Меню

Сварочный инвертор с корректором коэффициента мощности

Сварочный инвертор с корректором коэффициента мощности

Дельта принтеры крайне требовательны к точности изготовления комплектующих (геометрия рамы, длины диагоналей, люфтам соединения диагоналей, эффектора и кареток) и всей геометрии принтера. Так же, если концевые выключатели (EndStop) расположены на разной высоте (или разный момент срабатывания в случае контактных концевиков), то высота по каждой из осей оказывается разная и мы получаем наклонную плоскость не совпадающая с плоскостью рабочего столика(стекла). Данные неточности могут быть исправлены либо механически (путем регулировки концевых выключателей по высоте), либо программно. Мы используем программный способ калибровки.
Далее будут рассмотрены основные настройки дельта принтера.
Для управления и настройки принтера мы используем программу Pronterface.
Калибровка принтера делится на три этапа:

1 Этап. Корректируем плоскость по трем точкам

Выставление в одну плоскость трех точек — A, B, C (расположенных рядом с тремя направляющими). По сути необходимо уточнить высоту от плоскости до концевых выключателей для каждой из осей.
Большинство (если не все) платы для управления трехмерным принтером (В нашем случае RAMPS 1.4) работают в декартовой системе координат, другими словами есть привод на оси: X, Y, Z.
В дельта принтере необходимо перейти от декартовых координат к полярным. Поэтому условимся, что подключенные к двигателям X, Y, Z соответствует осям A, B, C.(Против часовой стрелки начиная с любого двигателя, в нашем случае смотря на логотип слева — X-A, справа Y-B, дальний Z-C) Далее при слайсинге, печати и управлении принтером в ручном режиме, мы будем оперировать классической декартовой системой координат, электроника принтера сама будет пересчитывать данные в нужную ей систему. Это условность нам необходима для понятия принципа работы и непосредственной калибровки принтера.
image
Точки, по которым мы будем производить калибровку назовем аналогично (A, B, C) и позиция этих точек равна A= X-52 Y-30; B= X+52 Y-30; C= X0 Y60.
image

Алгоритм настройки:

  1. Подключаемся к принтеру. (В случае “крагозяб” в командной строке, необходимо сменить скорость COM порта. В нашем случае с 115200 на 250000 и переподключится)
    image
    После чего мы увидим все настройки принтера.
    image
  2. Обнуляем высоты осей X, Y, Z командой M666 x0 y0 z0.
    И сохраняем изменения командой M500. После каждого изменения настроек необходимо нажать home (или команда g28), для того что бы принтер знал откуда брать отсчет.
  3. Калибровка принтера производится “на горячую”, то есть должен быть включен подогрев стола (если имеется) и нагрев печатающей головки (HotEnd’а) (Стол 60град., сопло 185 град.) Так же нам понадобится щуп, желательно металлический, известных размеров. Для этих задач вполне подойдет шестигранный ключ (самый большой, в нашем случае 8мм, он предоставляется в комплекте с принтерами Prizm Pro и Prizm Mini)
  4. Опускаем печатающую головку на высоту (условно) 9мм (от стола, так, что бы сопло еле касалось нашего щупа, т.к. высота пока что не точно выставлена.) Команда: G1 Z9.
  5. Теперь приступаем непосредственно к настройке наших трех точек.
    Для удобства можно вместо g- команд создать в Pronterface четыре кнопки, для перемещения печатающей головки в точки A, B, C, 0-ноль.

