Меню

Сумма токов в узловой точке равна нулю это

1. Теория: Законы Кирхгофа

В сложных электрических цепях, то есть где имеется несколько разнообразных ответвлений и несколько источников ЭДС имеет место и сложное распределение токов. Однако при известных величинах всех ЭДС и сопротивлений резистивных элементов в цепи мы можем вычистить значения этих токов и их направление в любом контуре цепи с помощью первого и второго закона Кирхгофа. Суть законов Кирхгофа я довольно кратко изложил в своем учебнике по электронике, на страницах сайта http://www.sxemotehnika.ru.

Пример сложной электрической цепи вы можете посмотреть на рисунке 1.

Сложная электрическая цепь

Рисунок 1. Сложная электрическая цепь.

Иногда законы Кирхгофа называют правилами Кирхгофа, особенно в старой литературе.

Итак, для начала напомню все-таки суть первого и второго закона Кирхгофа, а далее рассмотрим примеры расчета токов, напряжений в электрических цепях, с практическими примерами и ответами на вопросы, которые задавались мне в комментариях на сайте.

Первый закон Кирхгофа

Формулировка №1: Сумма всех токов, втекающих в узел, равна сумме всех токов, вытекающих из узла.

Формулировка №2: Алгебраическая сумма всех токов в узле равна нулю.

Поясню первый закон Кирхгофа на примере рисунка 2.

Первый закон Кирхгофа

Рисунок 2. Узел электрической цепи.

Здесь ток I1 — ток, втекающий в узел , а токи I2 и I3 — токи, вытекающие из узла. Тогда применяя формулировку №1, можно записать:

Что бы подтвердить справедливость формулировки №2, перенесем токи I2 и I 3 в левую часть выражения (1), тем самым получим:

Знаки «минус» в выражении (2) и означают, что токи вытекают из узла.

Знаки для втекающих и вытекающих токов можно брать произвольно, однако в основном всегда втекающие токи берут со знаком «+», а вытекающие со знаком «-» (например как получилось в выражении (2)).

Можно посмотреть отдельный видеоурок по первому закону Кирхофа в разделе ВИДЕОУРОКИ.

Второй закон Кирхгофа.

Формулировка: Алгебраическая сумма ЭДС, действующих в замкнутом контуре, равна алгебраической сумме падений напряжения на всех резистивных элементах в этом контуре.

Здесь термин «алгебраическая сумма» означает, что как величина ЭДС так и величина падения напряжения на элементах может быть как со знаком «+» так и со знаком «-». При этом определить знак можно по следующему алгоритму:

1. Выбираем направление обхода контура (два варианта либо по часовой, либо против).

2. Произвольно выбираем направление токов через элементы цепи.

3. Расставляем знаки для ЭДС и напряжений, падающих на элементах по правилам:

— ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура записываются со знаком «+», в противном случае ЭДС записываются со знаком «-».

— напряжения, падающие на элементах цепи записываются со знаком «+», если ток, протекающий через эти элементы совпадает по направлению с обходом контура, в противном случае напряжения записываются со знаком «-».

Например, рассмотрим цепь, представленную на рисунке 3, и запишем выражение согласно второму закону Кирхгофа, обходя контур по часовой стрелке, и выбрав направление токов через резисторы, как показано на рисунке.

Второй закон Кирхгофа

Рисунок 3. Электрическая цепь, для пояснения второго закона Кирхгофа.

Предлагаю посмотреть отдельный видеоурок по второму закону Кирхогфа (теория).

Расчеты электрических цепей с помощью законов Кирхгофа.

Теперь давайте рассмотрим вариант сложной цепи, и я вам расскажу, как на практике применять законы Кирхгофа.

Итак, на рисунке 4 имеется сложная цепь с двумя источниками ЭДС величиной E1=12 в и E2=5 в , с внутренним сопротивлением источников r1=r2=0,1 Ом, работающих на общую нагрузку R = 2 Ома. Как же будут распределены токи в этой цепи, и какие они имеют значения, нам предстоит выяснить.

Расчет по законам Кирхгофа

Рисунок 4. Пример расчета сложной электрической цепи.

