Меню

Step down регулятор это

Dc Dc преобразователь. Устройство и принцип работы основных схем.

Dc Dc преобразователь

Dc Dc преобразователь

Для питания различной электронной аппаратуры весьма широко используется Dc Dc преобразователь. Применяется он в устройствах вычислительной техники, устройствах связи, различных схемах управления, автоматики и др.

Питание схем с помощью трансформаторных блоков питания

В традиционных трансформаторных блоках питания напряжение питающей сети с помощью трансформатора преобразуется, чаще всего понижается, до нужного значения. Пониженное напряжение выпрямляется диодным мостом и сглаживается конденсаторным фильтром. В случае необходимости после выпрямителя ставится полупроводниковый стабилизатор.

Трансформаторные блоки питания, как правило, оснащаются линейными стабилизаторами. Достоинств у таких стабилизаторов не менее двух: это маленькая стоимость и незначительное количество деталей в обвязке. Но эти достоинства съедает низкий КПД, поскольку значительная часть входного напряжения используется на нагрев регулирующего транзистора, что совершенно неприемлемо для питания переносных электронных устройств.

Питание схем с помощью Dc Dc преобразователей

Если питание аппаратуры осуществляется от гальванических элементов или аккумуляторов, то преобразование напряжения до нужного уровня возможно лишь с помощью Dc Dc преобразователей.

Идея достаточно проста: постоянное напряжение преобразуется в переменное, как правило, с частотой несколько десятков и даже сотен килогерц, повышается (понижается), а затем выпрямляется и подается в нагрузку. Такие преобразователи часто называются импульсными.

В качестве примера можно привести повышающий преобразователь из 1,5 В до 5 В (выходное напряжение компьютерного USB).

Dc Dc преобразователь

Dc Dc преобразователь 1,5 В / 5 В

Импульсные преобразователи хороши тем, что имеют высокий КПД, в пределах 60..90%. Еще одно достоинство импульсных преобразователей широкий диапазон входных напряжений: входное напряжение может быть ниже выходного или намного выше.

Классификация Dc Dc преобразователей

Вообще Dc Dc преобразователи можно разделить на несколько групп.

Понижающий, по английской терминологии step-down или buck

Выходное напряжение этих преобразователей, как правило, ниже входного: без особых потерь на нагрев регулирующего транзистора можно получить напряжение всего несколько вольт при входном напряжении 12…50 В. Выходной ток таких преобразователей зависит от потребности нагрузки, что в свою очередь определяет схемотехнику преобразователя.

Еще одно англоязычное название понижающего преобразователя chopper. Один из вариантов перевода этого слова – прерыватель. В технической литературе понижающий преобразователь иногда так и называют «чоппер». Пока просто запомним этот термин.

Повышающий, по английской терминологии step-up или boost

Выходное напряжение этих преобразователей выше входного. Например, при входном напряжении 5 В на выходе можно получить напряжение до 30 В, причем, возможно его плавное регулирование и стабилизация. Достаточно часто повышающие преобразователи называют бустерами.

Универсальный Dc Dc преобразователь – SEPIC

Выходное напряжение этих преобразователей удерживается на заданном уровне при входном напряжении как выше входного, так и ниже. Рекомендуется в случаях, когда входное напряжение может изменяться в значительных пределах. Например, в автомобиле напряжение аккумулятора может изменяться в пределах 9…14 В, а требуется получить стабильное напряжение 12 В.

Инвертирующий Dc Dc преобразователь — inverting converter

Основной функцией этих преобразователей является получение на выходе напряжения обратной полярности относительно источника питания. Очень удобно в тех случаях, когда требуется двухполярное питание, например для питания ОУ (операционных усилителей).

Все упомянутые преобразователи могут быть стабилизированными или нестабилизированными, выходное напряжение может быть гальванически связано с входным или иметь гальваническую развязку напряжений. Все зависит от конкретного устройства, в котором будет использоваться преобразователь.

Чтобы перейти к дальнейшему рассказу о Dc Dc преобразователях следует хотя бы в общих чертах разобраться с теорией.

