Меню

Светодиодная лампа боится перепада напряжения

Боятся ли светодиодные лампы перепадов напряжения

Основные причины выхода из строя

Причина первая – плохой контакт и искрение проводки. Это может иметь место в выключателе, распределительной коробке, в самой люстре. Нужно тщательно проверить все соединения.

Причина вторая – «неправильная» люстра или бра. Примерно треть всей потребляемой мощности светодиодов тратится на освещение, остальная уходит на нагрев. Последний вредит кристаллу — вызывает его ускоренную деградацию. Тем более, если производитель, чаще неизвестный (noname), не заложил в расчетах для корпуса достаточных условий для его охлаждения. Но это присуще только самой дешевой продукции.

Случается перегрев из-за формы плафонов в люстре. Даже качественную лампу не стоит вкручивать в герметичные светильники (ip65 и подобные), а если возникла такая необходимость — покупайте 5-7-ваттные. Они выделяют меньше тепла и проработают дольше.

По отзывам покупателей, лампы средней мощности работают дольше, чем, например, 10-ваттные. По возможности, лучше вкрутить три лампы по 4 Вт, чем одну на 12.

Причина третья – низкое качество продукции. Вы вряд ли сможете исправить ситуацию, если не знаете основ электроники. Негативными факторами может стать особенности:

  • источника питания;
  • светодиодов;
  • компоновки и сборки корпуса.

Неисправности и дефекты проводки

Светодиоды портятся, если в сети происходят частые скачки напряжения. Они могут возникать из-за проблем на линиях электропередачи или непосредственно в квартире. Нужно исключить нарушение целостности изоляции проводов.

Светодиодные лампы, как и люминесцентные энергосберегайки, плохо переносят пониженное напряжение. Рекомендуется проверить качество соединений в распределительной коробке, провода подключения светильника, устранить скрутки.

Удобно использовать клеммники типа Wago. Кроме них, есть многоразовые клеммные колодки, из которых можно вытащить провода и пересоединить их. Старые выключатели вредят светодиодам и блоку питания, потому что их контакты от времени изнашиваются и начинают искрить при включении/выключении. Каждый провод должен быть качественно изолирован.

Скачки напряжения

Перепады в сети напряжения довольно привычное событие в нашей стране. Как ни странно, но к повышению напряжения выше номинального значения светодиодные лампы относятся достаточно спокойно. Драйверы питания способны легко с ними справиться.

Более опасны для светодиодов падения напряжения, когда за доли секунды ток, проходящий через полупроводниковый слой, падает, а потом возвращается к исходным величинам. Тогда в пространстве p-n перехода может произойти точечный пробой. Драйвер питания способен отсечь избыток тока, но не способен компенсировать его выраженное падение.

Защита светодиодных ламп частично решается установленным перед драйвером высоковольтным конденсатором средней ёмкости, играющим роль сглаживающего фильтра.

Фатальные скачки напряжения

Ситуация, которой я хочу коснуться скорее исключение из правил, тем не менее, такие случаи происходят с завидной регулярностью. Речь идет об ударах молний. Но не в линию электропередачи – такие ситуации как раз безопасны, поскольку из-за мгновенного расплавления проводов, заряд, скорее всего, не дойдёт до конечного потребителя электроэнергии. Опасны удары молний в непосредственной близости от линии электропередачи.


Напряжение коронного разряда достигает миллионов вольт и вокруг канала молнии образуется мощнейшее электромагнитное поле. Если в зоне его действия окажется линия передач, произойдет мгновенный скачок силы тока и напряжения.

Проверка люстры, выявление дефектов

В люстре слабым местом является патрон, то есть та деталь, в которую вы вкручиваете лампочку. Место плохого контакта сильно нагревается, искрит, иногда покрывается нагаром (чернеет). Это ведет к перегоранию лампы.

Обратите внимание! Если у вас многоламповый светильник, но сгорают они чаще всего в одном и том же плафоне — проблема наверняка в патроне.

Хочется повторить: не используйте мощные светодиодные и компактные люминесцентные лампы в закрытых плафонах, особенно колбой вниз. Теплу некуда деваться, а о последствиях вы уже знаете.