Теперь согласно первому закону Кирхгофа для узла А составляем такое выражение:

так как I1 и I 2 втекают в узел А , а ток I вытекает из него.

Используя второй закон Кирхгофа, запишем еще два выражения для внешнего контура и внутреннего левого контура, выбрав направление обхода по часовой стрелке.

Для внешнего контура:

Для внутреннего левого контура:

Итак, у нас получилась система их трех уравнений с тремя неизвестными:

Теперь подставим в эту систему известные нам величины напряжений и сопротивлений:

12 = 0,1I1 +2I.

Далее из первого и второго уравнения выразим ток I2

12 = 0,1I1 + 2I.

Следующим шагом приравняем первое и второе уравнение и получим систему из двух уравнений:

12 = 0,1I1 + 2I.

Выражаем из первого уравнения значение I

I = 2I1– 70;

И подставляем его значение во второе уравнение

Решаем полученное уравнение

12 = 0,1I1 + 4I1 – 140.

12 + 140= 4,1I1

Теперь в выражение I = 2I1– 70 подставим значение

I1=37,073 (А) и получим:

I = 2*37,073 – 70 = 4,146 А

Ну, а согласно первому закона Кирхгофа ток I2=I — I1

I2=4,146 — 37,073 = -32,927

Знак «минус» для тока I2 означает, то что мы не правильно выбрали направление тока, то есть в нашем случае ток I 2 вытекает из узла А .

Теперь полученные данные можно проверить на практике или смоделировать данную схему например в программе Multisim.

Скриншот моделирования схемы для проверки законов Кирхгофа вы можете посмотреть на рисунке 5.

Моделирование результатаРисунок 5. Сравнение результатов расчета и моделирования работы цепи.

Для закрепления результатата предлагаю посмотреть подготовленное мной видео:

ПОНРАВИЛАСЬ СТАТЬЯ? ПОДЕЛИСЬ С ДРУЗЬЯМИ В СОЦИАЛЬНЫХ СЕТЯХ!

Источник

Правила (законы) Кирхгофа простыми словами

На практике часто встречаются задачи по расчётам параметров токов и напряжений в различных разветвлённых цепях. В качестве инструмента для расчётов используют правила Кирхгофа (в некоторой литературе их называют еще законами, хотя это не совсем корректно) – одни из фундаментальных правил, которые совместно с законами Ома позволяет определять параметры независимых контуров в самых сложных цепях.

Учёный Густав Киргхоф сформулировал два правила [1], для понимания которых введено понятие узла, ветви, контура. В нашей ситуации ветвью будем называть участок, по которому протекает один и тот же ток. Точки соединения ветвей образуют узлы. Ветви вместе с узлами образуют контуры – замкнутые пути, по которым течёт ток.

Первое правило Кирхгофа

Первое правило Густава Кирхгофа сформулировано исходя из закона сохранения заряда. Физик понимал, что заряд не может задерживаться в узле, а распределяется по ветвям контура, образующим это соединение.

Читайте также:  Озс электроды для какого тока

На рисунке 1 изображена простая схема, состоящая из контуров. Точками A, B, C, D обозначены узлы контура в центре схемы.

Схема контура

Рис. 1. Схема контура

Ток I1 входит в узел A, образованный ветвями контура. На схеме электрический заряд распределяется в двух направлениях – по ветвям AB и AD. Согласно правилу Кирхгофа, входящий ток равен сумме выходящих: I1 = I2 + I3.

На рисунке 2 представлен абстрактный узел, по ветвям которого течёт ток в разных направлениях. Если сложить векторы i1, i2, i3, i4 то, согласно первому правилу Кирхгофа, векторная сумма будет равняться 0: i1 + i2 + i3 + i4 = 0. Ветвей может быть сколько угодно много, но равенство всегда будет справедливым, с учётом направления векторов.

Абстрактный узел

Рис. 2. Абстрактный узел

Запишем наши выводы в алгебраической форме, для общего случая:

Формула сумма токов

Для использования этой формулы, требуется учитывать знаки. Для этого необходимо выбрать направление одного из векторов тока (не важно, какого) и обозначить его знаком «плюс». При этом знаки всех других величин определить, исходя от их направления, по отношению к выбранному вектору.