  • Последовательно перемещаясь между тремя точками (созданными ранее кнопками или командами) выясняем какая из них находится ниже всего (визуально) и принимает эту ось за нулевую, относительно нее мы будем менять высоту остальных двух точек.
  • Предположим, что точка A у нас ниже остальных. Перемещаем головку в точку B(Y) и клавишами управления высотой в Pronterface опускаем сопло до касания с нашим щупом, считая величину, на которую мы опустили сопло (в лоб считаем количество нажатий на кнопки +1 и +0.1)
    Далее командой меняем параметры высоты оси Y: M666 Y <посчитанная величина>
    M666 Y0.75
    M500
    G28
  • Ту же операцию проделываем с оставшимися осями. После чего следует опять проверить высоту всех точек, может получится, что разброс высот после первой калибровки уменьшится, но высота все равно будет отличатся, при этом самая низкая точка может изменится. В этом случае повторяем пункты 6-7.
  • 2 Этап. Исправляем линзу

    После того как мы выставили три точки в одну плоскость необходимо произвести коррекцию высоты центральной точки. Из за особенности механики дельты при перемещении печатающей головки между крайними точками в центре она может пройти либо ниже либо выше нашей плоскости, тем самым мы получаем не плоскость а линзу, либо вогнутую либо выпуклую.
    image
    Корректируется этот параметр т.н. дельта радиусом, который подбирается экспериментально.

    Калибровка:

    1. Отправляем головку на высоту щупа в любую из трех точек стола. Например G1 Z9 X-52 Y-30
    2. Сравниваем высоту центральной точки и высоту точек A,B,C. (Если высота точек A, B, C разная, необходимо вернутся к предыдущей калибровки.)
    3. Если высота центральной точки больше остальных, то линза выпуклая и необходимо увеличить значение дельта радиуса. Увеличивать или уменьшать желательно с шагом +-0,2мм, при необходимости уменьшить или увеличить шаг в зависимости от характера и величины искривления (подбирается экспериментально)
    4. Команды:
      G666 R67,7
      M500
      G28
    5. Подгоняем дельта радиус пока наша плоскость не выровняется
    3 Этап. Находим истинную высоту от сопла до столика

    Третьим этапом мы подгоняем высоту печати (от сопла до нижней плоскости — столика) Так как мы считали, что общая высота заведомо не правильная, необходимо ее откорректировать, после всех настроек высот осей. Можно пойти двумя путями решения данной проблемы:
    1 Способ:
    Подогнав вручную наше сопло под щуп, так что бы оно свободно под ним проходило, но при этом не было ощутимого люфта,

    • Командой M114 выводим на экран значение фактической высоты нашего HotEnd’а
    • Командой M666 L получаем полное значение высоты (Параметр H)
    • После чего вычитаем из полной высоты фактическую высоту.
    • Получившееся значение вычитаем из высоты щупа.

    Таким образом мы получаем величину недохода сопла до нижней плоскости, которое необходимо прибавить к полному значению высоты и и записать в память принтера командами:
    G666 H 235.2
    M500
    G28

    2 Способ:
    Второй способ прост как валенок. С “потолка”, “на глаз” прибавляем значение высоты (после каждого изменение не забываем “уходить” в home), добиваясь необходимого значения высоты, но есть шанс переборщить со значениями и ваше сопло с хрустом шмякнется об стекло.

    Как сделать авто калибровку для вашего принтера и что при этом авто калибрует принтер вы узнаете из следующих статей.

    Источник

    

    Сварочный инвертор с корректором коэффициента мощности

    САМОДЕЛЬНЫЙ СВАРОЧНЫЙ АППАРАТ

    КАКИМ ЕМУ БЫТЬ

    На этой странице будут собираться интерсные технологические и схемотехнические решения заводских и самодельных сварочных аппаратов.

    Для разминки возьмем сварочный инвертор РЕСАНТА САИ 250 ПРОФ:

    СВАРОЧНЫй ИНВЕРТОР РЕСАНТА САИ 250 ПРОФ

    Выходные диоды ККМ STTH12R06D — 12 ампер, 600 вольт, корпус ТО-220 с металлическим фланцем, но у них время восстановления 12 nS, они реально быстрые, как раз подстать микросхеме, поскольку в даташнике на микросхему указывается минимальная рекомендуемая частота переключения 50 кГц, а типовая 120. 150 кГц. Это довольно приличные частоты и при проектировании печатной платы нужно уделить максимальное внимание влиянию соседних проводников друг на друга
    Так же следует обратить внимание на выпрямительные диоды первичного напряжения. Используются диодные мосты работающие параллельно, но в паралель работают диоды именно из одной сборки, что гарантрует максимальную похожеть параметров диодов, следовательно через параллельные диоды будет протекать одинаковый ток, поскольку падение напряжения не N-P переходе будет тоже одинаковым.