Понижающий Dc Dc преобразователь – преобразователь типа buck

Его функциональная схема показана на рисунке ниже. Стрелками на проводах показаны направления токов.

Dc Dc преобразователь

Функциональная схема чопперного стабилизатора

Входное напряжение U in подается на входной фильтр — конденсатор C in. В качестве ключевого элемента используется транзистор VT, он осуществляет высокочастотную коммутацию тока. Это может быть транзистор структуры MOSFET, IGBT либо обычный биполярный транзистор. Кроме указанных деталей в схеме содержится разрядный диод VD и выходной фильтр – LC out, с которого напряжение поступает в нагрузку R н.

Нетрудно видеть, что нагрузка включена последовательно с элементами VT и L. Поэтому схема является последовательной.

Как же происходит понижение напряжения?

Широтно-импульсная модуляция – ШИМ

Схема управления вырабатывает прямоугольные импульсы с постоянной частотой или постоянным периодом, что в сущности одно и то же. Эти импульсы показаны на рисунке ниже.

Dc Dc преобразователь

Импульсы управления

Здесь tи время импульса, транзистор открыт, tп – время паузы, — транзистор закрыт. Соотношение tи/T называется коэффициентом заполнения duty cycle, обозначается буквой D и выражается в %% или просто в числах. Например, при D равном 50% получается, что D=0,5.

Таким образом D может изменяться от 0 до 1. При значении D=1 ключевой транзистор находится в состоянии полной проводимости, а при D=0 в состоянии отсечки, попросту говоря, закрыт. Нетрудно догадаться, что при D=50% выходное напряжение будет равно половине входного.

Совершенно очевидно, что регулирование выходного напряжения происходит за счет изменения ширины управляющего импульса tи, по сути дела изменением коэффициента D. Такой принцип регулирования называется широтно-импульсной модуляцией ШИМ (PWM). Практически во всех импульсных блоках питания именно с помощью ШИМ производится стабилизация выходного напряжения.

Вообще конвертеры получили столь широкое применение, что фирмы производители электронных компонентов наладили выпуск ШИМ контроллеров на все случаи жизни. Ассортимент настолько велик, что просто для того чтобы их перечислить понадобится целая книга. Поэтому собирать конвертеры на дискретных элементах, или как часто говорят на «рассыпухе», никому не приходит в голову.

Более того готовые конвертеры небольшой мощности можно купить на Алиэкспрес или Ebay за незначительную цену. При этом для установки в любительскую конструкцию достаточно припаять к плате провода на вход и выход, и выставить требуемое выходное напряжение.

Сейчас вернемся к нашему понижающему конвертеру типа buck, полная схема приведена выше.

В данном случае коэффициент D определяет, сколько времени будет открыт (фаза 1) или закрыт (фаза 2) ключевой транзистор. Для этих двух фаз можно представить схему двумя рисунками. На рисунках НЕ ПОКАЗАНЫ те элементы, которые в данной фазе не используются.

Dc Dc преобразователь
Фаза 1

При открытом транзисторе ток от источника питания (гальванический элемент, аккумулятор, выпрямитель) проходит через индуктивный дроссель L, нагрузку Rн, и заряжающийся конденсатор Cout. При этом через нагрузку протекает ток, конденсатор Cout и дроссель L накапливают энергию. Ток iL ПОСТЕПЕННО ВОЗРАСТАЕТ, сказывается влияние индуктивности дросселя. Эта фаза называется накачкой.

После того, как напряжение на нагрузке достигнет заданного значения (определяется настройкой устройства управления), транзистор VT закрывается и устройство переходит ко второй фазе – фазе разряда. Закрытый транзистор на рисунке не показан вовсе, как будто его и нет. Но это означает лишь то, что транзистор закрыт.

Читайте также:  Право как элемент системы социальных регуляторов

Dc Dc преобразователь

Фаза 2

При закрытом транзисторе VT пополнения энергии в дросселе не происходит, поскольку источник питания отключен. Индуктивность L стремится воспрепятствовать изменению величины и направления тока (самоиндукция) протекающего через обмотку дросселя.