Чтобы избежать путаницы, ток, направленный в точку узла, принято считать положительным, а векторы, направленные от узла – отрицательными.

Изложим первое правило Кирхгофа, выраженное приведённой выше формулой: «Алгебраическая сумма сходящихся в определённом узле токов, равна нулю, если считать входящие токи положительными, а отходящими – отрицательными».

Первое правило дополняет второе правило, сформулированное Кирхгофом. Перейдём к его рассмотрению.

Второе правило Киргхофа

Из третьего уравнения Максвелла вытекает правило Кирхгофа для напряжений. Его ещё называют вторым законом.

При этом токи и ЭДС, векторы которых совпадают с направлением (выбирается произвольно) обхода контура, считаются положительными, а встречные к обходу токи – отрицательными.

Иллюстрация второго правила Кирхгофа

Рис. 4. Иллюстрация второго правила Кирхгофа

Формулы, которые изображены на рисунке применяются в частных случаях для вычисления параметров простых схем.

Формулировки уравнений общего характера:

Формулы для второго правила киргхофа

, где где Lk и Ck – это индуктивности и ёмкости, соответственно.

Линейные уравнения справедливы как для линейных, так и для нелинейных линеаризованных цепей. Они применяются при любом характере временных изменений токов и напряжений, для разных источников ЭДС. При этом законы Кирхгофа справедливы и для магнитных цепей. Это позволяет выполнять вычисления для поиска соответствующие параметров.

Закон Кирхгофа для магнитной цепи

Применение независимых уравнений возможно и при расчётах магнитных цепей. Сформулированные выше правила Кирхгофа справедливы и для вычисления параметров магнитных потоков и намагничивающих сил.

Магнитные контуры цепей

Рис. 4. Магнитные контуры цепей

То есть, для магнитных потоков первое правило Кирхгофа можно выразить словами: «Алгебраическая сумма всевозможных магнитных потоков относительно узла магнитной цепи равняется нулю.

Сформулируем второе правило для намагничивающих сил F: «В замкнутом магнитном контуре алгебраическая сумма намагничивающих сил приравнивается к сумме магнитных напряжений». Данное утверждение выражается формулой: ∑F=∑U или ∑Iω = ∑НL, где ω – количество витков, H – напряжённость магнитного поля, символ L обозначает длину средней линии магнитопровода. ( Условно принимается, что каждая точка этой линии совпадает с линиями магнитной индукции).

Второе правило, применяемое для вычисления магнитных цепей, есть не что иное, как альтернативная форма представления закона полного тока.

При совпадении векторов магнитного потока с направлениями обхода (на некоторых участках), падение напряжения на этих ветвях берём со знаком « + », а встречные ему – со знаком « – ».

Примеры расчета цепей

Рассмотрим ещё раз рисунок 3. На нём изображено 4 разнонаправленных вектора: i1, i2, i3, i4. Из них – два входящие ( i2, i3) и два исходящие из узла (i1, i4). Положительными будем считать те векторы, которые направлены в точку соединения ветвей, а остальные – отрицательными.

Тогда, по формуле Кирхгофа, составим уравнение и запишем его в следующем виде: – i1 + i2 + i3 – i4 = 0.

На практике такие узлы являются частью контуров, обходя которые можно составить ещё несколько линейных уравнений с этими же неизвестными. Количество уравнений всегда достаточно для решения задачи.

Рассмотрим алгоритм решения на примере рис. 5.

Пример для расчёта

Рис. 5. Пример для расчёта

Схема содержит 3 ветви и два узла, которые образуют три пары по два независимых контура:

  1. 1 и 2.
  2. 1 и 3.
  3. 2 и 3.

Запишем независимое уравнение, выполняющееся, например, в точке а. Из первого правила Кирхгофа вытекает: I1 + I2 – I3 = 0.

Воспользуемся вторым правилом Кирхгофа. Для составления уравнений можно выбрать любой из контуров, но нам необходимы контуры с узлом а, так как для него мы уже составили уравнение. Это будут контуры 1 и 2.