Некачественные светодиодные лампы

Присматривайтесь к товару стоимостью от 125 рублей. Всё, что дешевле, — откровенный хлам. У таких ламп некачественная плата со светодиодами, не способная отводить достаточно тепла. С плохим корпусом тоже связаны «тепловые» проблемы, в них нет даже простейшего драйвера. Питание организовано через балластный конденсатор, стабилизации или защиты не предусмотрено. В последние годы такие экземпляры постепенно исчезают с рынка.

Установите параллельно светильнику варистор с напряжением срабатывания порядка 470 В. Это снизит риск — он погасит высоковольтные всплески.

Доработать такой источник света можно, если увеличить емкость фильтрующего конденсатора на плате и поставить предохранитель, если его нет.

Другие причины перегорания светодиодных ламп

Вы снизили количество вредных факторов до минимума, но лампы все равно выходят из строя. Отчего это происходит? Есть еще две причины:

  • слишком частое включение и выключение;
  • плохой источник питания.

Частое включение-выключение ламп

При включении света происходит бросок тока через сглаживающий конденсатор. Поэтому возникает опасность перегорания предохранителя или токоведущей дорожки. Чтобы избежать такой проблемы, не нужно постоянно переключать освещение. LED-светильники экономичны, и лишний час работы не ударит по бюджету.

Все о блоках защиты для светодиодных и энергосберегающих ламп

Рано или поздно любые источники света, применяемые в приборах освещения, перегорают. Причин этому множество. В лампочках со спиралью происходит разрыв последней, а в лэд-элементах – расслоение и выход из строя полупроводников кристаллов.

Единственный способ максимально продлить срок службы светодиодных и энергосберегающих ламп – это установить в сеть специальный блок защиты. Рассмотрим, какие основные причины перегорания ламп существуют, каким наилучшим способ защитить их от резких изменений параметров бытовой сети, каковы основные технические данные блоков защиты, что нужно знать при их выборе, как правильно их подключить, установить и подобрать место монтажа.

Почему это происходит?

У того, что в люстре взорвалась лампочка, могут быть самые разные по степени важности и сложности исправления причины. Например, в домах и квартирах со старой проводкой причиной такого поведения ламп часто становится плохая проводка. Если она давно не менялись, в сети возникают перегрузки, скачки напряжения и короткие замыкания. В отсутствии возможности обновления проводки для защиты лампочек и электроприборов лучше приобрести сетевой фильтр и подключать потребители электрического тока через него.

В современных домах также взрываются лампочки, когда в бытовой электросети наблюдается повышенное напряжение. Это приводит к:

  • перегреву нити накаливания;
  • высыханию термопасты в светодиодах;
  • превышение нормального давления в галогенных лампочках.

Повышенные значения напряжения могут быть вызваны неполадками на станциях или являться нормой. Проблема в том, что лампочки не рассчитаны на работу в такой сети, от чего и разрушаются. Для уравновешивания напряжения в доме можно подавать ток на приборы-потребители через стабилизатор.

Другие причины, по которым взрываются лампочки:

  • слабая вентиляция плафона. При работе лампы накаливания выделяется очень много тепловой энергии. Если вокруг нет достаточного пространства для её рассеивания, происходит перегрев, который приводит к излишнему расширению газа внутри колбы и её разрыву;
  • плохие контакты. Часто изменение напряжения в сети происходит по причине слабого контакта провода нуля со своей колодкой. После подключения прибора с большой мощностью сеть не успевает стабилизироваться и подаёт нерасчётный ток на осветительный прибор;
  • иногда галогенные лампочки лопаются из-за контакта с руками. Обычно они просто перегорают при включении в сеть от жировых остатков на поверхности, но возможен и разрыв со слабым хлопком. При работе галогенных ламп всегда следует избегать их контакта с кожей;
  • разгерметизация. Лампы с низким давлением или вакуумом внутри колбы быстро разрывает при проникновении воздуха внутрь;
  • неисправность выключателя. Качество контактов и состояние рабочих элементов выключателя тоже влияют на параметры электрического тока. Поэтому причиной взрывания лампочек после включения в люстре может быть старый переключатель, который давно не обслуживался.
Читайте также:  Импульсные генераторы тока высокого напряжения

Блоки защиты ламп: подключение и применение, работа и устройство

Блок защиты от импульсных перенапряжений предохраняет энергосберегающие светодиодные лампы от скачков в сети до 20 кВ. В зависимости от конструкционных особенностей он монтируется в схему параллельно или последовательно.

