитов, как это имеет место в электромагнитных тормозах. Также он должен уметь вычислить уровень нагрузки (крутящий момент) и угловую скорость вала. Контроллер измерителя мощности обычно работает в двух режимах: управление (стабилизация) скоростью и управление (стабилизация) нагрузкой. В режиме управления скоростью на контроллере устанавливается заданное значение скорости. Если измеренное значение скорости меньше заданного, нагрузка снижается и на оборот. Если двигатель располагает достаточной мощностью (моментом), можно ожидать, что контроллер стабилизирует таким образом угловую скорость.

Схема испытания двигателя с контролем скорости

Испытания двигателя на стенде

В режиме стабилизации нагрузки заданное значение нагрузки устанавливается на контроллере (либо как подаваемое из вне управляющее напряжение или установкой на лицевой панели контроллера). Если измеренная нагрузка на двигатель больше, чем заданная, ток на катушки уменьшается. Если измеренная нагрузка меньше заданной, тогда ток на катушки увеличивается. Если двигатель имеет достаточный крутящий момент для достижения заданной нагрузки, то будет поддерживаться постоянная нагрузка при изменяющейся скорости.

Испытания двигателя на стенде на предмет мощности:

Целый ряд различных тестов может быть выполнены с таким простейшим измерителем мощности двигателя. Наиболее распространенным испытанием является получение так называемой кривой мощности двигателя (совместно с кривой крутящего момента двигателя). В этом тесте двигатель работает при полностью открытой дроссельной заслонке (WOT), а «динамометр» работает в режиме стабилизации скорости вращения вала. Задание скорости изначально устанавливают на низком уровне, в несколько раз ниже скорости холостого хода. Скорость двигателя и крутящий момент измеряются «динамометром», и задание скорости затем увеличивается, например, на 500 об/мин, и как только двигатель стабилизируется на новой скорости, новая скорость и крутящий момент измеряются снова. Это повторяется до достижения максимальной желаемой скорости. Чистая мощность (без учета потерь) может быть рассчитана по измеренным данным, получены кривые для крутящего момента и мощности в режиме WOT (открытая заслонка) в зависимости от частоты вращения двигателя.

Читайте также:  Измеритель оптической мощности кивитех kiwi 4301 01

Мощность и крутящий момент двигателя

Всем известная формула:

показывает, что мощность P (кВт) при постоянном моменте M (Н*м) будет расти с ростом скорости вращения Ω (об/мин). В режиме постоянного момента это будет прямолинейный рост. Но фактически получаются такие кривые, как на графике выше. Причина в том, что момент с ростом оборотов начинает падать, так как ухудшаются процессы сгорания топлива в режимах, далеких от оптимальных. Инженеру тестировщику и конструктору эти графики могут все рассказать о состоянии двигателя.
Обратите внимание: при тестировании двигателя на стенде в режиме WOT нужно быть очень осторожным, так как любая ошибка в тестировании может привести к чрезмерному превышению скорости двигателя, возможной его поломке.
Нужно иметь в виду и еще одну проблему.
Ручное управлением процессом испытаний на стенде увеличивает продолжительность испытаний и количество тепла, выделяемого в тормозном устройстве и в испытываемом двигателе внутреннего сгорания. А значит повышает требования к теплоотводящей инфраструктуре испытательного стенда.

Можно было бы предположить, что переход на более продвинутые контроллеры типа DSP7000 позволит ускорить испытательный цикл и обойтись без охлаждающей системы вообще. Но в действительности ускорить процесс испытаний мешают инерционные явления. Например, инерционность датчика крутящего момента, о чем написано в appendix A руководства DSP7000. Кроме того, ступенчатое изменение параметров требует времени на стабилизацию переходных процессов. На DSP7000 можно легко реализовать на испытательном комплексе линейный режим изменения скорости, (постоянное ускорение) при котором можно сделать поправки на инерционность прямого или реактивного датчика крутящего момента (appendix A DSP7000)
В этом режиме мы получим даже в идеализированном случае отклонение от той зависимости момента от скорости, которая получена вышеописанным ступенчатым процессом испытаний. Это отклонение вызвано постоянным ускорением вращения вала во время испытания. Оно пропорционально ускорению и носит инерционный характер.
Как показывает анализ, достаточно один раз в эксперименте вычислить коэффициент пропорциональности и дальше делать поправки на инерцию при любых ускорениях, существенно ускоряя процесс испытаний на стенде. Это однократное контрольное измерение делается при оптимальном для данного двигателя числе оборотов, когда процессы сгорания топлива и газообмена происходят в наиболее благоприятном режиме. После этого испытательный процесс на стенде проходит в ускоренном режиме линейного во времени повышения скорости. Отклонение кривой мощности от прямой линии при этом дает испытателю исчерпывающую диагностическую информацию о состоянии двигателя, как кардиологу кардиофония или кардиограмма о состоянии сердца.