Поэтому ток мгновенно прекратиться не может и замыкается через цепь «диод-нагрузка». Из-за этого диод VD получил название разрядный. Как правило, это быстродействующий диод Шоттки. По истечении периода управления фаза 2 схема переключается на фазу 1, процесс повторяется снова. Максимальное напряжение на выходе рассмотренной схемы может быть равным входному, и никак не более. Чтобы получить выходное напряжение больше, чем входное, применяются повышающие преобразователи.

Следует заметить, что на самом деле не все так просто, как написано выше: предполагается, что все компоненты идеальные, т.е. включение и выключение происходит без задержек, а активное сопротивление нулевое. При практическом изготовлении подобных схем приходится учитывать многие нюансы, поскольку очень многое зависит от качества применяемых компонентов и паразитной емкости монтажа. Только про такую простую деталь как дроссель (ну, просто моток провода!) можно написать еще не одну статью.

Пока только следует напомнить собственно о величине индуктивности, которая определяет два режима работы чоппера. При недостаточной индуктивности преобразователь будет работать в режиме разрывных токов, что совершенно недопустимо для источников питания.

Если же индуктивность достаточно большая, то работа происходит в режиме неразрывных токов, что позволяет с помощью выходных фильтров получить постоянное напряжение с приемлемым уровнем пульсаций. В режиме неразрывных токов работают и повышающие преобразователи, о которых будет рассказано ниже.

Для некоторого повышения КПД разрядный диод VD заменяется транзистором MOSFET, который в нужный момент открывается схемой управления. Такие преобразователи называются синхронными. Их применение оправдано, если мощность преобразователя достаточно велика.

Повышающий Dc Dc преобразователь – преобразователь типа boost

Повышающие преобразователи применяются в основном при низковольтном питании, например, от двух-трех батареек, а некоторые узлы конструкции требуют напряжения 12…15 В с малым потреблением тока. Достаточно часто повышающий преобразователь кратко и понятно называют словом «бустер».

Dc Dc преобразователь

Функциональная схема повышающего преобразователя

Входное напряжение U in подается на входной фильтр C in и поступает на последовательно соединенные катушку индуктивности L и коммутирующий транзистор VT. В точку соединения катушки и стока транзистора подключен диод VD. К другому выводу диода подключены нагрузка R н и шунтирующий конденсатор C out.

Транзистор VT управляется схемой управления, которая вырабатывает сигнал управления стабильной частоты с регулируемым коэффициентом заполнения D, так же, как было рассказано чуть выше при описании чопперной схемы. Диод VD в нужные моменты времени блокирует нагрузку от ключевого транзистора.

Когда открыт ключевой транзистор правый по схеме вывод катушки L соединяется с отрицательным полюсом источника питания U in. Нарастающий ток (сказывается влияние индуктивности) от источника питания протекает через катушку и открытый транзистор, в катушке накапливается энергия.

В это время диод VD блокирует нагрузку и выходной конденсатор от ключевой схемы, тем самым предотвращая разряд выходного конденсатора через открытый транзистор. Нагрузка в этот момент питается энергией накопленной в конденсаторе C out. Естественно, что напряжение на выходном конденсаторе падает.

Как только напряжение на выходе станет несколько ниже заданного, (определяется настройками схемы управления), ключевой транзистор VT закрывается, и энергия, запасенная в дросселе, через диод VD подзаряжает конденсатор C out, который подпитывает нагрузку. При этом ЭДС самоиндукции катушки L складывается с входным напряжением и передается в нагрузку, следовательно, напряжение на выходе получается больше входного напряжения.

По достижении выходным напряжением установленного уровня стабилизации схема управления открывает транзистор VT, и процесс повторяется с фазы накопления энергии.

Универсальный Dc Dc преобразователь – SEPIC

SEPIC (single-ended primary-inductor converter) или преобразователь с несимметрично нагруженной первичной индуктивностью.

Подобные преобразователи применяются в основном, когда нагрузка имеет незначительную мощность, а входное напряжение изменяется относительно выходного в большую или меньшую сторону.