Технические данные

Устройства для защиты от перепадов сети для светодиодов и энергосберегающих ламп характеризуются тремя основными параметрами:

  1. Суммарная мощность потребляемых светильников.
  2. Входное напряжение.
  3. Номинал на выходе.

Важно! Дополнительными характеристиками, влияющими на функциональность блока защиты, являются диапазон рабочих температур и степень защиты от атмосферной влажности.

Особенности выбора

Первым необходимым условием выбора блока защиты для светодиодных и иных энергосберегающих ламп является правильный расчет суммарной мощности потребления. При этом к расчетной мощности для страховки лучше добавить еще 20-30% от полученного значения. Если устройство приобретается не только для лэд-элементов, но и для лампочек накаливания или галогенок, то желательно, чтобы оно было оснащено системой плавного повышения напряжения.

Правила и способы подключения

Блок защиты для одной или нескольких светодиодных или других энергосберегающих ламп устанавливается в самом начале схемы (после выключателя) в соответствии с конструкцией (последовательно или параллельно).

Важно! Если в схеме есть выключатель с подсветкой, потребуется установить дополнительный резистор (около 50 кОм и 1Вт) – параллельно блоку защиты. Последний в неактивном состоянии разрывает цепь, и потому лед-элемент работать не будет.

Места установки защиты

Если блок защиты для светодиодных и энергосберегающих ламп небольшой (до 300 Вт), его можно установить в распределительном модуле для проводки. Однако необходимо иметь ввиду, что он должен хорошо охлаждаться и быть доступным в случае необходимости ремонта или замены.

Ошибки изготовления ламп и их неверное использование

Качество производства

Причина того, почему взрываются лампочки бытового освещения, может скрываться и в них самих. Здесь есть два варианта. Первый – изделия низкого качества. Современный рынок электрического оборудования и аксессуаров завален продукцией сомнительного производства. В народе её называют «китайской», хотя она может проводиться и в других азиатских странах. Тамошние производители отдают лампы на экспорт по очень низкой цене и, чтобы сделать производство выгодным, идут на использование сырья низкого качества для производства. Это могут быть неподходящие сплавы, стекло, детали. Как правило, такой производитель честно старается сделать хорошую лампу, но вынужден экономить. Из-за этого возникают небольшие несоответствия техническим условиям.

Российские производители, в среднем, выпускают продукцию лучше, но все равно уступают в её качестве и функциональности всемирно известным западным брендам. Это тоже связано с экономическими соображениями на производстве.

Технические требования светильника

Стоит отметить, что ошибки пользователя часто являются ответом на вопрос, почему взрываются лампы. Многие не обращают внимания на техническую информацию, которую производители сообщают на упаковке или в техпаспорте осветительных приборов. Там указывается рекомендуемое напряжение, при котором гарантируется безопасная и надёжная эксплуатация. Соответственно, при установке лампы с повышенным или пониженным рабочим напряжением в сети возникают конфликты и неполадки.

Основные выводы

Блок защиты устраняет перепады напряжения в сети, обеспечивая длительный срок службы галогенным и прочим энергосберегающим и светодиодным лампам. Чаще всего причиной перегорания лампочек являются:

  1. Скачки напряжения.
  2. Фатальное повышение силы тока.
  3. Наведенная пульсация.
  4. Паразитарная пульсация.

Для надежной защиты энергосберегающих ламп и светодиодных светильников необходимо в начало электросхемы установить параллельно или последовательно (в зависимости от конструкции) специальный блок. При его выборе нужно учесть суммарную мощность электроприборов, а также напряжение на входе и выходе и условия будущей эксплуатации.