Испытания двигателя. Имитация тест-драйва на испытательном стенде.

Для проверки поведения двигателя на испытательном стенде в режиме имитации реального тест-драйва лучше всего использовать режим управления нагрузкой. Понятно, что, частота вращения и нагрузка двигателя при этом будут меняться во времени, поэтому контроллер должен быть программируемым или иметь функцию управления нагрузкой по сигналу напряжения, передаваемому на него от программируемого источника напряжения (то есть ЦАП). Обычно оператор получает «график скорости» (то есть скорость в зависимости от времени) в процессе теста и может видеть фактическую скорость двигателя. Его задача — поддерживать двигатель как можно ближе к рабочей (программной) скорости, насколько это возможно, в ходе испытаний с помощью обычной дроссельной заслонки. Эта задача может быть альтернативно более качественно выполнена если применить на испытательном стенде программируемый со входом по скорости контроллер дроссельной заслонки (аналогичный контроллеру динамометра) и с выходом на электрически управляемый привод дроссельной заслонки.

Пример испытания двигателя внутреннего сгорания на испытательном стенде

Чтобы проверить двигатель мотоцикла под нагрузкой и измерить его выходную мощность, он был подключен к измерителю мощности на испытательном стенде через приводной вал зубчатого колеса трансмиссии . Для контроля и измерения мощности двигателя использовался вихретоковый имитатор нагрузки. Измеритель мощности, являющийся основой испытательного стенда проверки мотоциклетного двигателя, состоит из приводного вала, вращающего диск с 60 зубцами/метками, и индукционный диск, как схематически показано на рисунке. Индукционный диск вращается внутри корпуса, который содержит электромагнитные катушки. Корпус свободно поворачивается вокруг вала. Повороту корпуса препятствует тензодатчик, соединенный с рамой двигателя.

Схема расположения на испытательном стенде двигателя мотоцикла и измерителя мощности с вихретоковой нагрузкой.

Ток, протекающий в катушках, вызывает силы сопротивления в индукционном диске, препятствующие вращению приводного вала. Реактивный крутящий момент, создаваемый в корпусе, измеряется тензодатчиком и записывается. Измеритель мощности получает сигнал с датчика скорости двигателя, и сравнивает его с заданным значением скорости, которое устанавливается с помощью лицевой панели контроллера динамометра или подачей внешнего напряжения. Если скорость вала больше, чем заданное значение скорости, ток в катушках увеличивается, увеличивая тем самым торможение на приводном валу и замедляя двигатель. Если скорость ниже скорости задатчика, ток в катушках уменьшается. В близи заданного значения контроллер выдает управляющий сигнал с широтно-импульсной модуляцией (ШИМ) для катушек. Это позволяет контроллеру изменять нагрузку на двигатель, чтобы поддерживать заданную частоту вращения вала. Измеритель мощности с вихретоковой нагрузкой, рассчитан на 30 кВт и управляется простейшим контроллером.

Во время измерения мощности необходимо обеспечить достаточное количество охлаждающего воздуха для двигателя, чтобы избежать перегрева. Это было достигнуто большим вентилятором и раструбом, который обеспечивал поток воздуха над двигателем со скоростью примерно 40 км/час. Температура капота постоянно контролировалась с помощью термопары, чтобы убедиться, что он не перегрелся.

Кривые мощность и крутящий момент от скорости вращения

Тормозному устройству также требовалось охлаждения для рассеивания тепла, вырабатываемого индукционным диском и катушками. Это было обеспечено циркуляцией воды через корпус измерителя мощности через специальные трубки. Контроллер измерителя мощности может варьировать нагрузку на двигатель и измерять скорость и крутящий момент приводного вала. Обычно двигатель работал при заданной установке угла заслонки дросселя, и контроллер поддерживал постоянную скорость вала. Все измеренные данные были взяты с вала главной передачи трансмиссии. Эти числа могут быть преобразованы обратно в фактические характеристики двигателя путем деления крутящего момент на передаточное число и умножения скорости на передаточное число. Заметим, что здесь не учитывается эффективность трансмиссии, которая для типичного мотоцикла составляет около 90%. Все количественные данные о мощности и крутящем моменте, представленные здесь, являются необработанными числами, не скорректированными на потери в трансмиссии.