Dc Dc преобразователь

Функциональная схема преобразователя SEPIC

Очень похожа на схему повышающего преобразователя, показанного на предыдущем рисунке, но имеет дополнительные элементы: конденсатор C1 и катушку L2. Именно эти элементы и обеспечивают работу преобразователя в режиме понижения напряжения.

Преобразователи SEPIC применяются в тех случаях, когда входное напряжение изменяется в широких пределах. В качестве примера можно привести 4V-35V to 1.23V-32V Boost Buck Voltage Step Up/Down Converter Regulator. Именно под таким названием в китайских магазинах продается преобразователь, схема которого показана на рисунке ниже.

Dc Dc преобразователь

Принципиальная схема преобразователя SEPIC

Ниже показан внешний вид платы с обозначением основных элементов.

Dc Dc преобразователь

Внешний вид преобразователя SEPIC

Следует обратить внимание на наличие двух катушек L1 L2. По этому признаку можно определить, что это именно преобразователь SEPIC.

Входное напряжение платы может быть в пределах 4…35 В. При этом выходное напряжение может настраиваться в пределах 1,23…32 В. Рабочая частота преобразователя 500 КГц. При незначительных размерах 50 x 25 x 12 мм плата обеспечивает мощность до 25 Вт. Максимальный выходной ток до 3 А.

Но тут следует сделать замечание. Если выходное напряжение установить на уровне 10 В, то выходной ток не может быть выше 2,5 А (25 Вт). При выходном напряжении 5 В и максимальном токе 3 А мощность составит всего 15 Вт. Здесь главное не перестараться: либо не превысить максимально допустимую мощность, либо не выйти за пределы допустимого тока.

Источник



Теория работы и расчёт неизолированного понижающего преобразователя. Часть 1. Введение. Теоретические основы buck-конвертера

Итак, buck-конвертер (англ. buck-converter, также известен в англоязычной литературе как chopper, хотя тут полный бардак, поскольку так же, чоппером, иногда называют только силовую часть этого чуда или даже только силовой транзистор) относится к импульсным понижающим (step-down) преобразователям и строится по следующей типовой схеме:

Схема buck-конвертера

Как можно видеть на рисунке, — конвертер состоит из дросселя, диода, ключа, входного и выходного конденсаторов и схемы управления.

Сначала давайте обсудим в чём тут идея.

Как все понимают, — если источник напряжения постоянно подключен к нагрузке, то энергия от источника питания постоянно перекачивается в нагрузку. Идея, нашего преобразователя заключается в том, чтобы энергия от источника питания к преобразователю передавалась не постоянно, а порциями (импульсами), по одной порции за период. Преобразователь эту полученную порцию энергии размазывает на весь период, в результате чего его выходное напряжение получается меньше, чем напряжение источника питания. Более того, регулируя размер передаваемой за период порции (то есть ширину импульса и паузы), можно регулировать величину выходного напряжения. Вот и вся идея.

Читайте также:  Реле регулятор после генератора

Исходя из вышеописанной идеи думаю становится понятным и назначение различных элементов преобразователя. Ключ предназначен для подключения и отключения источника питания. В качестве ключа обычно используется полевой или биполярный транзистор. Схема управления решает в какие моменты времени производить переключения ключа, то есть фактически решает – какую порцию энергии нужно от источника питания забрать. Чаще всего схема управления принимает «решение» анализируя напряжение на выходном конденсаторе (это называется управление по напряжению).

Такое управление, когда в зависимости от чего-то регулируется ширина импульса и паузы, называется ШИМ (широтно-импульсной модуляцией) и, соответственно, так же, «шимами» или «шимками», называются микросхемы, которые это управление осуществляют. Будем считать, что у нас микросхема работает с фиксированной частотой и управление происходит как раз по напряжению.

Далее, зачем нужны катушка индуктивности и выходной конденсатор? Очень просто — они как раз и «размазывают» энергию, полученную от источника питания, на весь период. Когда преобразователь подключен к источнику питания — он запасает получаемую энергию в магнитном поле катушки и электрическом поле выходного конденсатора, а когда отключен — отдаёт эту запасённую энергию в нагрузку.