Полезные рекомендации для тех, у кого взрываются лампы

  • чтобы обезопасить себя от разлета мелких осколков очередной взорвавшейся лампы по всей комнате, начните использовать галогенные источники света, в которые встроен защитный блок со стабилизатором напряжения. Они стоят немного дороже незащищённых аналогов, но за счёт поддержания нужных параметров тока дольше служат;
  • если лампы взрываются в доме или квартире с ветхой проводкой, старыми выключателями или, будучи вкрученными в виды видавший осветительный прибор, наиболее вероятной причиной является их плохое состояние. Лучшим решением будет заменить проводку, выключатели и осветительные приборы на новые;
  • для выкручивания цоколя, оставшегося в патроне после разрушения колбы, нужно отключить подачу тока и выкрутить его с помощью острогубцев с изолированными ручками. Цоколь очень крепко держится в патроне, поэтому при работе на высоте нужно попросить кого-нибудь подстраховать.

Для современных электрических сетей и оборудования разработаны стандарты безопасности, соответствие которым гарантирует безопасность и надёжность использования тока. Взрыв одной лампочки может произойти по причине единичного брака, но когда это происходит постоянно, следует найти причину. Исправление неполадок в домашней электросети – вопрос здоровья, безопасности и экономии, не терпящий игнорирования и откладывания в долгий ящик.

Многие сталкивались с проблемой, когда при включении света в комнате вдруг с хлопком взрывается лампа накаливания. Естественно, это неприятно – и испуг, и темнота в квартире, да еще и цоколь от лопнувшего осветительного прибора нужно как-то доставать из патрона. Но извлечь оставшуюся в светильнике деталь – это еще полдела. Необходимо понять, почему же взрываются лампочки в люстре при включении и как в последующем избежать подобных случаев.

На самом деле лампы лопаются по нескольким причинам. Необходимо разобраться, каковы они, и какие меры имеет смысл принять, чтобы такого впредь не повторялось.

Конечно, основной и наиболее часто встречающейся причиной таких хлопков является низкое качество продукции, т. е. лампы накаливания. Но это самая простая причина, избавиться от которой можно путем замены лампы, а потому не стоит на ней серьезно останавливаться. А вот если лампы не раз менялись на приборы разных производителей, а проблема остается, следует копать глубже.

Читайте также:  Все настенные стабилизаторы напряжения

Причина № 2 – напряжение в сети

На этой причине следует остановиться подробнее, т. к. вызывает ее несколько факторов. Может возникнуть вопрос, почему же тогда при резких скачках напряжения не сгорает бытовая техника и электроника. Тут все просто – все современные приборы оснащены стабилизационными или защитными устройствами, которые вполне способны сдержать кратковременные резкие скачки напряжения, а уже после скачка, работая, к примеру, при повышенном токе, хоть и с нагрузкой, но вполне сносно работают дальше.

А вот с лампами накаливания немного сложнее. Напряжение из сети идет непосредственно на прибор, без какой-либо защиты, а потому такая лампочка принимает весь удар на себя.

К тому же есть один небольшой секрет, зная который, можно сделать так, чтобы световые приборы с нитью накаливания продолжали работать даже после скачков напряжения, при условии, конечно, что они не слишком велики.

Устранение

Все, кто сталкивался с подключением патрона к сети, знают, что питание приходит на него по двум проводам. Но обычно никто не придает значения тому, какой из проводов на какой контакт подведен. А ведь это важно, и производители ламп накаливания производят их по определенной схеме. Она предусматривает тот факт, что фазный провод должен подходить к центральному контакту патрона, а нулевой – к периферийному.

Именно правильное подключение может помочь лампе накаливания не взрываться.

Диапазон напряжения

Обычно напряжение в сети должно быть 230 вольт, допустимо отклонение в пределах 210-250 вольт. Однако скачки бывают более существенными. Во время резкого снижения напряжения лампы накаливания и светодиодные лампы с дешевыми комплектующими (простым RC-драйвером) светят тускло, свет может мерцать. Светодиодные источники света с IC-драйвером не мигают и не теряют яркость даже при существенных перепадах напряжения в сети.

Совет: скачки напряжения в сети не будут заметны, если выбрать лампы с наибольшим диапазоном напряжения или маркировкой драйвера IC.

Источник



Что делать, если часто перегорают светодиодные лампы

Защита светодиодных ламп от скачков напряжения

Защита светодиодных ламп

Зачастую именно из-за сильных скачков напряжения, светодиодные лампы, быстро выходят из строя. Чтобы этого не допустить, следует заранее позаботиться о защите. Одной из таких защит, о которой и будет рассказано в данной статье строительного журнала samastroyka.ru , является сетевой фильтр. Однако это не обычный сетевой фильтр, который используется для подключения компьютеров и другой оргтехники.