График мощности и крутящего момента, создаваемого двигателем, показан на рисунке. На этом графике показаны результаты нескольких различных тестов, выполненных на второй, третьей и четвертой передаче. Пиковая мощность составляет чуть более 5 кВт при 6000 об / мин, а максимальный крутящий момент составляет примерно 9 Нм при 4200 об / мин. Разброс результатов, полученных в разное время составляет порядка +/- 5% для мощности и крутящего момента для всех протестированных комбинаций.

Источник



Стенд замера мощности двигателя

Что такое моторный стенд или стенд мощности?

Полноприводный моторный стенд CARTEC LPS 2810-4WD представляет собой роликовый стенд и компьютер со специализированным программным обеспечением. Это дорогостоящее профессиональное оборудование, которое позволяет измерять характеристики двигателей автомобилей с мощностью до 750 л.с. на одну ось. Таким образом, теоретически, мы можем измерить мощность двигателя полноприводного автомобиля до 1500 лошадиных сил с распределением крутящего момента 50/50.

Принцип работы стенда заключается в следующем: автомобиль закрепляется с помощью ремней, разгоняется до максимальных оборотов, при этом ролики, по которым едут колеса, оборудованы специальными тормозами и препятствуют разгону. После достижения максимальных оборотов тормоза отключаются, и автомобиль «катится» до полной остановки. Проводя постоянные измерения, компьютер учитывает потери трансмиссии и вычисляет характеристики двигателя. В результате мы получаем график зависимости мощности и момента двигателя от оборотов. Именно такие графики и публикуют в рекламных брошюрах автопроизводители.

Читайте также:  Мосэнергосбыт увеличение мощности для частного дома

stend.jpg

Стоимость замеров*

Замеры Стоимость
Моно привод до 250 л.с 6 000 руб.
Моно привод свыше 250 л.с. / Полный привод до 250 л.с. 9 000 руб.
Полный привод свыше 250 л.с. 12 000 руб.
Автомобили мощностью свыше 400 л.с. от 15 000 руб.

*Выкладывайте фото своего автомобиля на нашем стенде в инстаграм, отмечайте наш аккаунт @bood.ru и получите скидку 30% на замер мощности на стенде!

Что это дает клиенту?

Стенд делает возможным замер основных характеристик двигателя в реальном времени на конкретном автомобиле. Все происходит непосредственно в нашем боксе. Всем желающим измерить характеристики своего автомобиля и улучшить динамические показатели с помощью чип-тюнинга, мы предлагаем следующую процедуру:

    устанавливаем машину на стенд и считываем программу с блока управления двигателем (ЭБУ) специальным оборудованием

отправляем заводской софт нашим партнерам в A&A Automobiltechnik (Германия), а тем временем меряем машину на заводской программе

  • немецкий инженер модифицирует программу и пересылает нам, наш специалист прописывает заново ЭБУ и автомобиль сразу проверяется на моторном стенде.
  • Таким образом мы подтверждаем заявленные результаты, а клиент получает документ о проделанной работе.

    Для многих современных автомобилей у наших немецких партнеров есть отлаженные программы увеличения мощности и нет необходимости замерять каждый автомобиль. Но есть двигатели с «адаптированным для России» софтом или специфические для России автомобили. Для отладки таких машин не обойтись без моторного стенда. У немцев просто нет возможности получить такую машину на свой стенд.

    У клиента такого автомобиля пропадает необходимость ездить на автомобиле для проверки программы. Моторный стенд позволяет оперативно отреагировать на возможные недостатки новой прошивки ЭБУ. При выявлении нюансов мы тут же их корректируем, обмениваясь с немцами электронной информацией. Иногда это происходит прямо в режиме видеоконференции.

    Видео с замерами на нашем диностенде

    Больше видео со стенда на нашем YouTube канале.




    Что изображено на графике?