Так, так, так. Раз преобразователь запасает энергию в конденсаторе, а потом отдаёт — значит напряжение на конденсаторе всё таки меняется? Да, меняется, это называется пульсации и никуда от них в импульснике не денешься, но давайте вспомним, что напряжение на конденсаторе связано с запасённой конденсатором энергией соотношением: E=CU 2 /2 или по другому: . Отсюда понятно, что если у нас достаточно большая ёмкость и достаточно маленькое изменение энергии за период, то изменение напряжения на конденсаторе тоже будет очень маленьким.

На этом с вводной философской частью закончим и перейдём к точному математическому анализу.

На рисунках ниже показано как течёт ток в зависимости от состояния ключа (толстыми линиями обозначены пути протекания тока). Схема управления не показана, она обычно потребляет мизерный ток и мы её пока рассматривать не будем, будем рассматривать только силовую часть.

Токи в buck-конвертере в зависимости от состояния ключа

Пусть мы имеем установившийся режим работы. Нарисуем для этого режима графики напряжения в точке А (после ключа, на катоде диода) и токов через ключ, диод и катушку. Напряжение источника питания обозначим Vin, а выходное напряжение преобразователя – Vout. Будем считать, что пульсации выходного напряжения незначительны и выходное напряжение можно считать постоянным.

Когда ключ замкнут (левый рисунок) – напряжение на катоде диода равно напряжению питания, соответственно, — падение на катушке постоянно и равно Vin-Vout. Диод в это время закрыт, поскольку напряжение на катоде больше, чем на аноде. Ток и напряжение на катушке связаны соотношением V = -Ldi/dt, проинтегрировав это выражение найдём как изменяется ток через катушку: I=(Vin-Vout)*t/L – это уравнение прямой линии, угол наклона которой зависит от разницы входного и выходного напряжений (Vin-Vout) и индуктивности. Чем больше индуктивность – тем меньше угол наклона, чем меньше индуктивность – тем больше угол наклона. Ток через ключ равен току через катушку (ну потому что тут только один путь, по которому ток течёт в катушку – от источника питания через ключ, диод у нас как вы помните закрыт).

Когда ключ разомкнут (правый рисунок) – напряжение на катушке опять же постоянно и равно -Vout. Как известно – ток через катушку не может измениться скачком, поэтому в момент закрытия ключа скачком меняется напряжение на катоде диода, что приводит к его открытию и к тому, что напряжение на катоде диода становится равно нулю (пока будем считать, что диод идеальный и падение на нём равно нулю). Соответственно напряжение на катушке равно 0-Vout=-Vout. То есть, зависимость тока от времени в этом случае будет определяться следующим уравнением: I=-Vout*t/L. В данном случае ток через ключ равен нулю, а ток через диод равен току через катушку.

Итак, для напряжения в т.А и токов, имеем:
для замкнутого ключа: V=Vin, I=(Vin-Vout)*t/L, ток течёт через катушку и ключ
для разомкнутого ключа: V=0, I=-Vout*t/L, ток течёт через катушку и диод

Диаграммы токов и напряжений для buck-конвертера

  1. Tи – период импульсов
  2. Ton – время, в течении которого ключ замкнут (ширина импульсов)
  3. Toff – время, в течении которого ключ разомкнут (ширина пауз)
  4. Iкл – ток через ключ
  5. Iд – ток через диод
  6. IL – ток через катушку

Выходной ток равен среднему току через катушку, а выходное напряжение – среднему напряжению в т.А.

Посмотрим, что нам это даёт:

1) Среднее за период напряжение в т.А равно выходному напряжению Vout, поскольку у катушки нет активного сопротивления (мы же пока идеальные элементы рассматриваем) и среднее падение на ней за период равно нулю, то есть: Vin*Ton+0*Toff=Vout*(Ton+Toff), отсюда:

2) Поскольку у нас установившийся режим, то за время замкнутого состояния ключа ток в катушке вырастает настолько же, насколько он спадает за время разомкнутого состояния (иначе бы у нас менялся выходной ток). То есть (Vin-Vout)*Ton/L=Vout*Toff/L, отсюда:

Передача заряда в buck-конвертере (закон сохранения заряда)