Пишем уравнения:

Решаем систему уравнений:

Система уравнений

Так как значения R и E известны (см. рисунок 5), мы придём к системе уравнений:

Система уравнений

Решая эту систему, получим:

  1. I1 = 1,36 (значения в миллиамперах).
  2. I2 = 2,19 мА.;
  3. I3 = 3,55 мА.

Потенциал узла а равен: Ua = I3*R3 = 3,55 × 3 = 10,65 В. Чтобы убедиться в верности наших расчётов, проверим выполнение второго правила по отношению к контуру 3:

E1 – E2 + I1R1+ I2R2 = 12 – 15 + 1,36 – 4,38 = – 0,02 ≈ 0 (с учётом погрешностей, связанных с округлениями чисел при вычислениях).

Если проверка выполнения второго правила успешно завершена, то расчёты сделаны правильно, а полученные данные являются достоверными.

Применяя правила (законы) Кирхгофа можно вычислять параметры электрической энергии для магнитных цепей.

Источник

Законы Кирхгофа

Решение задач на расчет сложных цепей основывается на применении первого и второго законов Кирхгофа, которые наряду с законом Ома являются основными законами электрической цепи.

Законы Кирхгофа определяют распределение токов и напряжений в электрических цепях любой конфигурации.

Первый закон Кирхгофа

Рассматривая разветвленные электрические цепи, состоящие из нескольких контуров, нам необходимо установить соотношения между токами, приходящими к любому узлу, и токами, уходящими от него. Из физической сущности электрического тока следует, что общее количество носителей тока, притекающее к узлу в течении некоторого промежутка времени, равно количеству носителей, утекающему от узла за тоже время. Если предположить, что это положение не выполняется, то в узловой точке должно происходить накопление зарядов или убыль — утечка зарядов.

На практике эти явления не наблюдаются, следовательно, мы можем утверждать, что сумма величин токов, притекающих к точке разветвления, равна сумме величин токов, утекающих от нее.

Это положение и является формулировкой первого закона Кирхгофа.

Математическое выражение первого закона Кирхгофа применительно к узлу А:

Условимся токи, притекающие к точке разветвления, считать положительными, а токи, утекающие от нее, — отрицательными и сформулируем окончательно первый закон Кирхгофа:

Читайте также:  Устройство в котором создается электрический ток называют генератором

Алгебраическая сумма величин токов в точке разветвления равна нулю.

Пример

На рисунке изображена узловая точка и указаны направления и величины в пяти ветвях.

Требуется определить величину и направление тока в шестой ветви.

Решение.

Предположим, что ток в шестой ветви притекает к точке А. Используя первый закон Кирхгофа, составим уравнение ∑I=0

Второй закон Кирхгофа

Применение законов Кирхгофа для расчета сложных цепей

Используя первый закон Кирхгофа, можно составить (k-1) уравнений, связывающих между собой величины токов в ветвях. Таким образом, число уравнений на одно меньше, чем число всех узлов цепи. Это объясняется тем, что все токи, входящие в уравнение для узла k, уже вошли в предыдущие уравнения. На схеме в узле А сходятся токи I1, I2, I3; в узле В —I2, I3, I4, I5; в узле С — I4, I5, I1.

image1_kirhg.jpg

Уравнения первого закона Кирхгофа для узлов А и В являются независимыми. В то же время уравнение для узла С. Дает нам зависимость, которая может быть получена на основании уравнений, составленных для первых двух узлов.
В самом деле, на основании первого закона Кирхгофа получим:

Но последнее уравнение не является независимым, так как может быть получено на основании двух первых.
Действительно, складывая (1) и (2), получим

а умножив обе части равенства на -1, будем иметь

Определим теперь число уравнений, которое можно составить, используя второй закон Кирхгофа. Для того чтобы эти уравнения были независимы друг от друга, достаточно чтобы контуры, для которых они пишутся, отличались хотя бы одной ветвью, входящей в их состав.
Математически доказано, что число независимых уравнений m, которое можно составить для любой сложной цепи по второму закону Кирхгофа будет равно

m = n-k + 1 ,

где m —число независимых уравнений, составленных по второму закону Кирхгофа;
n — число ветвей;
к — число узлов.
При выборе контуров стараются по возможности подобрать такие, которые содержат меньшее число ветвей и э. д. с.
Общее число уравнений, составляемых по первому и второму законам Кирхгофа для сложной цепи, состоящей из ветвей и узлов, будет равно числу ветвей.
Складывая число уравнений, составленных на основании первого закона Кирхгофа (k—1), с числом уравнений, составленных на основании второго закона Кирхгофа (m), получим

k — 1 + m = k— 1 + n — k + 1 = n .