Как защитить светодиодные лампы и продлить срок их службы

Для защиты светодиодных ламп от сильных скачков напряжения и других проблем, нужно использовать промышленный сетевой фильтр. Такой сетевой фильтр позволяет сглаживать резкие перепады силы тока, которые могут легко навредить не только светодиодному освещению, но и другим «чувствительным» электроприборам в доме.

Как защитить светодиодные лампы и продлить срок их службы

При резком скачке напряжения в электросети, происходит нежелательный переизбыток электроэнергии, который уходит в нагрев элементов светодиодных ламп и другой техники. В результате этого, выходят из строя резисторы, микросхемы и другие элементы электрических схем. Сетевой фильтр позволяет сгладить помехи в электросети, и защитить тем самым светодиодные лампы от перегорания.

Какой сетевой фильтр подойдёт для защиты ламп

Как было сказано выше, обычный сетевой фильтр с удлинителем не рекомендуется использовать. Лучше всего воспользоваться промышленным сетевым фильтром, который устанавливается прямо в электрический щиток. Мощности обычного сетевого фильтра попросту недостаточно для того, чтобы выдержать нагрузку целого дома или квартиры.

Какой сетевой фильтр подойдёт для защиты ламп

По этой причине, лучше всего выбрать сетевой фильтр на всю квартиру или дом, защитив, таким образом, светодиодные лампы и другое электрооборудование от скачков напряжения и других помех на линии.

Какой сетевой фильтр подойдёт для защиты ламп

Стоимость такого сетевого фильтра относительно небольшая, около 1500 рублей. Однако такая защита никогда не будет лишней, тем более, если в доме используется светодиодное освещение.

Как подключить промышленный сетевой фильтр

Промышленный сетевой фильтр, как правило, устанавливается на специальную монтажную DIN рейку, прямо в электрическом щитке. Для подключения сетевого фильтра к электропотребителям, снизу и сверху прибора есть контакты с соответствующими обозначениями. К L-входу нужно подвести фазовый провод от электросети, к N- рабочий ноль.

Как подключить промышленный сетевой фильтр

Также само и с подключением электропотребителей, к L-выходу подсоединяется фазовый провод, идущий к электропотребителям дома, а к N-рабочий ноль. Если в доме есть модульное заземление, то жёлто-зелёный провод подсоединяется к контактам с обозначением PE (защитное заземление).

Источник

Защита светодиодных ламп от перегорания: схемы, причины, продлеваем жизнь

На рынке светодиодных ламп и светильников представлен широкий спектр продукции в разных ценовых диапазонах. Основное отличие приборов низкого и среднего ценовых сегментов заключается в большей степени не в используемых светодиодах, а в источниках питания для них.

Светодиоды работают от постоянного тока, а не от переменного, который протекает в бытовой электрической сети, а от качества преобразователя в большей степени зависит надежность ламп и режим работы светодиодов. В этой статье мы рассмотрим, как защитить светодиодные лампы и продлить жизнь дешевым моделям.

Всё описанное ниже справедливо и для светильников и для ламп.

Защита светодиодных ламп от перегорания

Два основных вида источников питания для светодиодов: гасящий конденсатор и импульсный драйвер

В самой дешевой светодиодной продукции используется гасящий конденсатор в качестве источника питания. Принцип его работы основан на реактивном сопротивлении конденсатора. Отметим простыми словами, что в цепях переменного тока конденсатор представляет собой аналог резистора. Отсюда следуют такие же недостатки, что и при использовании резистора:

1. Отсутствие стабилизации по напряжению или току.

2. Соответственно при росте входного напряжения увеличивается и напряжение на светодиодах, соответственно растёт и ток.

Эти недостатки связаны между собой. В отечественных электросетях, особенно в отдаленных районах, дачных поселках, деревнях и частном секторе часто наблюдаются скачки напряжения. Если напряжение проседает ниже 220В это не так страшно для ламп собранных по этой схеме, ток через светодиоды будет ниже, соответственно они прослужат дольше.