Кроме того, очевидно, что график, соответствующий среднему току, должен проходить по серединам рёбер нашей пилы, потому что только в этом случае площади отмеченных на графике треугольников будут равны. Почему эти площади должны быть равны? Потому что площадь под графиком тока от времени — это заряд. А заряд, протекший за период через нагрузку, должен быть равен заряду, протекшему за период через катушку индуктивности (смотрим на рисунок справа). Соответственно, высота h1 равна высоте h2 (раз уж у равных по площади прямоугольных треугольников,
с одинаковыми углами, равны гипотенузы). Таким образом, для токов можно записать: Iout=(Imax+Imin)/2.

Теперь давайте подумаем, что происходит, когда график тока через катушку расположен выше графика выходного тока?

Периоды запасания и расходования энергии катушкой и конденсатором в buck-конвертере в зависимости от состояния ключа

В это время через катушку проходит больше заряда, чем уходит в нагрузку. Соответственно, когда график тока через катушку расположен ниже графика выходного тока — через катушку проходит меньше заряда, чем уходит в нагрузку. Куда же девается и откуда берётся «лишний» заряд? Всё очень просто — он накапливается выходным конденсатором, а потом расходуется. Вот здесь мы, кстати, натыкаемся на первую неточность большинства рисунков, объясняющих работу таких конвертеров. Помните рисунки, на которых было показано как течёт ток в зависимости от состояния ключа? Я их специально перерисовал из доступных источников как есть. Теперь, глядя на графики тока, мы видим, что в обоих состояниях ключа есть интервалы, когда выходной конденсатор заряжается и в обоих состояниях есть интервалы, когда выходной конденсатор разряжается (смотрим на рисунок слева).

Читайте также:  Реле регулятор мондео 3 дизель

Несмотря на то, что это кажется нелогичным, на самом деле всё очень даже логично. Так происходит из-за того, что ток через катушку индуктивности не может измениться мгновенно, не может мгновенно вырасти при подключении источника питания и не может мгновенно упасть при его отключении. Так что, возвращаясь к рисункам где показано как течёт ток в зависимости от состояния ключа, правильно было бы ток в конденсатор и из конденсатора вообще не рисовать, и тем более не говорить, что когда ключ замкнут — конденсатор заряжается, а когда разомкнут — разряжается. Правильный комментарий должен звучать как-то так: «Когда ключ замкнут — в преобразователь и нагрузку передаётся энергия от источника питания. Она сразу начинает запасаться катушкой (но конденсатор всё ещё подпитывает нагрузку), а позднее, когда ток через катушку превысит выходной ток, — передаваемая энергия начинает запасаться и конденсатором. Когда ключ разомкнут — энергия от источника питания в нагрузку и преобразователь не передаётся. При этом сначала начинает расходоваться энергия, запасённая в катушке (и на нагрузку и на продолжение заряда конденсатора), а потом, когда ток через катушку становится меньше выходного тока, — конденсатор тоже начинает отдавать запасённую энергию.»

Ладно, это всё чудесно, но какую практическую ценность несёт для нас понимание того, как и когда заряжается и разряжается этот самый выходной конденсатор? Да самую прямую. Мы теперь можем точно посчитать на какую величину изменяется его заряд, а значит и на какую величину будет изменяться напряжение на нём при той или иной его ёмкости. Или, если мы зададим некий допустимый уровень пульсаций, то можно посчитать — какой должна быть ёмкость выходного конденсатора, чтобы пульсации напряжения на выходе преобразователя не превышали заданный уровень.