    BMW 318i F30

    График замеров характеристик двигателя наглядно демонстрирует эффективность чип-тюнинга. Из него можно понять на каких оборотах двигатель имеет большую тягу и нет ли провалов в мощности. Обычно на графике изображены кривые мощности и момента – черным цветом заводские, красным – после тюнинга. Любое серьезное тюнинговое ателье имеет в своем портфеле подобные графики и с удовольствием демонстрирует их своим клиентам. Но очень часто в интернете выложены не реальные, а нарисованные графические представления ожидаемых результатов. Особенно это касается «тюнинг-боксов». На практике может оказаться совсем не так, как обещано в рекламе. Порой даже происходит занижение заводских параметров, несмотря на положительные субъективные ощущения.

    Что такое СARTEC LPS 2810-4WD?

    • Точно-сбалансированный полноприводный роликовый стенд. Возможность делать измерения как в режиме 2WD (передний или задний привод), так и в 4WD
    • Пневматический подъемник, блокиратор роликов
    • Внешний блок ролика с электронным управлением вихретокового тормоза
    • Электронный контроллер управления стендом
    • Изменяемое расстояние между роликами. Колесная база от 2200 мм до 3200 мм.
    • Измерение силы: тензометрические (тип ячейки загрузки оси).
    • Дополнительные крепления ремней для безопасности автомобиля во время теста (максимум 8 точек фиксации).
    • Максимальная мощность на 1 ось 750 л.с. (Общая — 1500 л.с. для полного привода).
    • Максимально развиваемая скорость на стенде 300 км/ч
    • Максимальная нагрузка на ось около 3.5 тонн

    Источник

    Потеря мощности. Крутящий момент. Стало ехать хуже. Расход топлива.

    Динамометрический стенд для проверки мощности автомобилей и грузовиков.

    Всем нравится когда их автомобиль едет мощно и экономично. В этом заявлении есть зерно здравой логики . Любая потеря мощности однозначно вызывает перерасход топлива, не не любой перерасход топлива однозначно указывает на потерю мощности. Но, вопрос сегодняшнего разговора лишь косвенно касается расхода топлива. Главный вопрос — это соответствие фактической мощности автомобиля или грузовика — заявленной в тех. документации .

    Цитата из автомобильного форума, практически — анекдот :

    Что здесь не так ? . Если автомобиль или грузовик не едет в режиме заявленной мощности — он неисправен и требует ремонта . И вот здесь встает другой вопрос . После ремонта авто едет с пониженной мощностью . Раньше (до ремонта) ездил лучше . Как так могло получиться? .

    Сразу же встает законный вопрос : на кой *** (три советских) — ты вообще приехал на ремонт . .
    — У меня вот это и это сломано . И еще вот это .
    — Сломано? . Надо делать .

    Сделали — а автомобиль или, тем более, многотонный грузовик — стал ехать хуже . Или, не произошло улучшение (увеличение мощности до специфицируемого уровня) . Давайте разбираться с этим вопросом .

    Первая причина — это произведенная регулировка подачи топлива (вручную, заменой неисправных деталей или иным путем) к заданному заводскому уровню . Система управления двигателем отреагирует и самоадаптируется (или вернется к заводскому уровню, или примет текущие параметры работы). В этом случае люди (практически, все) используя природные измерительные датчики вестибулярного аппарата легко могут обнаружить снижение мощности на 10% (последствия и проблемы ремонта автомобиля) и практически не могут обнаружить увеличение мощности на +10% (последствия и проблемы тюнинга автомобиля) . В этом можно сомневаться, это можно оспаривать — но все равно это придеться принять, потому, что — такова наша природа .

    Простой пример : заведите автомобиль в гараже, снизив угарными газами количество свежего воздуха (кислорода O2) — и многие уже (!) через 60 (. ) секунд начнут испытывать кислородное голодание (углекислотное удушение) . А теперь, в обычной квартире включите люстру Чижевского (ионизатор воздуха, кислорода O3) — многие почувствуют головную боль только — минут через 15, минимум . Как же — так ? . Вроде, избыток кислорода — но мы его почему-то не замечаем . Так оно и есть . Хуже нам, людям, сделать легко, а лучше — тяжело . Такова особенность нашего организма . Но, есть и еще одно правило : и мало — плохо, и много — плохо . Всего должно быть в меру .

    Вернемся к транспорту, который стал ехать хуже . Он стал ехать — не хуже, а как должно быть при текущих настройках двигателя . Если, раньше, вы ездили не считаясь с расходом топлива и токсичностью дымного выхлопа (часто, со светящейся лампой Check Engine) — но при этом автомобиль или грузовик ехал мощнее — это ваши проблемы . В Калифорнии (США) вы бы заплатили пару раз по $300 долларов на месте, а затем бы отправились на пару месяцев в тюрьму, подумать о строгих местных законах в защиту экологии и окружающего воздуха . Если в автомобиле или грузовике все исправно — он не может ехать хуже .