Схема светодиодной лампы с гасящим конденсатором:

Схема светодиодной лампы с гасящим конденсатором

А вот если напряжение будет выше номинального, например 240В, то светодиодная лампы быстро сгорит, по причине того, что и ток через светодиоды возрастет. Также очень опасны и импульсные скачки напряжения в сети, они возникают вследствие коммутации мощных электроприборов: вы наверняка замечали, что при включении холодильника или пылесоса, например, свет «моргает» — это и есть проявление этих импульсных скачков. Также они возникают во время грозы или аварийных ситуациях на ЛЭП или электростанции. Выглядит импульс следующим образом:

Импульсные драйвера для светодиодов

Импульсные драйвера для светодиодов

В светодиодных лампочках среднего и высокого ценового сегмента используются драйвера импульсного типа со стабилизацией тока.

Светодиоды работают от стабильного тока, напряжение для них не является основополагающей величиной. Поэтому драйвером называют источник тока. Его основными характеристиками является сила выходного тока и мощность.

Читайте также:  Импульсный источник отрицательного напряжения

Стабилизация тока реализуется с помощью цепей обратной связи, если не вдаваться в подробности существует два основных типа драйверов, которые используются в светодиодных лампочках и светильниках:

1. Бестрансформаторный, соответственно без гальванической развязки.

2. Трансформаторный – с гальванической развязкой.

Гальваническая развязка – это система, которая обеспечивает отсутствие прямого электрического контакта между первичной цепью питания и вторичной цепью питания. Она реализуется с помощью явлений электромагнитной индукции, иначе говоря, трансформаторами, а также с помощью оптоэлектронных устройств. В блоках питания для гальванической развязки используется именно трансформатор.

Типовая схема бестрансформаторного 220В драйвера для светодиодов изображена на рисунке ниже.

Типовая схема бестрансформаторного 220В драйвера для светодиодов

Обычно они построены на интегральной микросхеме со встроенными силовым транзистором. Она может быть в разных корпусах, например TO92, он используется также и в качестве корпуса для маломощных транзисторов и других ИМС, например линейных интегральных стабилизаторов, типа L7805. Встречаютcя и экземпляры в «восьминогих» корпусах для поверхностного монтажа, типа SOIC8 и другие.

Для таких драйверов повышения или понижения напряжения в питающей сети не страшны. Но крайне нежелательны импульсные перенапряжения – они могут вывести из строя диодный мост, если драйвер бестрансформаторный, то 220В попадут на выход микросхемы, или же мост пробьёт на КЗ по переменному току.

В первом случае высокое напряжение «убьёт светодиоды», вернее один из них, как это обычно происходит. Дело в том, что светодиоды в лампах, прожекторах и светильников обычно соединены последовательно, в результате сгорания одного светодиода цепь разрывается, остальные остаются целыми и невредимыми.

Во втором – выгорит предохранитель или дорожка печатной платы.

Типовая схема драйвера для светодиодов с трансформатором изображена ниже. Они устанавливаются в дорогую и качественную продукцию.

Типовая схема драйвера для светодиодов с трансформатором

Защита светодиодных ламп: схемы и способы

Есть разные способы защиты электроприборов, все они справедливы для защиты светодиодных светильников, среди них:

1. Использование стабилизатора напряжения – это самый дорогой способ и для защиты люстры его использовать крайне неудобно. Однако можно запитать весь дом от сетевого стабилизатора напряжения, они бывают различных типов – релейные, электромеханические (сервоприводные), релейные, электронные. Обзор их преимуществ и недостатков может стать темой для отдельной статьи, пишите в комментарии, если вам интересна эта тема.

2. Использование варисторов – это прибор ограничивающие всплески напряжения, может использоваться как для защиты конкретного светильника или другого прибора, так и на вводе в дом.

3. Использование дополнительного гасящего конденсатора последовательном включении. Таким образом, ограничивается ток лампы, конденсатор рассчитывают исходя из мощности лампы. Это скорее не защита, а понижение мощности лампы, в результате при повышенных значениях напряжения в электросети срок её службы не сократится.

Варистор для защиты ламп и другой бытовой техники

Варистор – это прибор ограничивающий напряжение, его действие подобно газовому разряднику. Это полупроводниковый прибор с переменным сопротивлением. Когда на его выводах напряжение достигает уровня напряжения срабатывания варистора, его сопротивление снижается с тысяч мегаом до десятков Ом и через него начинает протекать ток. Его подключают в цепь параллельно. Таким образом, происходит защита электрооборудования.