Итак, если задана цепь из n ветвей и известны все э. д. с. и сопротивления, всегда можно составить n уравнений по числу неизвестных токов в ветвях.
Для решения задачи на расчет сложной цепи необходимо:

4. Для выбранных узловых точек схемы составить (k — 1) уравнений по первому закону Кирхгофа:

image_formula1_kirhg.jpg

Суммирование токов производится обязательно с учетом знака.
5. Для выбранных замкнутых контуров составить m уравнений по второму закону Кирхгофа:

image_formula2_kirhg.jpg

При составлении этих уравнений э. д. с. суммируются с учетом знака, а падения напряжения берутся со знаком плюс, если направление тока совпадает с направлением обхода контура, и наоборот.
6. Решить систему полученных уравнений, в результате чего определяются величины токов во всех ветвях цепи. Если при решении та или иная величина тока получается со знаком минус, то это значит, что фактическое направление тока в данной ветви обратно тому, которое было принято предварительно.
Для закрепления рассматриваемого порядка расчета сложной цепи с использованием законов Кирхгофа решим пример.

image2_kirhg.jpg

I

Пример. Дана сложная цепь, изображенная на рисунке. Зная Е1, Е2, Е3, r1 r2 и r3, необходимо определить токи в ветвях I1, I2 и I3.

Решение.
1. Анализируя данную схему, устанавливаем, что в ней число ветвей n равно трем, а число узлов k равно двум.
2. Обозначим направление токов в ветвях. Это не значит, что они будут именно такими, как мы предположили. Истинное направление токов определится в ходе решения задачи.
3. Уравнения первого закона Кирхгофа необходимо составить для
(k-1) узлов, или 2-1= 1.
Количество уравнений второго закона Кирхгофа, которое надо составить для решения задачи будет равно

m = n-(k- 1) = 3 — (2 — 1) = 3 — 1=2 .

4. Составим одно уравнение по первому закону Кирхгофа для узла А:

image_formula3_kirhg.jpg

5. Приняв направление обхода контуров против часовой стрелки, составим m-2 уравнений для замкнутых контуров по второму закону Кирхгофа:
— для контура № 1:

6. Решаем систему из трех уравнений.
Из уравнения, составленного по первому закону Кирхгофа (4),
имеем
I1=I2-I3

Подставим полученное значение тока в уравнение (5)

Подставим числовые значения и уравнения (5) и (6).

Упростим эти уравнения и решим их методом подстановки:

Умножим уравнение (7) на 2 и вычтем из полученного результата уравнение (8)

image_formula4_kirhg.jpg

далее, подставляя значение I2 в уравнение (8), получим

5= -3*2,7-4I3; 4I3= -13,1 ;
I3= -13,1/4=-3,3A .

Теперь из уравнения (6) находим ток I1:

В результате решения токи I2 и I1 имеют положительное, а ток I3
отрицательное значение, следовательно, фактическое направление токов I2
и I1 совпадает с принятым, а тока I3 — обратно принятому в начале решения задачи.

Источник

Закон Кирхгофа

Закон Кирхгофа (правила Кирхгофа), сформулированные Густавом Кирхгофом в 1845 году, являются следствиями из фундаментальных законов сохранения заряда и безвихревости электростатического поля.

Закон Кирхгофа – это соотношения, выполняемые между токами и напряжениями на участках любых электрических цепей. Они позволяют рассчитывать любые электрические цепи: постоянного, переменного или квазистационарного тока.

При формулировании правил Кирхгофа используют такие понятия, как ветвь, контур и узел электрической цепи.

  • Ветвь – участок электрической цепи с одни и тем же током.
  • Узел – точка соединения трех или более ветвей.
  • Контур – замкнутый путь, проходящий через несколько узлов и ветвей разветвлённой электрической цепи.