    Противоположный случай : выполнили ремонт обнаруженных неисправных компонентов, а предполагаемое улучшение не произошло или даже фиксируется потеря мощности . Это может означать только одно : в автомобиле / грузовике остались еще неисправности . Такая ситуация возможна, когда главная (первичная) неисправность заслоняет своим проявлением и последствиями другие, более невнятные, но не менее важные . Теперь, когда главная неисправность автомобиля устранена — на передний план выходят скрытые неисправности, которые не позволяют автомобилю или грузовику двигаться с заложенными мощностными характеристиками . И я уверяю вас, что обнаружение скрытых неисправностей и устранение их — вернет вашему транспортному средству былую мощь . Только времени на их выявление и ремонт может уйти намного больше, чем на устранение явных неисправностей . Но это не значит, что их не нужно устранять .

    Снижение мощности после ремонта . Жалобы, такого плана — настолько часто встают перед организациями авто ремонта и сервисного обслуживания, что многие производители включили в руководство процедуру обязательного подтверждения потери паспортной мощности двигателя / автомобиля (при отсутствии кодов и признаков неисправностей) — до начала любых действий по устранению (для таких обращений) . Проверка характеристик мощности двигателя автомобиля проверяется на динамометрическом стенде .

    Транспорт закрепляется на роликах динамометрического стенда и под управлением компьютерной программы проходит тесты на мощность и ее потери . Результатом работы стенда является распечатка с графиками мощности и крутящего момента, измеренными на автомобиле, и графики сравниваются с характеристиками производителя на данный вид двигателя / автомобиля . Если мощностные характеристики стенда и автомобиля совпадают — нет основания для подтверждения жалобы клиента и нет необходимости в проведении какого-либо ремонта . Если клиенту нужен более мощный автомобиль или он сравнивает свой грузовик с похожим по виду грузовиком — он должен купить тот транспорт, который будет соответствовать его представлениям о необходимой ему мощности, не только по двигателю, но и по конфигурации трансмиссии, скоростному режиму движения и рекомендованной массе перевозимого груза, то есть по типу применения . Не надо засовывать почтовый грузовик по тонар и ждать чуда — чуда не случится .

    Если динамометрический стенд выявит потери мощности — следует обнаружить и устранить неисправности, влияющие на потерю мощности автомобиля . Будь то — компрессия, топливоподача, турбонаддув или AGR / EGR — неважно . Все обнаруженные неисправности должны быть устранены . Однако, устранение это дело второе . Первое, это — где найти динамометрический стенд для проверки мощности и крутящего момента, особенно для грузовиков, с нагрузкой 7 — 20 тонн на ось .

    В современном мире сотовой электроники начали появляться телефоны с множеством дополнительных датчиков, которые (как выясняется) могут быть очень полезны в повседневной жизни . Сигналы датчиков движения и ускорения обрабатываются специальными программами для телефонов и, за небольшие деньги, могут показывать вполне приличные результаты по сравнению со стоимостью динамометрического стенда для измерения мощности и крутящего момента автомобиля .

    Примеры программ динамометрического измерения мощности двигателя для телефона .

    DinoDyno — измерение производительности автомобиля на телефоне на базе Android . Используйте свой телефон в качестве динамометра . Измерение мощности, наклона в повороте и эффективности торможения . Обратите внимание, что-бы телефон был закреплен в надежном и правильном положении .

    DynoBox / Dynolicious — виртуальный динамометр для измерения производительности, скорости и мощности автомобиля с помощью акселерометра (а не GPS-приемника) телефона на платформе iPhone . Измерение ускорения автомобиля, вычисление скорости, расстояния и производительности для отображения на графике . Поддержка множества различных единиц измерений . Расчет фактической мощности автомобиля . Калибровка положения для максимальной точности . Обратите внимание, что iPhone должен быть установлен в крепление внутри автомобиля, чтобы он работал точно .

    aDyno — динамометр и многофункциональный таймер для измерения работоспособности автомобиля .