Варисторы

Внешний вид варисторов

Un — классификационное напряжение. Это такое напряжение, при котором через варистор начинает протекать ток силой в 1 мА;

Um — максимально допустимое действующее переменное напряжение (среднеквадратичное);

Um= — максимально допустимое постоянное напряжение;

Р — номинальная средняя рассеиваемая мощность, это та, которую варистор может рассеивать в течение всего срока службы при сохранении параметров в установленных пределах;

W — максимальная допустимая поглощаемая энергия в джоулях (Дж), при воздействии одиночного импульса.

Ipp — максимальный импульсный ток, для которого время нарастания/длительность импульса: 8/20 мкс;

Со — емкость, измеренная в закрытом состоянии, при работе ее значение зависит от приложенного напряжения, и когда варистор пропускает через себя большой ток, она падает до нуля.

Для увеличения рассеваемой мощности производители увеличивают размер самого варистора, а также делают его выводы более массивными. Они выступают в качестве радиатора для отвода выделенной тепловой энергии.

Для защиты электроприборов в отечественных электросетях переменным напряжением в 220В подбирают варистор больший, чем амплитудное значение напряжения, а примерно равно 310В. То есть можно устанавливать варистор с классификационным напряжением около 380-430В.

Например, подойдет TVR 20 431. Если вы установите варистор с меньшим напряжением, то возможны его «ложные» срабатывания при незначительных превышениях напряжения питающей сети, а если установите с большим – защита не будет эффективной.

Как уже было сказано, варисторы могут устанавливаться непосредственно на вводе в дом, таким образом, вы защитите все электроприборы в доме. Для этого промышленностью выпускаются модульные варисторы, так называемые УЗИП.

Вот схема его подключения для трёхфазной сети, для однофазной – аналогично.

Схема подключения УЗИП

Эти схемы с использованием дифавтомата и защитой от высокого потенциала на одном или двух проводах однофазной цепи не менее интересны.

Схема защиты ламп

Схема защиты ламп

Для защиты одного светильника или лампочки используют такую схему включения, она приведена на примере самодельного светодиодного светильника, но при использовании готового светильника или лампы варистор устанавливается также – параллельно по цепи 220В.

Схема самодельного светодиодного светильника

Вы его можете установить как в корпусе самого осветительного прибора, так и на питающих проводах снаружи. Если он подключается к розетке – варистор можно расположить в розетке. Варистор можно заменить супрессором.

В этом видео ролике автор интересно рассказывает о таком способе защиты.

Готовые решения

Устройство защиты от импульсных перенапряжений для светодиодных светильников – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В зависимости от конструкции устанавливается в параллель или последовательно.

 – от производителя LittleFuse. Обеспечивают защиту от перенапряжений величиной до 20 кВ. В

На рынке имеются устройства с разными характеристиками – напряжением срабатывания и пиковый ток.

Устройство защиты светодиодов сохраняет лампы при импульсах напряжения. Подключается параллельно цепи освещения после выключателя. Также предотвращает самопроизвольное мигание светодиодных лампочек при использовании выключателей с подсветкой.

Устройство защиты светодиодов

Суть работы такого устройства заключается в том, что внутри установлен конденсатор. Ток подсветки выключателей течет через него, также он сглаживает всплески напряжений.

Подобное или аналогичное устройство от фирмы Гранит, модель БЗ-300-Л. Индекс «Л» в конце говорит о том, что это блок защиты для светодиодных и энергосберегающих ламп (клл).

Устройство защиты ламп Гранит

Внутри расположено три детали, одну из которых мы рассмотрели выше:

Устройство защиты ламп Гранит

Вот принципиальная схема. Вы можете её повторить.

Принципиальная схема устройства для защиты ламп

Заключение

Полностью исключить вероятность перегорания светодиодных ламп и светильников невозможно. Однако вы можете продлить лампочкам жизнь, минимизировав влияние скачков напряжение. Сделать это можно либо своими руками, либо купив блок защиты светодиодных ламп заводского исполнения.

Источник