При обходе надо учесть, что ветвь и узел могут одновременно принадлежать нескольким контурам. Правила Кирхгофа справедливы как для линейных, так и для нелинейных цепей при любом характере изменения во времени токов и напряжений. Правила Кирхгофа широко применяются при решении задач электротехники за счет легкости в расчетах.

1 закон Кирхгофа

В цепях, состоящих из последовательно соединенных источника и приемника энергии, соотношения между током, сопротивлением и ЭДС всей цепи или на каком-либо участке цепи определяются законом Ома. Но на практике в цепях токи от какой-либо точки идут по разным путям (Рис. 1). Поэтому становиться актуальным введение новых правил для проведения расчетов электрических цепей.

Читайте также:  Почему ударяет током от стиральной машины

Схема параллельного соединения проводников

Рис. 1. Схема параллельного соединения проводников.

Так, при параллельном соединении проводников начала всех проводников соединены в одну точку, а концы проводников – в другую точку. Начало цепи присоединяется к одному полюсу источника напряжения, а конец цепи – к другому полюсу.

Из рисунка видно, что при параллельном соединении проводников для прохождения тока имеется несколько путей. Ток, протекая к точке разветвления А, растекается далее по трем сопротивлениям и равен сумме токов, выходящих из этой точки: I = I1 + I2 + I3.

Согласно первому правилу Кирхгофа алгебраическая сумма токов ветвей, сходящихся в каждом узле любой цепи равна нулю. При этом направленный к узлу ток принято считать положительным, а направленный от узла – отрицательным.

Запишем первый закон Кирхгофа в комплексной форме:

Первый закон Кирхгофа в комплексной форме

Первый закон Кирхгофа гласит, что алгебраическая сумма токов, направленных к узлу, равна сумме направленных от узла. То есть, сколько тока втекает в узел, столько же вытекает (как следствие закона сохранения электрического заряда). Алгебраическая сумма — это сумма, в которую входят слагаемые со знаком плюс и со знаком минус.

Рис. 2. i_1+i_4=i_2+i_3.

Рассмотрим применение 1 закона Кирхгофа на следующем примере:

Рассмотрим применение 1 закона Кирхгофа

  • I1 – это полный ток, текущий к узлу А, а I2 и I3 — токи, вытекающие из узла А.
  • Тогда мы можем записать: I1 = I2 + I3.
  • Аналогично для узла B: I3 = I4 + I5.
  • Пусть, что I4 = 5 А и I5 = 1 А, получим: I3 = 5 + 1 = 6 (А).
  • Пусть I2 = 10 А, получим: I1 = I2 + I3 = 10 + 6 = 16 (А).
  • Запишем подобное соотношение для узла C: I6 = I4 + I5 = 5 + 1 = 6 А.
  • А для узла D: I1 = I2 + I6 = 10 + 6 = 16 А
  • Таким образом мы наглядно видим справедливость первого закона Кирхгофа.

2 закон Кирхгофа

При расчете электрических цепей в большинстве случаев нам встречаются цепи, образующие замкнутые контуры. В состав таких контуров, кроме сопротивлений, могут входить ЭДС (источники напряжений). На рисунке 4 представлен участок такой электрической цепи. Произвольно выбираем положительные направления токов. Обходим контур от точки А в произвольном направлении (выберем по часовой стрелке). Рассмотрим участок АБ: происходит падение потенциала (ток идет от точки с высшим потенциалом к точке с низшим потенциалом).

участок электрической цепи

  • На участке АБ: φА + E1 – I1r1 = φБ.
  • БВ: φБ – E2 – I2r2 = φВ.
  • ВГ: φВ – I3r3 + E3 = φГ.
  • ГА: φГ – I4r4 = φА.
  • Складывая данные уравнения, получим: φА + E1 – I1r1 + φБ – E2 – I2r2 + φВ – I3r3 + E3 + φГ – I4r4 = φБ + φВ + φГ + φА
  • или: E1 – I1r1 – E2 – I2r2 – I3r3 + E3 – I4r4 = 0.
  • Откуда имеем следующее: E1 – E2 + E3 = I1r1 + I2 r2 + I3r3 + I4r4.