    Следующим довольно интересным было схемотехническое решение в сварочном аппарате ВД-160И У2 (ВД-200И У2)

    Сварочный инвертор ВД-160И

    Первое, что бросилось в глаза, так это то, что ребята реально хорошо знают транзисторную схемотехнику. Полноценной схемы найти не удалось, однако лично мне понравилось то, что было увидено. Сначала я увидел ЭТОТ файлик, затем порывшись в интернете нашел вот ЭТОТ файлик.
    Первое, что бросилось в газа — ограничение тока на управляющем трансформаторе — использовать диоды для подавления выбросов это довольно оригинально (обведена голубым):

    Ограничение тока и подавление выбросов в управляющем трансформаторе

    Так же используется довольно редкий способ удержания дуги при снижении тока, а именно добавлена дополнительная высоковольтная обмотка для облегчения поджига и удержания дуги. Я уже видел подобные решения, но в них использовались токоограничивающие резисторы на кучу ватт. Здесь же в качестве ограничителя тока выступает реактивное сопротивление L2, которе при слабых тока созадет маленькое падение напряжение на себе, а при больших ограничивает ток на столько, что диоды КД213 остаются целыми, т.е меньше 10 А. Таким образом значительно снижается выделяемое внутри сварочного аппратата тепло.

    Для самодельного сварочного аппарата , работающего с аргоном нужен осцилятор. Впрочем осцилятор нужен и для плазмореза. Разумеется, что дугу можно поджечь и без него, касаясь электродом заготовки, но в момент касания односначно заточка электрода из вольфрама потеряет свою форму.
    В сварочном аппарате РУСИЧ С-400 в качестве генератора высокого напряжения выспутает самовозбуждающийся электронный трансформатор и схема довольно знакома — подавляющее большинство электронных трансформаторов для низковольтных галогеновых ламп собраны именно по этой схеме:

    Схема осцилятора

    В данном варианте используется по два параллельных транзистора для увеличения выходного тока. Тут сразу оговорюсь — у самого зачесалиь руки купить готовый трансформатор и перемотать под осцилятор, но я удержался. Для подобного трансформатора нужно довольно приличное окно, поскольку вторичная обмотка должна иметь межслойную изоляцию — выходное напряжение подобного трансформатора должно быть порядка 4-6 кВ, а это требует межслойной изоляции не только между первичкой и вторичкой, но и между слоями первички. Даже используя фторопластовую ленту толщина изоляции займет не мало места, а с учетом того, что слои вторичной обмотки не должны добигать то краев каркаса хотя бы 2-3 мм, то и толщина самой обмотки увеличивается. Следовательно использовать сердечники от электронного трансформатора для ламп весьма затруднительно — размер окна расчитан строго под то количество обмоток и их толщину, которая используетсяв данном трансформаторе — при серийном производстве использование сердечников с «запасом» довольно убыточно.

    Зарядить конденсаторы первичного питания сварочного инвертора не так просто — напряжение приличное, емкость конденсаторов тоже, следовательно ток во время зарядки будет возникать огромный. Чаще всего для зарядки этих конденсаторов в сварочных инветорах используют токоограничивающие резисторы и термисторы. Я не не буду утверждать, что это схема заводского сварочного аппарата (СХЕМА ЗДЕСЬ), но автор не стал заморачитваться с резисторами, а просто поставил обычную лампу накаливания на 150 Вт. Тут же оговорка — обычная лампа довольно габаритна, поэтому желащим повторить подобное рекомендую использовать галогенку — она значительно меньше, да и трубку гораздо проще защитить от ударов, чем колбу обычной лампы:

    Схема софтстарта с использованием лампы накаливания

    Тут следует отметить, что реле софтстарта включается только тогда, когда на выходе инвертора появляется напряжение.