    PerfExpert / Car Onboard Dyno — получите эффективный динамометрический стенд внутри автомобиля . Измерить мощность и крутящий момент двигателя в пределах 2% погрешности, выполняя простое ускорение автомобиля . Позволяет убедиться в работоспособности двигателя и эффективности тюнинга объективным и независимым способом без дополнительных расходов . Измеряет реальную мощность, крутящий момент и ускорение . Не требует подключения к автомобилю . Результаты представлены в виде подробных отчетов и интерактивных диаграмм . Динамометрический тест не совместим с АКП, на которых отсутствует режим ручного переключения передач .

    RaceDroid Pro / GPS OBD2 Dyno — профессиональное измерение производительности автомобиля, используя множество источников данных (акселерометр, GPS, OBD2) . Это приложение требует определенных знаний и первоначальной настройки, это не ткнул и получил решение ! . Для увеличения точности измерений рекомендуется использовать внешний GPS приемник или высокоскоростной OBD2 адаптер . Измерения рекомендуется проводить на трассах с плоской (горизонтальной) поверхностью .

    Возможно, есть и другие . Или — появятся новые . Однако, использование таких программ — это один из немногих способов получить хоть какую-то информацию о мощностных характеристиках своего транспортного средства относительно дешевым путем . Поэтому, заявление, типа моя машина ехала лучше сначала должно быть — доказано, и лишь затем — рассмотрено . И касается это, в основном, только автомобилей до 5 лет, со стандартным пробегом . Если вы за 3 года намотали 250000 км. и из них 50000 км. с водой в топливе — тут уже не ремонтом попахивает, а вовсю воняет капремонтом . 4 гарантийных срока не даст ни один современный производитель автомобилей и грузовиков . 100% будут найдены неисправности (отказы работоспособности автозапчастей) и механические износы . И простой заменой датчика тут не отделаться . Готовтесь к худшему развитию событий, но надейтесь на лучшее .

    P.S. . Примечание . Перечитывая статью — я смог обнаружить одну недосказанность, которая разъясняет причины падения мощности после ремонта автомобилей и грузовиков . Это — применение некачественных, БУ или дубликатных автозапчастей . Именно, они — могут стать источником сомнительных проблем и неразрешимых ситуаций . Вторая причина — это нарушение конфигурации сборки транспортного средства путем установки несоответствующих автозапчастей, официально не одобренных в каталоге производителя . Проявляется, как — неустойчивые и скрытые неисправности, преподнесенные под соусом правильного ремонта .

    Скрытые проблемы и не качественные запчасти — наиболее часто становятся предпосылкой для снижения мощности и работоспособности двигателя авто транспортных средств передвижения и перевозки грузов / пассажиров . Без проявления внешних и видимых признаков неисправности .

    Популярные теги для сайта.

    Самые популярные теги, краткое описание более 1000 страниц менее, чем в 100 ключевых словах . Чтобы найти более подробную информацию, самое простое — использовать поиск по сайту на соответствующие запросу — ключевое слово или фразу .

    Decoder данных . Авто . Бесплатно онлайн . Список ПК программ . Россия . Погода . ЭБУ . Sat . Torrent tracker . Работа двигателя . На трассе и по маршруту . Диагностика . ЦУП . УпрДор . Метео . Гидрометцентр . Москва . Екатеринбург . Смотреть прогноз . Расчет . Калькулятор . Онлайн . Вeacon . Calculator . COVID . ECU . Meritor . Motor . OBD . SDR . Telemetry . Tool . USB . Windows . Радио . Развлекательный сайт . Новости сегодня . Связь . Ремонт . Системы . Сканер . Состояние трассы . Диагностика двигателя . Длина волны . Программы для компьютера .

    TechStop-Ekb.ru : познавательные развлечения, техника, технологии . На сайте, для работы и соответствия спецификациям — используются . Протокол HTTPS шифрования для безопасного соединения с сервером и защиты пользовательских данных . Антивирус DrWeb для превентивной защиты пользователей от интернет угроз и вирусов . Ресурс входит в рейтинги Рамблер Топ 100 (познавательно-развлекательные сайты) и Mail Top 100 (авто мото информация) .

    Тех Стоп Екб RU (РФ) официальный сайт, популярные темы, погода, новости, обзоры с картинками, бесплатно, актуально, без регистрации . Смотреть утром, днем, вечером и ночью — круглосуточно онлайн .

    Меню раздела, новости и новые страницы.

    © 2021 Тех Остановка Екатеринбург, создаваемый с 2016++ с вами вместе навсегда бесплатно .

    Источник