Таким образом, получаем формулу второго закона Кирхгофа в комплексной форме:

Уравнение для постоянных напряжений — Формула второго закона Кирхгофа в комплексной форме уравнение для постоянных напряженийУравнение для переменных напряжени — Формула второго закона Кирхгофа в комплексной форме уравнение для переменных напряжений

Теперь можем сформулировать определение 2 (второго) закона Кирхгофа:

Второй закон Кирхгофа гласит, что алгебраическая сумма напряжений на резистивных элементах замкнутого контура, равна алгебраической сумме ЭДС, входящих в этот контур. В случае отсутствия источников ЭДС, суммарное напряжение равно нулю.

2 закон Кирхгофа для электрической цепи e_1-e_2+e_3=I_1 R_1-I_2 R_2+I_3 R_3-I_4 R_4.

Иначе формулируя второе правило Кирхгофа, можно сказать: при полном обходе контура потенциал, изменяясь, возвращается к начальному значению.

При составлении уравнения напряжений для контура нужно выбрать положительное направление обхода контура, при этом падение напряжения на ветви считается положительным, если направление обхода данной ветви совпадает с ранее выбранным направлением тока ветви, в противном случае – отрицательным.

Определить знак можно по алгоритму:

  • 1. выбираем направление обхода контура (по или против часовой стрелки);
  • 2. произвольно выбираем направления токов через элементы цепи;
  • 3. расставляем знаки для напряжений и ЭДС по правилам (ЭДС, создающие ток в контуре, направление которого совпадает с направление обхода контура со знаком «+», иначе – «-»; напряжения, падающие на элементах цепи, если ток, протекающий через эти элементы совпадает по направлению с обходом контура, со знаком «+», в противном случае – «-»).

Закон Ома является частным случаем второго правила для цепи.

Приведем пример применения второго правила Кирхгофа:

пример применения второго правила Кирхгофа

По данной электрической цепи (Рис 6) необходимо найти ее ток. Произвольно берем положительное направление тока. Выберем направление обхода по часовой стрелке, запишем уравнение 2 закона Кирхгофа:

Знак минус означает, что выбранное нами направление тока противоположно его действительному направлению.

Решение задач

1. По приведенной схеме записать законы Кирхгофа для цепи.

2. На рисунке приведена цепь с двумя источниками ЭДС величиной 12 В и 5 В, с внутренним сопротивлением источников 0,1 Ом, работающих на общую нагрузку 2 ома. Как будут распределены токи в этой цепи, какие они имеют значения?.

Источник



Первый и второй законы Кирхгофа

date image2015-04-08
views image908

facebook icon vkontakte icon twitter icon odnoklasniki icon

Первый Закон Кирхгофа. Сумма токов, втекающих в узловую точку электрической цепи равна сумме токов вытекающих из этой узловой точки.

I1 + I2 + I3 = I4 + I5

Если считать токи, втекающие в узловую точку электрической схемы — положительными, а токи вытекающие из этой точки — отрицательными, то первый закон Кирхгофа можно сформулировать так: алгебраическая сумма токов в узловой точке электрической цепи равна нулю.

Второй Закон Кирхгофа. Во всяком замкнутом контуре электрической цепи, алгебраическая сумма Э.Д.С. источников, включенных в контур, равна алгебраической сумме падений напряжений на сопротивлениях контура, включая внутренние сопротивления источников.

При произвольно выбранном направлении обхода контура Э.Д.С. считаются положительными, если их направления совпадают с направлением обхода контура, и отрицательными если не совпадают. Аналогично падения напряжений на сопротивлениях контура считаются положительными, если направления тока в сопротивлениях совпадают с направлением обхода контура и отрицательными, если не совпадают. Для замкнутого электрического контура, изображенного на рисунке справедлива формула:

E1 + E2 — E3 = I1*R1 + I2*R2 — I3*R3 — I4*R4

Если учитывать внутренние сопротивления источников питания, а это при больших токах значительно повышает точность расчетов, то формула примет следующий вид:

E1 + E2 — E3 = I1*r1 +I1*R1 + I2*r2 + I2*R2 — I3*r3 — I3*R3 — I4*R4

Где r1, r2, r3 внутренние сопротивления источников.

Источник