Итак, суммарный «лишний» заряд, который должен накопить конденсатор пока ток через катушку больше выходного тока, равен площади треугольника, расположенного выше линии I(t)=Iout (треугольник, образованный маленькими треугольничками «2» и «3» на одном из вышеприведённых рисунков). Эта площадь равна:

Или, учитывая что Tи=1/f, окончательно получаем:

Тогда пульсации, обозначим их Vp-p (Vp-p=Vmax-Vout), можно найти по следующей формуле:

Или, если мы задаём допустимый уровень пульсаций и хотим посчитать ёмкость конденсатора, то получим:

Вот, собственно, и вся базовая теория описывающая наш преобразователь. Но это ещё не самое интересное. Самое-то интересное для нас что? Правильно, самое интересное, это: во-первых, понять что будет происходить если уменьшать/увеличивать различные параметры (выходную ёмкость, индуктивность, частоту…), ну и во-вторых, понять как же всё-таки рассчитывать элементы преобразователя, поскольку, если вы заметили, в вышеприведённых формулах участвуют Vin, Iout и прочие компоненты, величина которых может меняться, в связи с чем пока не понятно, какие именно значения использовать в расчётах (максимальные, минимальные, средние). Вот об этом мы поговорим во второй части нашей статьи, а построенные ранее графики очень сильно нам в этом помогут. Графический анализ вообще очень удобен своей наглядностью.

Источник

Понижающий преобразователь DC-DC напряжения (step down converter)

В быту появилась масса устройств с питанием 5 вольт, поэтому я обратился к этой теме. Я давно использую регулируемые преобразователи этого типа для всяких мелочей. Но появилась необходимость бесперебойного питания, причем не на минуты, а желательно на часы.

С 12В бесперебойными блоками питания (ББП) проблем нет, выбор большой, а 5В или какое другое напряжение уже редкость. В моем случае, мне нужно от 14В ББП запитать GSM репитер (статья: Усиление сигнала сотовой связи в деревне или на даче (GSM репитер)), которому нужно 5В и максимум 2А.

Когда пропадает напряжение, очень хочется, что бы работала сотовая связь. Дело было далеко от Москвы и цивилизации, но под рукой была плата USB зарядки, построенная на этом принципе с завяленными характеристиками — входное напряжение 24-8 В, выход 5 В, ток 2 А.

stepdown-02

Размеры дросселя и диода заставили меня усомнится в 2-х Амперах выхода. Обмерял репитер, его потребление не поднялось выше 0,750 А и я решил пристроить эту зарядку.

Сказано-сделано. Снят USB разъем, припаяны провода, все подключено. Сама плата зажата между пальцами, что бы оценить её температурный режим. После включения, репитер запустился, но температура преобразователя резко взлетела и эксперимент был закончен. Такой нагрев нам не нужен!

Китайцы как всегда завысили характеристики. Пришлось искать что-то более мощное и делить его характеристики на два.

stepdown-01

Выбор пал на эту модель с завяленным током до 5 А. Дроссель тут намотан лентой ? трудно назвать это проводом. Емкости на входе и выходе тоже вызывали положительные эмоции, частота работы устройства 272 кГц. В отзывах сообщали о нагреве при токах выше 2 А и я решил провести тестирование и проверить нагрев, проконтролировать ток и напряжение на выходе.

При токах до 2 А, вся схема первое время оставалась холодной. Потом начинался плавный нагрев диода.

stepdown-03

Нагрузив выход резистором 2 Ома 15 Ватт, я добился тока 2,48 А при напряжении 5,19 В. Хороший запас для моей задачи.

stepdown-04

Надо посмотреть что творится на входах и выходах преобразователя.

stepdown-05

При входном напряжении 12,9 В, потребляемый ток составил 1,13 А, а пульсации на выходе 0,1 В.

stepdown-06

А вот на выходе с блока питания, пульсации были уже куда больше и достигали 0,3 В. Явно видна работа преобразователя.

stepdown-07

Даже при подключении к совсем чистому источнику питания, аккумулятору, на его выходе видна пульсация во время работы.

stepdown-08

Снимаешь нагрузку с 5 В выхода, преобразователь все равно в работе и на выходе блока питания это явно видно, пульсации снизились до 0,1 вольта.

stepdown-09

Тестирование в течении часа при токе 1,7 А. проявило медленный нагрев диода до 47 гр. Температура всей остальной схемы колебалась от 28-37 градусов . Нагрев не сильный, но при заявленных 5 амперах, я думаю, все буде намного плачевней. Для моих задач вполне должно хватить тока 2 А.

Температура диода. Пульсации на выходе схемы под нагрузкой.

Дальнейшие испытания будут уже в боевых условиях.

Источник