    СТРАНИЦА БУДЕТ ДОПОЛНЯТЬСЯ ПО МЕРЕ ОБНАРУЖЕНИЯ
    ИНТЕРЕСНЫХ РЕШЕНИЙ СВАРОЧНЫХ ИНВЕРТОРОВ

    Источник

    Легенды продавцов или как не купить дешевый инвертор по цене дорогого

    Менеджеры магазинов сварочного оборудования идут на разные хитрости, которые «работают» на людях, сильно не разбирающихся в тонкостях выбора сварочной техники и комплектующих к ней. Посетив любой магазин, вы, скорее всего, услышите много лестного о реализуемой продукции. О недостатках же либо умолчат, либо скажут о них «между прочим», потому как они всегда несущественные и в целом на качество товара и его стоимость не влияют. Не говоря уже об откровенном обмане покупателя, который начали у нас практиковать повсеместно…

    Как защитить себя доверчивому покупателю от происков недобросовестных продавцов? Какой инвертор купить? Конечно же нужно консультироваться со специалистами, которые хорошо разбираются в вопросе, ведь высокая цена не всегда гарантирует высокое качество. О чем идет речь? Расскажем на конкретном примере…

    На фото представлен сварочный инвертор Migatronic Focus STICK 160E (в комплектации), который в одном из интернет- магазинов стоит 42224 руб. Производитель заявлен как Migatronic. Страна-производитель, естественно, Дания и гарантия 1 год.

    Те люди, которые хоть один раз в своей жизни видели «внутренности» китайского инвертора узнают в этом благородном датчанине обычного «трехпалубного» китайца. И вся его «инновационность» состоит только лишь в наличие ККМ (корректирующего коэффициента мощности). Менеджеры продают аппараты с ККМ как такие, которые будут работать в слабой сети. Да, он будет работать, только слабую сеть он садит еще сильней. На самом деле европейцы придумывали ККМ не для этого, с сетью у них все в порядке. Настоящее назначение ККМ – стабилизация выходного сварочного тока и соответственно, горения дуги на электроде.

    Если кто не верит, можно провести простой эксперимент: взять два одинаковых инвертора (один с ККМ, другой без) и генератор на 4 КВт, который работает на пределе своих возможностей при сварке трехмиллиметровым электродом. Простой инвертор от генератора будет варить тройкой, с ККМ – нет. Либо он сразу уйдет в защиту, либо вообще сгорит.

    Без углубления в подробности схемотехники можно смело сказать, что настоящая цена данного сварочника чуть более 100$, но продают его, как Migatronic Focus Дания

    То же касается масок, инверторов, HITACHI, ESAB buddy и т.д. и т.п. Многие обладатели данных устройств, могут возмутиться и всячески отрицать, что они обладают китайскими сварочными аппаратами, но факты свидетельствуют, к сожалению, о другом. Дело в том, что Хитачи не выпускает инверторы, а ЕСАБ – сварочные маски. Но если вы разберете устройства, которые реализуются под этими двумя марками в России, то окажется, что внутри они будут представлять собой одно и то же. Смешно, но инвертор ЕСАБ от ХИТАЧИ отличается только внешним видом корпуса. Можете в этом убедиться, проанализировав фотографии их «внутрянки» в интернете.

    Вывод без тени иронии

    Покупайте отечественное -российские инверторы, их пока не подделывают и качество действительно на высоком уровне. Есть как мелкие фирмы, так и крупные заводы, которые на сегодняшний день хорошо себя зарекомендовали:

    • Форсаж (Государственный Рязанский приборный завод),
    • Неон (ЗАО Электро Интел, Нижний Новгород),
    • ФЕБ (ООО «НПП ФЕБ», Питер),
    • Технотрон (Чувашская Республика),
    • Циклон (Ростов-на-Дону),
    • Селма (Севастополь).

    Источник

    Читайте также:  Падение мощности от фильтров